AN EXPLICIT LOWER BOUND FOR SPECIAL VALUES
OF DIRICHLET L-FUNCTIONS

DONGHO BYEON AND JIGU KIM

Abstract. Let d be a fundamental discriminant, x4 be the Dirichlet character
associated to the quadratic field Q(v/d) and L(s, x4) be the Dirichlet L-function.
In [Go], Goldfeld obtained an effective lower bound for L(1, x4) with uncalculated
constants. For d < 0, Oesterlé [Oe] computed the constants. However, for d > 0,
the constants are not computed yet. In this paper, we compute the constants
for d > 0 and give an explicit lower bound for L(1, x4) with d > 0. Finally, as
an application, we give an explicit lower bound for class numbers of certain real

quadratic fields.

1. INTRODUCTION AND RESULTS

Let d be a fundamental discriminant, x4 be the Dirichlet character asso-
ciated to the quadratic field Q(v/d) and L(s, x4) be the Dirichlet L-function.

Dirichlet class number formula says

2mh(d) g g <,
L(laXd) = wyld
2h(d)logeq .
=g ifd>0,
where h(d) is the class number of Q(v/d), w the number of roots of unity in
Q(Vd) (d < 0) and ¢4 the fundamental unit of Q(v/d) (d > 0). Siegel [Si]

proved that
L(1,xa) > e(ld™ (> 0).

But there is no known method to compute the constant ¢(e) > 0. In [Go],

Goldfeld obtained an effective lower bound for L(1, xg).

Theorem 1.1. [Theorem 1, Go| Let E be an elliptic curve over Q with

conductor N. If E has complex multiplication and the L-function associated
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to E has a zero of order g at s = 1, then for any x4 with (d,N) =1 and
|d| > expexp(c1Ng3), we have

¢y (log|d])?~# " exp(=21+/gloglog |d])
glaN13 \/m ’

where pu = 1 or 2 is suitably chosen so that xq4(—N) = (=1)97*, and the

L(17 Xd) >

constants c1, ca > 0 can be effectively computed and are independent of g,

N and d.

In fact, Goldfeld proved Theorem 1.1 under assumption that the associ-
ated base change Hasse-Weil L-function L Q) (s) has a zero of order > g.
Thus the proof of Theorem 1.1 in [Go] also implies the following theorem
(cf. [Theorem 1, Gol] and the remark below [Theorem 1, Gol]).

Theorem 1.2. Let E be an elliptic curve over Q with conductor N and g >
4 be a positive integer. If E has complex multiplication and the associated
base change Hasse-Weil L-function LE/Q(\/E)(S) has a zero of order > g at
s = 1, then for any such d with (d,N) = 1 and |d| > expexp(ciNg?), we
have

¢y (log|d])9~3 exp(—21,/gloglog |d])
TN Vi |
where the constants c1, ca > 0 can be effectively computed and are indepen-

dent of g, N and d.

L(17Xd) >

In [Oe¢], Oesterlé explicitly computed the constants ¢, co for d < 0 in
Theorem 1.1 or Theorem 1.2 and wrote the term exp(—21+/gloglog |d]|) as
a simple product over primes dividing d. Finally he proved that for the
imaginary quadratic field Q(v/d), d < 0 and (d, 5077) = 1,

1 [2vP]
nd) > glogld [ (1-=Y2).
pld, p#|d]
However the constants ¢y, ¢o for d > 0 in Theorem 1.2 are not computed
yet. In this paper, we will explicitly compute the constants ci, co for d > 0

in Theorem 1.2 and prove the following theorem.

Theorem 1.3. Let d > 0 be a fundamental discriminant of a real quadratic

field Q(v/d). Assume the same conditions as in Theorem 1.2. Then for any
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such d with (d, N) =1 and d > exp exp (4000Ng3), we have

1090 (log d)?~% exp(~21,/gTogTogd)

grN® Vd '

Remark 1.4. Let E be an elliptic curve with complex multiplication by an
imaginary quadratic field K = Q(v/—k). In the proof of Theorem 1.3, we
use the fact that —k is one of —3,—4,—7,—8,—11,—19, —43, —67, —163 (cf.
[Example 11.8.1, Sil]), so k < 163, instead of the fact k < N (because k|N ),

L(1,xq) >

which is used in the proof of Theorem 1.1 or Theorem 1.2. That is why there

is a difference for exponents of N between Theorem 1.2 and Theorem 1.3.

Dirichlet class number formula and Theorem 1.3 imply the following the-

orem.

Theorem 1.5. Let d > 0 be a fundamental discriminant of a real quadratic
field Q(\/;i) Assume the same conditions as in Theorem 1.2. Then for any

such d > exp exp (4000N ¢3) with (d, N) = 1, we have
180

h(d) IOg €4 > W

(log d)973 exp(—21+/gloglog d).

Finally, as an application, we give the following explicit lower bound for

class numbers of certain real quadratic fields.

Theorem 1.6. Let m be an integer and d,, = 4199%(2m)* — 1 be a square-

free integer. Then for any d,, > expexp (3 x 10'4), we have
h(dm) > 9 x 10'2 . (log d,, ) 3%107°

Proof. Let E : y?> = 2% — 41992z be an elliptic curve over Q of conductor
N = 32-4199%. It is known that E has complex multiplication by Q(v/—1)
and analytic rank g; > 3 (cf. [El]).

Let d,, = 4199%(2m)* — 1 be a square-free integer and Ey, : y? = 23 —
4199%(d,,)?x be the quadratic twist of E. Since E,  has a rational point
(41992(2m)?d,y,, 4199%(2m)d?,) of infinite order (cf. Proposition 17 in [p.44,
Kol), E4,, has analytic rank ggq,, > 1. We note that 4199d,, = 1 (mod 8),
so Eg4,, has the root number 1 (cf. Theorem in [p.84, Ko|) and has even
analytic rank. Thus Ey,, has analytic rank gq,, > 2 and L, /QWam) has a
zero of order g; + g4, > g=>5at s =1.
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It is known that the real quadratic field Q(v/d;,), so called Richaud-
Degert type (cf. [De]), has the fundamental unit eg,, = v/dy, + 1 + Vdpy <
dpn. Thus from Theorem 1.5, we have for any d,,, > exp exp (4000 - 32 - 41992 - 53),

10180
2 - 520(32 - 41992

We note that if d,,, > exp exp (4000 - 32 - 41992 - 53), then for € > 3 x 1076,

h(dm)

E (log d,) exp(—21+/5loglog dy,).

exp(21+/5loglogd,,)) < (logdm)°.
Thus we have for any d,,, > expexp (3 x 10'%),
h(dm) > 9 x 102+ (log dp, )1 351077
(]

Remark 1.7. In [Elj, Elkies lists the 75 (4199 is the smallest integer.)

values of n < 2 -10° with n = 7 (mod8) for which the elliptic curve E,

y? = a3 — nx has analytic rank at least 3. We can apply the proof of

Theorem 1.6 to such n.

Remark 1.8. In [Laj, Lapkova did a similar work on lower bound for class
numbers of certain real quadratic fields. But the constants in the lower bound

were not computed.

2. PROOF OF THEOREM 1.3

Let E be an elliptic curve over Q of conductor N with complex multipli-

cation. Assume the same conditions as in Theorem 1.2. As [Go], let

SD(S):LE(S+ )LE S+ Q?Xd Zann y
and
©1(2s) = Lp(s + 3)Le(s + 5, \),

where A(n) = [,,(—1)". We note that ¢(s) = E/Q ( 1) and ¢(s)

has a zero of order > g at s = 5. Let

_wls) s s
G(s) = o1(2s) ;gnn and G(s,x) = nz;gnn

For A = 2 and U = (log d)®9, let

H= (d%)g_” [A°T?(s + 3)G(s,U)p1(28)],_1
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In [Go], Goldfeld proved that for d > expexp(cNg®) and ¢ sufficiently
large, either L(1, x4) > (log d)g*“*lﬁ or else

H| > gN"? 2 (logd) ™t T] (1+p72)7" [p.662,Go] (1)

Xa(p)#—1
p<U

and that for d > exp(500¢3), either L(1,x4) > (log d)g_“_lﬁ or else
|H] < g"NL(1, x4) A(log log A)?~*% [(52), Go]. (2)

We see that both L(1,xq) > (log d)g_“_lﬁ and (1),(2) imply Theorem
1.1. or Theorem 1.2. To prove Theorem 1.3, we need the following proposi-

tions corresponding to (1) and (2), respectively.

Proposition 2.1. Assume the same conditions as in Theorem 1.3. Then
for any such d > expexp (4000Ng?), either L(1,xq) > (log d)g_“_lﬁ or

else

1\ 2
|H| > 1.8 x107° - gN~*d(logd) *' ] <1_’L?> :
2

Xa(p)#—1
p<U

Proposition 2.2. Assume the same conditions as in Theorem 1.3. Then
for any such d > expexp (4000Ng3), either L(1,x4) > (log d)g_“_lﬁ or

else

[H| <2x 107 (£)9¢* T L(1, xa) A(log log A)?~H*°.

e

We will prove Proposition 2.1 in Section 3 and Proposition 2.2 in Section
4. If we assume Proposition 2.1 and 2.2, then we can prove Theorem 1.3 as

follows.

Proof of Theorem 1.3. Let P be the set of primes p < (logd)® for which
Xa(p) # —1. We may assume

L(1,xa) < (logd)?™#~' = (d > exp exp (4000Ng?)).
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From the inequality 2lPl <

41;g2 (log d)9=#~! in the proof of [Lemma 9, Go],
we see that |P| < @g(log log d). So we have

logH(1+p ) zz2log<ip:

p

(S

w\»—t w\»—t

)

ST

peP peP
14p~ ? _
= Z 2(1 ) \f
peEP peP

[P] 1 1 [P]
< / 4 _dr = [81’5 + 8log (2 — 1)}
>~ ) V-1 9
< 16/P|2

w\»—t

< 20g2 (loglogd)z.

From Proposition 2.1 and Proposition 2.2, we have for d > exp exp (4000Ng?),
9 (80\g,29+4.5 —p+6
2 10° - (82)9g20+5 L (1, 1) A(loglog A)9 "
> 1.8x107°- gN_4\/&(log d)9 " Lexp ( — 209%(10g log d)%)
Let f(N,g,d) = exp (g%(loglogd)%) . (%)_9929_4'5(10g10g %)_9_5. We
claim that if N > 1, g > 3 and d > exp exp (4000Ng3), then
f(N.g,d) > exp (450).

Since loglog 4N <loglogd® = loglogd + 1, we have

log f(N, g,d)

> (gi(loglog d)%) —glog % + (29 —4.5)logg — (g + 5) log (loglog d + 1),

which is an increasing function for d because its partial derivative with

respect to d is

VY B g+5
2\/loglogd(logd)d  (loglogd + 1)(logd)d

g(loglogd) — 2(g + 5)
2(loglog d)(log d)d

So we have

log f(N,g,d)
> (4000N)2¢?% — glog 80 + (29 — 4.5)log g — (g + 5) log (4000N g* + 1),
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which is an increasing function for g because its partial derivative with
respect to g is

2g — 4.5

2(4000N)2g — log (£2) 4 2log g +

3-4000Ng?%(g + 5)
4000N g3 + 1

> 2(4000N)7g —log (%) — 45 — 3log g — log (4000N + 1) — 2L+2)

—log (4000N g3 4+ 1) —

> 0.

So we have

log f(N,g,d)
> (4000N)7 - 3% — 3log & + 1.51og 3 — 8log (4000 - 33N + 1),

which is an increasing function for N because its derivative with respect to
N is
V4000 - 32 8 - 4000 - 33 V4000 -3% 8

- > —— >0
2N 4000 33N + 1 2N N

So we have
log f(N,g,d)
> /4000 - 32 — 3log 2 + 1.51og 3 — 8log (4000 - 3% + 1)
> 450
and the claim is proved. Thus we have
exp (g2 (loglog d)?) > exp (450) - (82)79~29+15(log log 4%)9+5.
Recall A = dN . Then we have for d > exp exp (4000Ng?),

1.8x 1075 . gN~*  Vd(logd)9™*Lexp (- 20g%(10g log d)%)

L(I)Xd> > 2 % 109 - (%)992g+4.5 ' A(lOg IOg A)Q—IH-G

1.8 x 1075 - 472 . gN—5 (logd)9# Lexp ( — 20g%(log log d)%)
2 x 109 - (8)9429+45 Vd(log log 45 ya—p+6

1.8 x 107 - dn2 - exp(450) (logd)¢~3 exp ( — 21g% (loglog d)?)
2 x 109 - g4 N5 Nz

10180 (log d)9=3 exp (— 21g2 (loglog d)? )

g4gN5 \/& .
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3. PROOF OF PROPOSITION 2.1

In this section, we will prove Proposition 2.1. Let k = g — . From [(53),
Go), we define H; and Hs by

H = H;+ H»

= 2m/Z(logA)”71G(%7U)90/1(1)

”ZZ( ) (log 4)7" ()" [[*(s + 2)G (5. U)er(29)] oy

Since |H| > |H;| — |H2|, to get an explicit lower bound for |H|, we need an

explicit upper bound for |Hs| and an explicit lower bound for |H;|.

Upper Bound for |Hsz|. Using Leibniz’ rule and Cauchy’s Theorem (for detail,
see [p.657 and p.658, Gol) we have

r—1 r - .
(Z (h) (L) " [r2(s + L )@1(23)]3% ()" GG, U)]SZ%)‘
h=0
< VAY (F)osay
.(i <]1;)23(rh)(7’ — h)! max IT%(s + 3)¢1(2s)] - 2°" Al max |G/(s, U)))
h=0
g K

vAY 57t () o A" o 0%+ )] ma o (26 e (G5, )

(3)

where C is the circle of radius % centered at s = % and Cs is the circle of

radius % centered at s = %

By [(46), Go], we have for s = o + it € Ca,

2 1 1o 1\ 2
max [[*(s +5)] < max {V2rexp (5m)ls + 517 exp (-0 = 3)}

(Vor(2)S exp (- 8 = 1))

< 1.6. (4)

IN

We need the following lemma, which is an explicit version of [(49), Go].
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Lemma 3.1. For s =0 +it € C,

o1()] < 3x 1012 N340 if 1 —
®Y1(S)| =
5 3 1
10° - N? i,

1 3 1
T00800Tog g = 7 = 29 t] = 2+ 515,

¢ 3 3 1

Proof. Let ¢ be the primitive Gréssencharakter of K = Q(v/—k) with con-
ductor f such that Lg(s) = Lk(s,) (cf. [Theorem 2, Go]). By [Lemma 2,

Gol, we have

er(s) = Licts-+ 103 ZE X [T - o), )
plk

where xj is a real, primitive, Dirichlet character (mod k).

From [p.654, Go|, we have for 0 < o < %,

|Lic(s +1,9%)| < 995 1 32, (6)

Theorem 5.3.13 in [Ja] gives that if [t > 2+ g5 and 0 > 1~ gy
then

1C(s)71] < 56 - 840%(log |t + 11)3.

Proposition 3.1.16 in [Ja] gives that for o > —1,

((s) = s + 5 +ri(s),

where [r(s)]| < ]g((jfl)ﬂ So we have if [t| <2+ g5 and 2 <o < 3, then

| = 5]~ Iri(s)]

|s + 1
—(4 1) — -1
> e = llls—1)
1
> —.
- 13

Thus we have the following explicit version of a statement in [p.653, Go].

56 - 8402 - 63[t|3 ifoZl—m, ] > 2 + g,
13 if 3<0<3, it <2+ g5

(7)

C(s)7H <

We note that

o) k—1

L(s,xp) = > 20 — LN (0)¢(s, L),
n=1 =1
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where ((s,a) is the Hurwitz zeta function and 0 < a < 1. Theorem 12.21 in

[Ap]| gives that for any integer M > 0 and o > 0,

M

M4-a)l—* o z—[x
((s,a) = mta T (M+a)'™ S/M W%dx'
n=0

So we have, for o > %,

M
—a %l <« 1 (M41D)t—° Vo242 )
1¢(s,a) —a™*| < nz_:l 7t (o + Y (8)

By applying (8) with M = |t| to the region; % <oc<2andt>2+ 8}1—0, we

have

t]
‘C(s,a)—a_s‘ < 1+/ ﬁder 1, Vifar
1

which gives

IN

7

Q
—
—~
I~
~
|
Q

+

ot
S
~—

‘L(&Xk)’

IN
\[_\i)—‘

+
|
S
S

< 7kt

By applying (8) with M =1 to the region; % <oc<2and0<t<2+ %,

we have

¢(s,a) — a_5| < 1+ IS\EI + V144t
16
=T
which gives
k—1

L) < K730+ 1)

IN
@
o~
|
(SIS
N—
_|_
—_
(=)
=22
Sw
=1
—
N2
o
| |=
=
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We note that L(s,xx) = L(s,xx). Then we have the following explicit

version of a statement in [p.653, Go].

e 1 1
Lis.xw)| < 7\/klt] if l<o<2, Jt[>2+ g, ©
22vVkls — 1|71 if § <o <2, |t <24 g

Since o > £ and {p : p|k} is a set containing only one prime from Remark

1.4, we have [ [, (1 —p T < |1 -279)71 < \/\5/%1' Thus Lemma 3.1

follows from (5), (6), (7), (9) and Remark 1.4. O

From Lemma 3.1, we have

max |¢1(2s)] < max (105 N )

s€C2 s€C2 [2s—1]
< 4-10°N3. (10)
Moreover,
max |G(s,U0)| <[] (1—p 1)™* (cf. [p.657, Go]). (11)
e Xa(p)#—1
p<U

Thus from (3), (4), (10) and (11) we have
|Ho| < 4-10°N3g*VA(log A)*2 [ (1—p 1)L (12)

xa(p)#—1
p<U

Lower Bound for |Hy|. We need the following lemma, which is an explicit

1\ 2
version of [(55), Go]. (We use [ (T’Lf) in Lemma 3.2 instead of [[(1+
+p 2

p~2)~* in [(55), Go].)

Lemma 3.2. If d > exp (500g°), then either L(1,xq) > (logd)* 'L or

S

else we have

_1\ 2
Lol = ] <1> _ (logd)~%.

14+p~
Xa(p)#—1
p<U

[N

Proof. We denote by P(s,U) the partial Euler product of G(s) for primes
p < U and write

G(s,U) = P(s,U) — R(s,U).
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From [Lemma 1, Gol, we see that

e

—~

DO —

c

=

Vv

it qam

—

7N

e

g
S N
N———
[N}

So we only need to show that

|R(3,0)] < (logd)™.

If
Ny ={nsuchthat p|n = p<U}
then
R(s,U) = Z gnn” %,
n>U, neNy
We write

1 _1
|R(5,U)] < Z |gnln”™2 + Z |gnln"2 = R1 + Ra.
U<n§i\/¢>i %\/E<n, neNy

We may assume

L(1,xa) < (logd)*™"' 55 (d > exp (500g°)).

Let % = Y 02, % Then by [Lemma 1 and Lemma 4, Go], we

have

R < U2( Y )
ngi\/a
1 e
< U2 (q552) (log d)*= Y

= (41§g . )2 (log d)~2loFr+1),

Now we estimate Ro. Let



AN EXPLICIT LOWER BOUND FOR SPECIAL VALUES 13

Since |P| < @g(log log d) (cf. Proof of Theorem 1.3), we have

IN

IN

IN

<

So we have

log P1

PR =

logH (- pf%)

peEP
[P
f 1dx
24 3 2 1 1 1 1 [P
[gxe + 625 + 827 + 1205 + 240 + 24log (aF — 1))
58|P|s
80(glog10gd)%.
2+1i00
: 1 N=—(Vd/4)*
R2 < A}EHOO o P1(§+Z,U) z(z+1) dz
f%+ioo Vi
_ : —(Vd/4)*
= lim Py} +2,U) 08 g,

IN

<

<

fffzoo

. N 3+(f/4) 3
]\}Enoo/ Pig \( $+it)(5 +n>\dt

Pl(%7U)(T) / 2/9+t2dt

3v/2m exp (80(g loglog d)g) :

w\»—A

\/3.

Thus we have for d > exp (500¢°),

< (4log2

(logd) =%

By [Lemma 2, Go], we have

1)|

| (

)2(log d) =2 H ) 4 3/27 - exp (80(glog log d)) - %
U
= |Lr(2,9*) LX) [J-p7H) 7
plk

Recall that ¢ is the primitive Grossencharakter of K = Q(v/—k) such that

LE(S) = LK(S,w) (Cf

. [Theorem 2, Gol). So, to get an explicit lower bound

for |Hy|, we need the following lemma, which is an explicit version of [Lemma
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12, Go]. (We note that the inequality in [Lemma 12, Go] is in the wrong

direction.)

Lemma 3.3.

|Lr (2,93 L(1, xx)| > 0.98(kN?)"2,

We will prove Lemma 3.3 in Section 5. If we assume Lemma 3.3, then
by Lemma 3.2 and (13) we have for d > exp (500¢%), either L(1,xq) >

logd)*~ 1L or else
Vd

|

|H;| > 26958 - \/Z(logA)””_1<

1\ 2
11 (1"”) —<logd>—29>. (14)
Xa(p)#—1 P

p<U

Now we can prove Proposition 2.1.

Proof of Proposition 2.1. We may assume

L(1, xa) < (logd)*' == (d > exp (5004%)).

=

From (12) and (14), we have
[H| > [Hi]— |Hy
> [2n%8%  VAQogay [ (22)7]

Xa(p)#—1
p<U

- [2/1 k%'?\ﬁ -V A(log A)*L(logd)~%

+4 - 108N392\/Z(10gA)/@—2 H (1 _ p—i)—ﬂ

Xa(p)#—1
p<U
= H, — H.
If %Eﬁ > H,, then we have
H
H| > =
2
N2
— —p 2
> K VA(log A)"! H <1+Z_%>
x(p)#-1
p<U
N 2
- - —p72
> 201222 gN 4 A(log A)" 1 H (Li_%) (cf. Remark1.4)
x(p)#—1
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as desired.

We see that

1

- 4-103N3g*V/A(log A)~~2 HXd(p#,lu —p i)
p<

th 208 VAo A Ty (172 =%
p<
(logd)~%
H ( pi%)z
Xd;p<7é 1 14p—3
4-108 _182 4
< — = 7 1632 - N"¢?(load) ! (M) ( 1 )
= 2.098(g-2) glogd)™ 11 (1) (7
Xa(p)#£—1
p<U
1.2
_29 1+p 2
+(10gd) H (1—p_%)
Xa(p)#—1
p<
4-10° 2 AT 2 -1 14p=2 )2
S T (=dy (o
= (2-0.98(9—2) g*logd)™ ]| o3 o1
Xa(p)#—1

p<U
Let P be the set of primes p < (logd)® for which y4(p) # —1. Since
P| <

I (loglog d), we have

log 2
2 4
o [T (224)" ()
gH o3 A

1
peP P

> (e + w)

peEP

[P

= [g—ﬁx% + 1622 + 1627 + 8log (m% —1)+16log (xi - 1)

IN

i
2
< 6|Pli

IN

6 (log 5 log log d)
Thus the sufficient condition of %ﬁ 1> ﬁg is that

loglogd — 6(

oLy loglogd)t > log (4- #49-163% - N"25). (15)

We write d > expexp (c;Ng*) and assume g > 3. If ¢1 is sufficiently large,
the left hand in (15) is greater than

c1Ng® — 6(=

3
aNghi =g (N — S/ N,

log 2 (1
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and the right hand in (15) is less than
31+ 7log N + log gg—fz.

Since ¢ > 3 and N > 1, a sufficient condition of %ﬁl > ﬁg is that
c1 > 3897. For convenience, if we choose ¢; = 4000, then Proposition 2.1

follows. O

4. PROOF OF PROPOSITION 2.2

In this section, we will prove Proposition 2.2. From [(24), (26) and (51),
Go] and the assumption that ¢(s) has a zero of order > g at s = 3, we can

write

0= (£)"[AT2s + Dp(s)| , =71+, (16)

2

where

T =63 °(" an/Afn(log Afn)* "I (n/4)),

r=0 n<A;

Ty =6 (> any/A/n(log A/n)""I.(n/A)),

r=0 n>Aq
=1+ (_1)5Xd(_N)¢
Ay = A((8 + 2r) log A)?,
and
o) [e.e]
I.(M) = / / exp(—(u1 + u2))(log uyuz)"duiduy (M > 0).
u1=0 Jua=M/uq
By [Lemma 10, Go], we have

1| < 1.

Thus by (16) and [(27), (30), (31) and (39), Go], we have

|2H|
= |2H-T, - Ty
< 12H =T(G(s,0))[ + |T(g(s)] + [S1] 4 [S2] + 1, (17)

17

2+i00
1) = ([ [ AT DR+ s+ 2]

—100 -3

g(S) - G(87 AO) - G(87 U)7
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Ag = A(log A)~209,

$1=23" (X)X b/ Amlog A/n) 10/ )

r=0 Ap<n<J

Sy =2 ()( S™ buy/Afn(log Afn)"I(n/A),

J<n<Ai
J = A((k + 6) loglog A)?,

and

D ban " = G(s, A1)er1(25) — G(s, Ag)p1(2s).
n=1

17

So, to obtain an explicit upper bound for |H|, we need explicit upper

bounds for |S1|, |S2|, |T'(9(s))| and |2H — T'(G(s,U))].

Upper Bound for |S1|. From [p.649, Go], we have

|Sl|§4”+1n!(log%)“\/z Z 9]

n
Ap<n<J

B

We may assume

L(1,xq) < (logal)"””_1 L (d > expexp (4000Ng3)).

S

Then we can choose

Yy = L(lv Xd)2J

< (log A)2“_2%
< Ay.
Recall % => 2,2 By [(36), Gol, we have
bn, d(k
ook o< YAy T D ViVms
Aog<n<J kQSAiO Aogmgk% flm
d(k
< (Y T ES vy,
A y<m<J  flm

where d(k) =34 1.
Lemma 4.1. (cf. [Problem 3, p.70, Ap|) For x > 3,

Z@ < %log2x+2010gx+10

n<x

where C(< 0.6) is the Euler constant.

(19)
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Proof. By Euler’s summation formula,

1 T dt
> = /1 T

= logm—|—(1_/loot;2[t]dt>+</oot;“dt x;[ﬂ)

T

Tt —[t] _x— 7]
2 x

IN

1
logz +C + —
x

and

T

logn logt r L logt oz log x
S [ [ ) - ()

12 x
n<x 1

= % log? x + A(x).

We note that

Tlogt+1 log
Al < [T - o)
1 T
logt+ 21" 1
< [_ ogt+ ] (2 — [a)) ogx
t 1 T

IN

2.

Thus
d d
oyt Z <Y (st ro+ )
n<x n d<a: q<z d<z
loge +C logd 1
= Z( d  d +E)
d<zx
1 logd
< (logaz%—C’)Zg—Zog +1
d<z d<z
1 1
< (logaH—C)(logx—i-C—i-;)—(ilogzx—i-A(a:))—i-l
< %loggx—l—QC’log:B—i—CQ—i—Q—A(x)+1
1
<

ilog x + 2C'log z + 10.
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Using (19), Lemma 4.1 and [Lemma 7, Go|, we have

IA

IN

IN

IA

AoSnSJ

(%(logq/A%)Q + 2Clog1/A% + 10)
x1500( L(1,%)2 7y~ + L(1,xa) J* ) (log )?
(log A—]O)Q(Z - 1500L(1, Xd)J%)(log y)3

(20gloglog A + 2logloglog A + 2log (k + 6))2

x (3000L(1, x4)VA(k 4 6) loglog A)

><((2/<; —2)loglog A + 2logloglog A + logﬁ + 2log (k + 6))3

(3-20gloglog A)?

X (3000L(1, x4)VA(k 4 6) loglog A)

x(4- (2 — 2)loglog A)3.

19

(20)

Using © < g — 1, (18), (20) and the fact n! < ey/n(%)", we have for d >
exp exp (4000N g3),

151 <

IN N IN A

Kk+1 K |65 |
451 151(20g log log A)*V A Z N
Ag<n<J

32
32
23

23

S

-32.43%.20-3000 - ¢ - (&

Upper Bound for |S2|. From [(32), Go], we have

1So] < 4" (k +1)!(log %)“exp ( — (k+06) loglogA)\/Z

(We note that the term v/A is missed in [(32), Go].)

We may assume

L(1, x4) < (logd)"!

1

d

(d > expexp (4000N g?)).

-32.43%.20-3000 - (20g)9 - 49 - g! - g*L(1, xq) A(loglog A)*+6

0)9 . g29T45 (1, xq) A(log log A)**6

€

- 43 -3000(209)" 24" K1 (k4 6) (2K — 2)°L(1, xq) A(log log A)~+6

473000 (20 - g - (209)) - 47 - (¢ — 1)! - (2°¢") L(1, xa) A(log log A)"**
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Then we can choose

y = L(xa)*A
< (log A) 24
< Ay.
From [(33), Go], we have
lon] k) Z —— Y v
J<n<Ay R2< AL Ap<m<2L flm
_AO == k2

IN

g
o
»‘5
A\
B
g

S

s
N

(We note that we use ﬁ—é instead of % in [(33), Gol.)
Using (23), Lemma 4.1 and [Lemma 7, Go|, we have

|bn |
2: Jn
J<n<A;

(L0 \/42)? +2C10g /41 + 10)

1
x1500(L(1, xa)* A1y~ + L(1, xa) A7 ) (log )?

IN

1
(log 4+)%(2 - 1500L(1, xa) A7 ) (log y)?

IN

IN

((20g + 2) loglog A + log (2% + 8))*
% (3000L(1, x4)VA(2k + 8)log A)

x (2rloglog A + log % + 2log (2K + 8))3

IN

(2- (20g + 2) loglog A)*
X (3000L(1, x4)VA(2 + 8)log A)

X (3 -2k loglog A)3.
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Using g —2 <k < g—1, (22), (24) and the fact n! < ey/n(Z)", we have for
d > expexp (4000N g%),

S| < 4"k + )(210glogA—|-210g(2,€+8))R(logA)—(m+6)\/Z

[Bn]
g J<n<A; v
< 4"k +1)1(2- 2loglog A)"(log A) ~(46) /A Z< T
< 22.3%.3000-4-16%(k + 1)!(20g + 2)%(2x + 8)(2 _)
x L(1, xq)A(log A)~ "0 (log log A)"+>
< 3%.3000-169 - g!- (20%-27¢%) - (log A)~9+4)
x L(1, xq) A(log log A)*T>
< 27.3%.202.3000-¢- (18)9. g9%65 . (4000Ng?) (94
x L(1,xq) A(log log A)~*+®
< 57 (25)

Upper Bound for |T(g(s))|. From [p.651, Go|, we have

IT(g(s))| < Kle™™ - max

2e+ioco
max — /2 AT (s + 2 + L)g(s + 2)p1(2s + 22) |

€—100 (26)

where C is the circle of radius e = (logd)~! centered at s = 3.

By the same argument in the proof of [Lemma 7, Gol, we have for x < d

and 101° < y < min(3v/d, 2/10),

" 072> vty < 1500(L(L, xa) dy~2 + L(1, xa)25d10) (log y)?
ysn<z mln
instead of for z < d and 10 < y < min( Vd,z/10),
" 0> vty < (L(1,xa)?dy 2 + L(1, xq)z 3 d 1) (log y)?
ysn<z m|n

in [Lemma 8, Go.

We may assume

L(1,xq) < (logd)* 'L (d > expexp (4000Ng?)).

é\
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Then by [(40), Go], we have

1
< _1
max lg(s+2)] < E n 22 Vilp)f

Re(o)2ae U<n<do  fln
< 1500(L(1, xa)2dU~3 + L(1, xa) A ) (log U)?
< 1500L(1, xq)VA

x ((log )™~ 2 + (10g )% (427) *) (log U)3. (27)

(We use dU~2 instead of Agu"2 in [(40), Gol, so that it is a direct conse-
quence of [Lemma 8, Go].)

By [(41), Go], we have

max lp1(25 +22)| < C3(1—2e+4e) < 27 (28)
seC,
Re(z)=2¢

To estimate integral of Gamma function, using [(4.6), Gol],

2e+41i00
max 1/ AT (s 4 2 + 1)z
2

21
s€C |7 €—1i00
1, oo 00 ) 2e+1i00 J | dusd
143 zdz ) ,—ui1—u2 s+5 duidug
< Az max/ / <2m./ (uyuz) 7)6 (urug)™"2 utuz
s€C | Jo 0 2e—i00
<

1
=43¢ —u1—u2 14+€ duidus
Az // e (urug) T 2
urug>1

< Azt (29)
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Since A < d?, we have A3¢ < d%1°8a¢ < €6, Thus by (26), (27), (28) and
(29), we have for d > exp exp (4000Ng?),

T(g(s))] < wle ™ max [g(s+ 2)p1(2s+ 22)]

seC,
Re(z)=2¢
. 2e+1i00 422 Ind
gl ), AT DY
< L1500kl "2 L1, ) AT
K— T - n? 1
><<(10gd) 1\/21\/7 + (log 4) 89(47)10)(103;(])3
< 41500 €% kL L(1, xg)A - (log )<+
1
X ((log d)yF 2T 4 (log A) 7% (1) “’)(89 loglog d)”
< §-8°:1500-€%- gl g® - L(1,xa)A - (logd)**!
x (2 - (log d)—?’g‘?%) - (log log d)*
< 8.1500- % ce"79 . g9T35 L (4000Ng3) =291
xL(1, xq)A(loglog A)?
< ST (30)

Upper Bound for |2H — T(G(s, U)) |. We note that x is determined so that
d =1+ (—1)"xq(—N) = 2. Then from [(45), Go|, we have

5
T(G(s,U)) :2-2*;’1.[/0(3— ;)—“—121r(s)ds] + 2H, (31)
r=1

where C is the circle of radius %6 centered at s = % and

Ltico 1im i4im —e—iM —e+iM
-712/ ,-722/ 7132/ 7-74:/ 7-752/
1tim 1ico —e+iM i-im —e—iM

8

of which the integrands are AT T%(s+ 2z + )G (s + 2, U)p1(2s + 22) %
and M is a large number to be determined later.

By [(46), Go], for o > 0,

exp (—o) if \%\ >

T(s)| < Var exp ()57 (32)

[STERESIE]
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From [(47), Go], we have for Re(s + z) > 0,
G5+ 2,U)| < (log d)*™. (33)

To estimate |p;1(2s + 2z)|, we will use Lemma 3.1. Put M = log A and
€= (4-10%loglog A)~!. Then we have

1 _
1 — 5500108 (st 2] < Re(2s +2z) for zel; (j=1,2,3,4,5).

To estimate Iy, I, Is and 14, we will use the fact that for y > 1000,
3-(2y)% - (3y)0 -y e <1070 oY, (34)

Firstly, we consider the integral I;. For z = % +iy, M <y < oo, we

write
oc=Re(s+z+3) =3 +Re(5e”), t=Im(s+z+1)=y+Im(5").
By applying (32), (33), (34) and Lemma 3.1 to the integral I;, we have

max|l;| < max |[AST*G(s+ 2z, U)]
seC seC,
Re(z):é

- max

seC 2mi

+iM

é—i—ioo
ﬁ L T%(s+ 2+ %)@1(28—1—%)%
8

3 x 102 - N3(log d)329 A3 T5

IN

é+ioo
-max/ exp(éﬂs—i—z—i— %]2‘771 exp (—7rt)(2t)6|%]
s€C JLyim

3 x 102 N3(log d)>29 AS+5

' /OO 3(2y)? exp (—3y)(3y) %y~ 'dy
M

IN

10789 . N3(log d)329 AST5 / e Ydy
M

10789 . N3(log d)329 AST5e~ M, (35)

IN

IN

Similarly
max| | < 107 - N%(log dP2ASTEe M, (36)
se€

Secondly, we consider the integral I3. For z =z +iM, —e<z < %, we

write

c=Re(s+z+i)=z+1 —i—Re(%eio), t=Im(s+2+3) = M—i—Im(%ew).
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By applying (32), (33), (34) and Lemma 3.1 to the integral I3, we have

max |I3] max  |A*T*G(s + z,U)|
seC seC,
—e<Re(z)<

IN

1
8

- max

seC 27 z

s+iM
/ T (s+ 2+ 2)p1(2s + 22) %
—e+iM

3 x 10'2 . N3(log d)*29 As T2
F+iM
.max/ exp ()]s + 2 + 127V exp (—t) (26)°) &2
s€C —e+iM

3 x 102 N3(log d)>29 AS+5

IN

IN

0ol

: / 3(2M)? exp (—3M)(3M)° M~ dx

1073 N3 (log d)*29 AS+3 e, (37)

IN

Similarly
max|[4] < 107 - N%(log d)329 4S5~ M, (38)
se€

Finally, we will estimate the integral I5. For z = —e+iy, —M <y < M,

we write
c=Re(s+z+3)=1—€+ Re(%ew), t=Im(s+z+3)=y+ Im(geie).
By applying (33) to the integral I5, we have

max |I5] < max |A*T*G(s+z,U)|

seC seC,
Re(z)=—¢
Y 1 dz
-max 5Ll (s 4+ 2+ 5)p1(2s +22)%
s€C |/ _e—im

< (10g d)32gA%(1_€)

—e+iM
-max/ D25 4 24 )] - (25 + 22)] - |22]. (39)
s€C J_e—iMm
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To apply (32) and Lemma 3.1 to the integral I5, we consider the following

four integrals. Let y1, y2 and y3 as follows.

M
12 1 d
mags [ st 2 Dl lr(2s +22)] -
2 (4—(6+m)e) 2 (4+(m—2)e) 24 555 M
< max(/ *—i—/ *~l—/ *—I—/ *)
s€C \ Jg 2 (4—(6+m)e) o (44(T—2)e) 2+ 515
Y1 Y2 Y3 M
= max/ *—i—max(/ *—i—/ *) —|—max/ *, (40)
seC Jy seC " ™ seC Y3

d
where * = o [I(s + 2 + 3)| - [¢1(25 + 22)| - \/622'7

We note that for 0 <y < yq,

_ 3e
2

Z/1+§_

>

~1q
S

Thus, by applying (32) and Lemma 3.1 to the first interval, we have

Y1 Y1
a ¥ < 10°- N3 a/ e L 12o—14 -2
mC/O < mas [ exp (gh)ls + 2+ 37 exp (~20)

% 1 dy
[25422z—1| W
2
< 105~N3/ﬁ(y+1)-6_2dy
0
< 10°- N3¢ 2 (41)
We need the following observation to apply (32) to the second and third
intervals. For y; <y < yo, we have
max { exp (—0), exp (—5t]) }
< max{exp ( - (1- %)), exp ( — %(yl — %))}

= exp(—1+ ¥Te).

For y9 <y < y3, we have

)

g < 2 _ =
t " ye—5 2
and
exp (—3t])

exp (=3(y2 = 3))

IN

< exp(—1+ 2Te).
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Thus, by applying (32) and Lemma 3.1 to the second and third interval, we

have

Y3 Y3
< 10°- N3 = 5177
g, r S erilere e
1 d,
X exXp ( -2+ (3 + 7T)€) [254+22—1| /6211_1/2
Y3
< 105-]\73/ (y+1) -7 mwdy
1
< 5x10°. N3, (42)

To estimate the fourth integral, we will use the fact that for y > ys,
(y+1)-(3y)® -y e <2000 e7Y.
Thus, by applying (32) and Lemma 3.1 to the fourth interval, we have

M
max/ * < 3-10%2.N3
seC s

M
X max/ exp (g)|s + 2 + 112 Vexp (—nt) (2t)5
s€C Sy, v

M
< 3-1012~N3/ (y + 1) exp (—3y)(3y)°y~'dy
Y3

IN

M
3-102. N3 / 2000e ~Ydy
Y.

3

< 9x10M. N3, (43)
From (39), (40), (41), (42) and (43), we have

;] < 2- <N3(log d)*?9A30-9(10° - €72 4+ 5 x 10° + 9 x 1014)>

< N3(log d)gng%(l—e) .2 (105 e 2y 1015) (44)
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Finally, by (31), (35), (36), (37), (38) and (44), we have

|2H — T(G(s,U))|

5
2. 2L /C(s — 5yt ZIr(s)ds
r=1

5

< 2n+1 le—h
< rle max |I;(s)]
r=1
< 2"Hkle N3 (log d)**9VA
(4% 107800 A5 +5eM L 25107 A5 242 x 100 A73)
< 2 kle " N3 (logd)*9vVA - 3 (2 x 10° - A72¢72). (45)

For d > exp exp (4000Ng%), we see that
2 gle N3 (log d)2 -3+ (2 x 10° - A72¢ %) < 1,
so by (45), we have
12H — T(G(s,U))| < VA < S}, (46)

as desired (cf. [p.656, Gol).

Now we can prove Proposition 2.2.
Proof of Proposition 2.2. We may assume

L(1, xq) < (log d)“‘lﬁ (d > exp exp (4000N g°)).

From (17), (21), (25), (30) and (46), we have for d > exp exp (4000Ng?),

211

< [2H =T(G(s,U))| +|T(g(s)| + [Sa] + [S2| + 1
< 557

< 4 x10%- (89)9429145 (1, x) A(log log A)~ 6

e

and Proposition 2.2 immediately follows. (]
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5. PROOF oF LEMMA 3.3

In this section, we will prove Lemma 3.3.

29

Proof of Lemma 3.3. Let v’ be a primitive Gréssencharakter with conductor

§' of K = Q(v/—k) which induces 12. Then 9'((a)) = a? fora =1 mod f'.

Since Lg(s)

= Lk (s,), Lk (s,1') is entire and has real coefficients.

We define (cf. [p.661, Go])

where

F(s) = ¢(s)L(s, xk) Lk (s +1,9") chn %

ca=1, ¢, >0 (forn>1).

Since the Dirichlet series expansion of F(s) is majorised by that of ((s)*,

we have

where d(k) =

Cngz

d(l)d(m) < Z 4y/n < 8n (for n >1)

Im=n Im=n
>kl <2VE.
For fixed x > 0, we see that
24100
o - D(s+1)F(s)z"ds
2—100
241400

so we have

671/:}0

1
Sﬁ/
27

= I (2L

0o
e “u’( g ) duds
271'1 ns
2—100 n—1
2+i00
% g / / (¥)ods - e “du
n
n—1 2
Cn
Z en/
n=1

efl/x’

24100
D(s+ 1)F(s)x’ds

_ 1.,
2+zoo

(1, x%)Lr (2,0 )z + 5 L(s+ 1)F(s)x’ds.

_1_
5 —100

(47)

(48)
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The last integral in (48) can be estimated by using the following functional

equations;

s—1T(3-3%)
((s) =m""z2 ey ¢(1—s),
Eyi-s(1-3)
Lo i) = (&) F(m)m—s .

for some w € C, |w| = 1.

Let y = 1672 Then by the duplication formula of Gamma function,

K2N(T)
1 —%-i—ioo
wi |, I'(s+1)F(s)z*ds
k’\/; —%-Hoo
= wVman [ e TR 9F(1-spyds. (49)

—5—100

Using (47) and the following properties of Bessel function Jo(2v/t) = >0 (—1)" (2,)2 ;

0 < Jo(2Vt) < exp(—t) for t >0,
/ JoVt*dt = T552,

0

we have
7§+zoo
ﬁ L F(s (Q_S)F(l—s)ysds
57100
%Jrzoo F( L
= 2r 1/3 . T'(1-s) 5+1)F(S)y *ds
3 _ico
e 3+zoo c
= %Z/ / / Jo( 2\[ 51 use*“-n—z'ylfsdu dt ds
2+zoo
= ch/ / 2m/ ds Jo(2Vt)e "t~ Yy du dt
= ch// JO 2f “t 1y du dt
ut=ny
< Z En // exp (—t) exp (fu)% du dt
ut=ny
< SZ/ exp (—t — ) 2y, (50)
n=1"0
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Dividing integration with respect to ¢ into two intervals (0, ,/ny) and (,/ny, 00), we

have

SZ/ exp (—t — =) =Edt
—1 /o

= 82(/ exp ( —%)%dt—l—/ exp(_t_%)%do

vy

< 8 / exp ( M)ﬂdt—i-/ exp (—t) =L dt
Z( t /)% - t )
= 16 / exp (—t) 22 dt

nz::l N '
<

16 Z / Vnyexp (—t)dt
n=1 \/7Ty

= 163 Vagexp (—yp). (51)
n=1

Now let z = k*N(§')? so that y = kl;i’;(f) = 167*k?N(§'). Then by (49), (50) and
(51), we have

7%+ioo
ﬁ/ [(s+ 1)F(s)x®ds

_1_,
5 —100

D163 amess (v

kN = /g
w1 5!; (v/y)®

IN

IN

IN
ol
.
—
@
U_‘
M
%l =

< 4.107°. (52)

Since z = k*N(§)? > 3%, (48) and (52) give

e~l/e _4.1075 " 1/81 _4.1075 0.98

|LK(2a7f’l)L(1an)‘ > - 2 kAN (§)2 = kJ4N(f’)2'

From [(4) and Theorem 2, Gol, we have
EN(f) < EN(f) = N

and by [(59), Gol, we have

|Lk(2,9%)L(1, xk)| > N7?|Lg(2,9")L(1, xx)| >
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