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Abstract. Let F be an elliptic curve defined over Q of conductor IV, ¢ the Manin
constant of E, and m the product of Tamagawa numbers of E at prime divisors
of N. Let K be an imaginary quadratic field where all prime divisors of N split
in K, Pk the Heegner point in F(K), and III(E/K) the Shafarevich-Tate group
of E over K. Let 2ux be the number of roots of unity contained in K. Gross
and Zagier conjectured that if Pk has infinite order in E(K), then the integer
¢-m-ug - [II(E/K)|2 is divisible by |E(Q)tor|. In this paper, we show that this
conjecture is true if E(Q)or = Z/37Z.

1. INTRODUCTION

Let E be an elliptic curve defined over Q of conductor N, Xo(N) the
modular curve of level N and ¢ : Xo(N) — E a modular parametrization.
Let ¢ be the Manin constant of £ and m = Hp‘N mp, where m,, is the
Tamagawa number of E at a prime divisor p of V.

Let K be an imaginary quadratic field with fundamental discriminant
Dy, where all prime divisors of NV split in K and O be the ring of integers
in K. Then there exist a Heegner point x of discriminant Dy of Xo(N),
which corresponds to a pair of two N-isogenous elliptic curves with the same
ring Ok of complex multiplication. The point « is defined over the Hilbert
class field H of K. Put Px =3, cqam/x) ¢(2)7. Then Px € E(K).

Let L(E/K, s) be the L-series of E over K and ITII(E/K) be the Shafarevich-
Tate group of E over K. Gross and Zagier [GZ] obtained a formula for the
value of L'(E/K,1) in terms of the height of Px. Kolyvagin [Ko] proved
that if Pg has infinite order, then E(K) has rank 1 and III(E/K) is finite.

Let 2ug be the number of roots of unity contained in K. We note that
ug = 1 for all imaginary quadratic fields K except when K = Q(y/—1) and

K = Q(v/—3), where ug = 2 and ug = 3 respectively.
1
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The formula of Gross and Zagier, when combined with the conjecture of

Birch and Swinnerton-Dyer, gives the following conjecture.

Conjecture 1. (|GZ, p. 311, (2.2) Conjecture]) If Pk has infinite order in
E(K), then
[E(K): ZPg] = c-m - ug - [II(E/K)|z.

Since [E(K) : ZPk] is divisible by |E(Q)tor|, Gross and Zagier [GZ] sug-

gested the following weaker conjecture.

Conjecture 2. (|GZ, p. 311, (2.3) Conjecture]) If Pk has infinite order in
E(K), then the integer ¢-m - ug - |III(E/K)|% is divisible by |E(Q)or|-

Rational torsion subgroups of elliptic curves F over Q are completely
classified by Mazur [Ma]: E(Q)tc is isomorphic to one of the following 15
groups:

Z/nZ for 1 <n <10, n =12,
Z)22®Z/nZ  for n=2,4,6,8.

From [Lo, Proposition 1.1] and [Cr|, we have the following theorem.

Theorem 1.1. Let E be an elliptic curve defined over Q such that E(Q)tor
is isomorphic to Z/nZ for 5 < n < 10, n = 12 or to Z/2Z & Z/8Z. Then
|E(Q)tor| | m except for ‘11a8’, ‘14a4’, ‘14a6’ and ‘20a2’, for which cases

we have |E(Q)tor| | ¢- m. Thus Conjecture 2 is true for these curves.

So the only remaining cases for the validity of Conjecture 2 are those
when E(Q)or is isomorphic to the following 6 groups: Z/2Z, Z/3Z, Z]AZ,
2)27 ® L)27, 7.)]27 & Z./]AZ, and Z/27 & Z]6Z.

In this paper, we prove the following theorem.

Theorem 1.2. Let E be an elliptic curve defined over Q such that E(Q)ior

is isomorphic to Z/3Z. Then Conjecture 2 is true.

Remark. Theorem 1.1 holds without any assumptions on K and Px. When
E(Q)tor = Z/37Z, most curves also satisfy 3 | m or 3 | ¢ without any assump-

tions on K and Pk (cf. Proposition 3.1 or 3.2). But for the remaining
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elliptic curves E, we should show that 3 | m or 3 | III(E/K)|'/? under the

assumption that 3 { ug and Pk has infinite order (cf. Proposition 3.3).

2. PRELIMINARIES

For a positive integer N, let X;(N) = H*/T'1(N) and Xo(N) = H* /To(N)
denote the usual modular curves. Let C denote an isogeny class of elliptic
curves defined over Q of conductor N. For ¢ = 0,1, there is a unique curve
E; € C and a parametrization ¢; : X;(IN) — E; such that for any E € C and
parametrization ¢} : X;(N) — E, there is an isogeny ; : E; — E such that
7o ¢; = ¢,. For i = 0,1, the curve E; is called the X;(N)-optimal curve.

In [BY], Byeon and Yhee proved the following theorem, which was con-

jectured by Stein and Watkins [SW].

Theorem 2.1. ([BY, Theorem 1.1 (i)]) For i = 0,1, let E; be the X;(N)-
optimal curve of an isogeny class C of elliptic curves defined over Q of con-
ductor N. If there is an elliptic curve E € C given by E : y> + avy +y = 23
with discriminant a® — 27 = (a — 3)(a® + 3a +9), where a is an integer such
that no prime factors of a — 3 are congruent to 1 (mod 6) and a® +3a+9 is
a power of a prime number, then Ey and Ey differ by an isogeny of degree

3.

For any E € C, we let £z be the Néron model over Z and wg a Néron
differential on E. Let 7 : E — E’ be an isogeny with E, E' € C. We say that
7 is étale if the extension Ez — EJ, to Néron models is étale. Equivalently,
w is étale if ker 7 is an étale group scheme. So one can show that an isogeny
7 : E — E is étale when ker 7 = Z/pZ as Gal(Q/Q)-modules and E has
good reduction at p for an odd prime number p.

If #: E — E'is an isogeny over Q, then we have 7*(wg/) = nwp for
some nonzero integer n = n,. We note that the isogeny 7 is étale if and
only if n = £1. If # : F — FE is the multiplication by an integer m, then
7 (wgr) = mwpg. Thus if 7 is any isogeny of degree p for a prime number p
and 7 denotes the dual isogeny, then 7 o m = [p|, so ny = 1 or p. It follows
that precisely one of 7 and 7 is étale (cf. [Va, Section 1]).

Stevens [St] proved that in every isogeny class C of elliptic curves defined

over QQ, there exists a unique curve Fi, € C such that for every E € C,
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there is an étale isogeny 7 : Fin — E. The curve Ey;, is called the minimal
curve in C. Stevens conjectured that Eni, = E7 and Vatsal [Va] proved the

following theorem.

Theorem 2.2. ([Va, Theorem 1.10]) Suppose that the isogeny class C con-
sists of semi-stable curves. The étale isogeny 7 : Eny — FE1 has degree a

power of two.

Let F be an elliptic curve defined over Q with a rational torsion point of

order 3. As a minimal Weierstrass equation for E, we can take
E:y*+avy+by =23 (1)

with a,b € Z, b > 0 such that for every prime number g, either ¢ { a or ¢> 1 b
(cf. [Ha, Section 1] or [Ku, Table 3]). The minimal discriminant A of F is

A = b3(a® — 27b)

and T" = {(0,0), (0,—b), 00} is the torsion group of order 3. There is an
isogeny defined over Q of degree 3 from FE to the quotient curve E’ of E by

T and the curve E’ is given by a Weierstrass eqation
E':y? + axy + by = 23 — babz — a®b — Tb?
with the discriminant A’ is
A" = b(a® — 27b)3.
Hadano [Hal] obtained the following theorem.

Theorem 2.3. ([Ha, Theorem 1.1]) The quotient curve E' of an elliptic
curve E : y? +ary+by = 23 by T = {(0,0), (0, —b), 00} has a rational point
of order 3 if and only if b is a cubic number t3, where t is a positive integer.

Moreover the curve E' is given by
E' 9 + (a+6t)zy + (a® + 3at + 9t*)ty = 2°.
3. PROOF OF THEOREM 1.2

First we prove the following proposition.

Proposition 3.1. If an elliptic curve E is given by (1) such that a prime
p diwvides b, then 3 | my,. Thus Conjecture 2 is true when E(Q)ior = Z/37Z.
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Proof. Let P = (0,0) and Ep(Q,) be the group of Q,-rational points of E
which become non-singular points in the reduced curve E : y2 4 azy = 23
modulo p. Since P becomes singular, the class P+ Ey(Q,) € E(Q,)/Eo(Qyp)
is non-trivial. Since [3]P = O, the identity element in F(Q), the order of

P + Ey(Qy) is 3. Therefore, 3 | m, = |E(Qp)/Eo(Qp)|. O

From Proposition 3.1, we may assume b = 1, so F is given by the following

minimal Weierstrass equation
v +ary+y=a® (2)

with a € Z. Let A be the set of integers a € Z satisfying
(i) a # 3 so that A # 0,
(ii) no prime factors of a — 3 are congruent to 1 (mod 6),

(iii) @ + 3a + 9 is a power of a prime.

Proposition 3.2. If an elliptic curve E is given by (2) with a € A, then
3| c. Thus Conjecture 2 is true when E(Q)ior = Z/3Z.

Proof. First we assume that a # —6, —3, —1, 0, 5. Let £ € C be an
elliptic curve given by (2) with the minimal discriminant A = a3 — 27 =
(a—3)(a® +3a+9), where a € A.

By Theorem 2.3, the quotient curve E’ of E by T = {(0,0), (0,—1), 00}

has a rational point of order 3 and the equation of E’ is given by
E :y? + (a+6)zy + (a* + 3a + 9)y = z°.

The discriminant of A’ of E" is A’ = (a® — 27)% and T = {(0,0), (0, —(a® +
3a +9),00} is the torsion group of order 3 in E'(Q). Since E’ also has a
rational point of order 3, we have the following étale 3-isogenies of elliptic
curves
E—FE —FE.

Since (a+6)3—(a—3)% = 33(a®+3a+9) and a # —6, 3, a®>+3a+9 can not be a
cube. So E” has no rational points of order 3. Since 42>+ a’z?+2ax+1 =0
has no rational solutions except for a = —1, 5, E has no rational points of
order 2 by the duplication formula.

Let C(FE) denote the number of Q-isomorphism classes of elliptic curves

in the isogeny class C of E. For a prime p, let C,(E) be the number of
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Q-isomorphism classes of elliptic curves p-power isogenous to E. Then we

have the product formula

In [Ke], Kenku proved that Yy(N)(Q) = H/T'o(N)(Q) is empty except for
N <19, and N = 21, 25, 27, 37, 43, 67, and 163. This result implies that
C3(FE) < 4. (For details, see the proof of Theorem 5 in [Mal] and the table in
the proof of Theorem 2 in [Ke].) If there is an étale 3-isogeny E"' — E with
E" : %+ Azy+ B3y = 23, then the discriminant A = a® — 32 of E should be
equal to u=2B3(A% — 27B3)3 for some u € Z, but it is impossible because
a # 0, 3. Since E” has no rational points of order 3, we have C3(E) = 3. So
Kenku'’s result above implies that Ca(E) < 2 and Cp(E) = 1 for any prime
p # 2,3 because 9, 18 and 27 are the only multiples of 9 on Kenku’s list.
Since F has no rational points of order 2, there is no 2-isogenous curve of £
and we have Cy(E) = 1. By the above product formula we have C(E) = 3.
So the isogeny class C of E is

E—>E/—>E”,

where each arrow denotes an étale 3-isogeny. Thus F is Ej;y, in C.

Since ¢, := a(a® —24), E has multiplicative reduction at p for every prime
factor p # 3 of A. If 3|A, then a|3 and a? + 3a + 9 should be a power of
3. But it is impossible because a # —6, —3, 0, 3. Thus 3 { A and F is
semi-stable. By Theorem 2.2, E = E; and by Theorem 2.1, E # Ej. Since
there is an étale isogeny E1(= E) — Ej of degree 3 and the Manin constant

E is a nonzero integer c satisfying

¢*(wp) = cwy,

where ¢ : Xo(N) — E is a modular parametrization and wy is the differential
1-form associated to a normalized newform f of level N (cf. [ARS]), we have
3| e

Finally we note that the cases a = —6, —3, —1, 0, 5 give the curves ‘27a4’
'b4ad’, '14a4’, '27a3’ and '14a6’ respectively, for which curves we can check

3| ¢ by [Cr]. O
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Proposition 3.3. Let E be an elliptic curve over Q of conductor N given
by (2) such that a € Z\ A and a # 3. Let K be an imaginary quadratic field,
where all prime divisors of N split in K. Assume that K has discriminant
other than —3, i.e., ux # 3. If Pk has infinite order in E(K) and E(Q)tor =
Z/3Z, then 3 divides m - \III((E/K)|1/2. Thus Conjecture 2 is true.

Proof. Let w be an isogeny defined over Q of degree 3 from E to the quotient
curve E' of Eby T = {(0,0),(0,—1),00} and 7 : E' — E be the dual isogeny.
Since E[r] = Z/37Z as Gal(K/K)-module, E'[#] is isomorphic to its dual pus3
as Gal(K/K)-module by Weil pairing (cf. [Si, Remark 8.4]). Since K does

not contain the third roots of unity, F'(K)[#] is trivial. Thus we have

B _

= (3)
| B (K)[#]]
By [DD, Theorem 1.2] and the fact that 7 is étale, we have
’ |WE’ |l/ ’ |wE’| * ’
Je ) e _ 5T (wg )‘ _3L ()

Je(r,) wely B Je(c) IwEl a WE

where v runs through the infinite places of K.
Assume that 3 { m. For each place p of K which divides N, let m, =
|E(Kp)/Eo(Ky)|, where Eg(Kp) is the set of points of E(K,) with non-
singular reduction. Since p - p = p, we see that K, = Kz = Q, and mp =

mp = myp. Thus our assumption is in fact
3¢ H myq, (5)
q

where g runs through the finite places of K. Let Sel™ (E/K) be the m-Selmer
group (for definition, see [KS]) of F over K, Sel™(E’/K) the #-Selmer group
of E' over K and mg = |E'(Ky)/Ej(Kq)|. Then from (3), (4), (5) and
Cassels’s theorem (cf. [Ca] or [KS, Theorem 1)):

Sel"(E/K)|  1EE)F]-TL [px,) lwel, - TTmg
Sel”(E'/K)|  |E"(K)[#]|-TL, fE(KV wel, - [Tqmq’

we have

dimp, Sel™(E/K) > ords <H m;,> . (6)

q
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Suppose that there are at least two distinct primes p and ¢ dividing a? +

3a +9. By Theorem 2.3 and Proposition 3.1, we have 3 | m;, = mj, = m’E

[

-
and 3 | mg = my

mg. Thus from (6), we have
dimp,Sel™ (E/K) > 4.

Suppose that there is a prime p such p | (a — 3) and p = 1 (mod 6).

Then there is at least one prime ¢ # p such that ¢ | (a? + 3a + Again

9).
by Theorem 2.3 and Proposition 3.1, we have 3 | m; = my = mg. Since
the slopes of the tangent lines at the node (—(a+6)2, M) € E'(F,) are

9 27
—3(a+6)£(a+6)v/—3
(a+6) 6(a ) S Ep, E'

has split multiplicative reduction at p. Since

3 | ordp(A") = —ordp(j’), where A’ and j’ are the discriminant and the

!/

j-invariant of E' respectively, we have 3 | m;, = mj,

C, Corollary 15.2.1]). Thus from (6), we have

= m’E (cf. [Si, Appendix

dimp,Sel™ (E/K) > 4.
From the following short exact sequence of Gx-modules
0— E[r] — E[3] 5 E'[#] — 0,
we have the following long exact sequence:
-+ — H°(Gg, E'l7]) = H'(Gk, E[r]) & H'(Gg,E[3]) — - --
Since E'(K)[7] = 0, ¢ is injective and thus
dimp,Sel®(E/K) > dimg,Sel™ (E/K).

Thus we conclude that for the two cases,

dimp,Sel®(E/K) > 4. (7)

If dimp,E(K)[3] = 2, then p3 C K (cf. [Si, Corollary 8.1.1]), but it is
contradiction. So we have E(K)[3] = Z/3Z. Since E(K) has rank 1, we

have
E(K)/3E(K)=7/37 & Z]3Z.

Thus the following descent exact sequence

0 — E(K)/3E(K) — Sel*(E/K) — III(E/K)[3] — 0



A CONJECTURE OF GROSS AND ZAGIER: CASE E(Q)tor 2 Z/37Z 9

and (7) imply

dimp, ITI(E/K)[3] > 2

and therefore, 3 | |ITI(E/K)[3]|*/2. O

Proof of Theorem 1.2. Theorem 1.2 follows from Proposition 3.1, 3.2 and

3.3.

O
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