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Abstract. Let E be an elliptic curve defined over Q of conductor N , c the Manin

constant of E, and m the product of Tamagawa numbers of E at prime divisors

of N . Let K be an imaginary quadratic field where all prime divisors of N split

in K, PK the Heegner point in E(K), and III(E/K) the Shafarevich-Tate group

of E over K. Let 2uK be the number of roots of unity contained in K. Gross

and Zagier conjectured that if PK has infinite order in E(K), then the integer

c ·m · uK · |III(E/K)| 12 is divisible by |E(Q)tor|. In this paper, we show that this

conjecture is true if E(Q)tor ∼= Z/3Z.

1. Introduction

Let E be an elliptic curve defined over Q of conductor N , X0(N) the

modular curve of level N and φ : X0(N) → E a modular parametrization.

Let c be the Manin constant of E and m =
∏

p|N mp, where mp is the

Tamagawa number of E at a prime divisor p of N .

Let K be an imaginary quadratic field with fundamental discriminant

DK , where all prime divisors of N split in K and OK be the ring of integers

in K. Then there exist a Heegner point x of discriminant DK of X0(N),

which corresponds to a pair of two N -isogenous elliptic curves with the same

ring OK of complex multiplication. The point x is defined over the Hilbert

class field H of K. Put PK =
∑

σ∈Gal(H/K) φ(x)σ. Then PK ∈ E(K).

Let L(E/K, s) be the L-series of E over K and III(E/K) be the Shafarevich-

Tate group of E over K. Gross and Zagier [GZ] obtained a formula for the

value of L′(E/K, 1) in terms of the height of PK . Kolyvagin [Ko] proved

that if PK has infinite order, then E(K) has rank 1 and III(E/K) is finite.

Let 2uK be the number of roots of unity contained in K. We note that

uK = 1 for all imaginary quadratic fields K except when K = Q(
√
−1) and

K = Q(
√
−3), where uK = 2 and uK = 3 respectively.
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The formula of Gross and Zagier, when combined with the conjecture of

Birch and Swinnerton-Dyer, gives the following conjecture.

Conjecture 1. ([GZ, p. 311, (2.2) Conjecture]) If PK has infinite order in

E(K), then

[E(K) : ZPK ] = c ·m · uK · |III(E/K)|
1
2 .

Since [E(K) : ZPK ] is divisible by |E(Q)tor|, Gross and Zagier [GZ] sug-

gested the following weaker conjecture.

Conjecture 2. ([GZ, p. 311, (2.3) Conjecture]) If PK has infinite order in

E(K), then the integer c ·m · uK · |III(E/K)|
1
2 is divisible by |E(Q)tor|.

Rational torsion subgroups of elliptic curves E over Q are completely

classified by Mazur [Ma]: E(Q)tor is isomorphic to one of the following 15

groups: Z/nZ for 1 ≤ n ≤ 10, n = 12,

Z/2Z⊕ Z/nZ for n = 2, 4, 6, 8.

From [Lo, Proposition 1.1] and [Cr], we have the following theorem.

Theorem 1.1. Let E be an elliptic curve defined over Q such that E(Q)tor

is isomorphic to Z/nZ for 5 ≤ n ≤ 10, n = 12 or to Z/2Z ⊕ Z/8Z. Then

|E(Q)tor| | m except for ‘11a3’, ‘14a4’, ‘14a6’ and ‘20a2’, for which cases

we have |E(Q)tor| | c ·m. Thus Conjecture 2 is true for these curves.

So the only remaining cases for the validity of Conjecture 2 are those

when E(Q)tor is isomorphic to the following 6 groups: Z/2Z, Z/3Z, Z/4Z,

Z/2Z⊕ Z/2Z, Z/2Z⊕ Z/4Z, and Z/2Z⊕ Z/6Z.

In this paper, we prove the following theorem.

Theorem 1.2. Let E be an elliptic curve defined over Q such that E(Q)tor

is isomorphic to Z/3Z. Then Conjecture 2 is true.

Remark. Theorem 1.1 holds without any assumptions on K and PK . When

E(Q)tor
∼= Z/3Z, most curves also satisfy 3 | m or 3 | c without any assump-

tions on K and PK (cf. Proposition 3.1 or 3.2). But for the remaining
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elliptic curves E, we should show that 3 | m or 3 | III(E/K)|1/2 under the

assumption that 3 - uK and PK has infinite order (cf. Proposition 3.3).

2. Preliminaries

For a positive integer N , let X1(N) = H∗/Γ1(N) and X0(N) = H∗/Γ0(N)

denote the usual modular curves. Let C denote an isogeny class of elliptic

curves defined over Q of conductor N . For i = 0, 1, there is a unique curve

Ei ∈ C and a parametrization φi : Xi(N) → Ei such that for any E ∈ C and

parametrization φ′i : Xi(N) → E, there is an isogeny πi : Ei → E such that

πi ◦ φi = φ′i. For i = 0, 1, the curve Ei is called the Xi(N)-optimal curve.

In [BY], Byeon and Yhee proved the following theorem, which was con-

jectured by Stein and Watkins [SW].

Theorem 2.1. ([BY, Theorem 1.1 (i)]) For i = 0, 1, let Ei be the Xi(N)-

optimal curve of an isogeny class C of elliptic curves defined over Q of con-

ductor N . If there is an elliptic curve E ∈ C given by E : y2 + axy + y = x3

with discriminant a3− 27 = (a− 3)(a2 + 3a + 9), where a is an integer such

that no prime factors of a− 3 are congruent to 1 (mod 6) and a2 +3a+9 is

a power of a prime number, then E0 and E1 differ by an isogeny of degree

3.

For any E ∈ C, we let EZ be the Néron model over Z and ωE a Néron

differential on E. Let π : E → E′ be an isogeny with E,E′ ∈ C. We say that

π is étale if the extension EZ → E′
Z to Néron models is étale. Equivalently,

π is étale if ker π is an étale group scheme. So one can show that an isogeny

π : E → E′ is étale when ker π ∼= Z/pZ as Gal(Q̄/Q)-modules and E has

good reduction at p for an odd prime number p.

If π : E → E′ is an isogeny over Q, then we have π∗(ωE′) = nωE for

some nonzero integer n = nπ. We note that the isogeny π is étale if and

only if n = ±1. If π : E → E is the multiplication by an integer m, then

π∗(ωE′) = mωE . Thus if π is any isogeny of degree p for a prime number p

and π̂ denotes the dual isogeny, then π̂ ◦ π = [p], so nπ = 1 or p. It follows

that precisely one of π and π̂ is étale (cf. [Va, Section 1]).

Stevens [St] proved that in every isogeny class C of elliptic curves defined

over Q, there exists a unique curve Emin ∈ C such that for every E ∈ C,
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there is an étale isogeny π : Emin → E. The curve Emin is called the minimal

curve in C. Stevens conjectured that Emin = E1 and Vatsal [Va] proved the

following theorem.

Theorem 2.2. ([Va, Theorem 1.10]) Suppose that the isogeny class C con-

sists of semi-stable curves. The étale isogeny π : Emin → E1 has degree a

power of two.

Let E be an elliptic curve defined over Q with a rational torsion point of

order 3. As a minimal Weierstrass equation for E, we can take

E : y2 + axy + by = x3 (1)

with a, b ∈ Z, b > 0 such that for every prime number q, either q - a or q3 - b

(cf. [Ha, Section 1] or [Ku, Table 3]). The minimal discriminant ∆ of E is

∆ = b3(a3 − 27b)

and T = {(0, 0), (0,−b),∞} is the torsion group of order 3. There is an

isogeny defined over Q of degree 3 from E to the quotient curve E′ of E by

T and the curve E′ is given by a Weierstrass eqation

E′ : y2 + axy + by = x3 − 5abx− a3b− 7b2

with the discriminant ∆′ is

∆′ = b(a3 − 27b)3.

Hadano [Ha] obtained the following theorem.

Theorem 2.3. ([Ha, Theorem 1.1]) The quotient curve E′ of an elliptic

curve E : y2 + axy + by = x3 by T = {(0, 0), (0,−b),∞} has a rational point

of order 3 if and only if b is a cubic number t3, where t is a positive integer.

Moreover the curve E′ is given by

E′ : y2 + (a + 6t)xy + (a2 + 3at + 9t2)ty = x3.

3. Proof of Theorem 1.2

First we prove the following proposition.

Proposition 3.1. If an elliptic curve E is given by (1) such that a prime

p divides b, then 3 | mp. Thus Conjecture 2 is true when E(Q)tor
∼= Z/3Z.
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Proof. Let P = (0, 0) and E0(Qp) be the group of Qp-rational points of E

which become non-singular points in the reduced curve Ẽ : y2 + ãxy = x3

modulo p. Since P becomes singular, the class P +E0(Qp) ∈ E(Qp)/E0(Qp)

is non-trivial. Since [3]P = O, the identity element in E(Q), the order of

P + E0(Qp) is 3. Therefore, 3 | mp = |E(Qp)/E0(Qp)|. �

From Proposition 3.1, we may assume b = 1, so E is given by the following

minimal Weierstrass equation

y2 + axy + y = x3 (2)

with a ∈ Z. Let A be the set of integers a ∈ Z satisfying

(i) a 6= 3 so that ∆ 6= 0,

(ii) no prime factors of a− 3 are congruent to 1 (mod 6),

(iii) a2 + 3a + 9 is a power of a prime.

Proposition 3.2. If an elliptic curve E is given by (2) with a ∈ A, then

3 | c. Thus Conjecture 2 is true when E(Q)tor ∼= Z/3Z.

Proof. First we assume that a 6= −6, −3, −1, 0, 5. Let E ∈ C be an

elliptic curve given by (2) with the minimal discriminant ∆ = a3 − 27 =

(a− 3)(a2 + 3a + 9), where a ∈ A.

By Theorem 2.3, the quotient curve E′ of E by T = {(0, 0), (0,−1),∞}

has a rational point of order 3 and the equation of E′ is given by

E′ : y2 + (a + 6)xy + (a2 + 3a + 9)y = x3.

The discriminant of ∆′ of E′ is ∆′ = (a3 − 27)3 and T ′ = {(0, 0), (0,−(a2 +

3a + 9),∞} is the torsion group of order 3 in E′(Q). Since E′ also has a

rational point of order 3, we have the following étale 3-isogenies of elliptic

curves

E −→ E′ −→ E′′.

Since (a+6)3−(a−3)3 = 33(a2+3a+9) and a 6= −6, 3, a2+3a+9 can not be a

cube. So E′′ has no rational points of order 3. Since 4x3+a2x2+2ax+1 = 0

has no rational solutions except for a = −1, 5, E has no rational points of

order 2 by the duplication formula.

Let C(E) denote the number of Q-isomorphism classes of elliptic curves

in the isogeny class C of E. For a prime p, let Cp(E) be the number of
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Q-isomorphism classes of elliptic curves p-power isogenous to E. Then we

have the product formula

C(E) =
∏
p

Cp(E).

In [Ke], Kenku proved that Y0(N)(Q) = H/Γ0(N)(Q) is empty except for

N ≤ 19, and N = 21, 25, 27, 37, 43, 67, and 163. This result implies that

C3(E) ≤ 4. (For details, see the proof of Theorem 5 in [Ma1] and the table in

the proof of Theorem 2 in [Ke].) If there is an étale 3-isogeny E′′′ → E with

E′′′ : y2+Axy+B3y = x3, then the discriminant ∆ = a3−33 of E should be

equal to u−12B3(A3 − 27B3)3 for some u ∈ Z, but it is impossible because

a 6= 0, 3. Since E′′ has no rational points of order 3, we have C3(E) = 3. So

Kenku’s result above implies that C2(E) ≤ 2 and Cp(E) = 1 for any prime

p 6= 2, 3 because 9, 18 and 27 are the only multiples of 9 on Kenku’s list.

Since E has no rational points of order 2, there is no 2-isogenous curve of E

and we have C2(E) = 1. By the above product formula we have C(E) = 3.

So the isogeny class C of E is

E −→ E′ −→ E′′,

where each arrow denotes an étale 3-isogeny. Thus E is Emin in C.

Since c4 := a(a3−24), E has multiplicative reduction at p for every prime

factor p 6= 3 of ∆. If 3|∆, then a|3 and a2 + 3a + 9 should be a power of

3. But it is impossible because a 6= −6, −3, 0, 3. Thus 3 - ∆ and E is

semi-stable. By Theorem 2.2, E = E1 and by Theorem 2.1, E 6= E0. Since

there is an étale isogeny E1(= E) → E0 of degree 3 and the Manin constant

E is a nonzero integer c satisfying

φ∗(ωE) = cωf ,

where φ : X0(N) → E is a modular parametrization and ωf is the differential

1-form associated to a normalized newform f of level N (cf. [ARS]), we have

3 | c.

Finally we note that the cases a = −6, −3, −1, 0, 5 give the curves ‘27a4’

’54a3’, ’14a4’, ’27a3’ and ’14a6’ respectively, for which curves we can check

3 | c by [Cr]. �
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Proposition 3.3. Let E be an elliptic curve over Q of conductor N given

by (2) such that a ∈ Z\A and a 6= 3. Let K be an imaginary quadratic field,

where all prime divisors of N split in K. Assume that K has discriminant

other than −3, i.e., uK 6= 3. If PK has infinite order in E(K) and E(Q)tor
∼=

Z/3Z, then 3 divides m · |III((E/K)|1/2. Thus Conjecture 2 is true.

Proof. Let π be an isogeny defined over Q of degree 3 from E to the quotient

curve E′ of E by T = {(0, 0), (0,−1),∞} and π̂ : E′ → E be the dual isogeny.

Since E[π] ∼= Z/3Z as Gal(K/K)-module, E′[π̂] is isomorphic to its dual µ3

as Gal(K/K)-module by Weil pairing (cf. [Si, Remark 8.4]). Since K does

not contain the third roots of unity, E′(K)[π̂] is trivial. Thus we have

|E(K)[π]|
|E′(K)[π̂]|

= 3. (3)

By [DD, Theorem 1.2] and the fact that π is étale, we have

∏
ν

∫
E′(Kν) |ωE′ |ν∫
E(Kν) |ωE |ν

=

∫
E′(C) |ωE′ |∫
E(C) |ωE |

= 3−1|π
∗(ωE′)
ωE

| = 3−1, (4)

where v runs through the infinite places of K.

Assume that 3 - m. For each place p of K which divides N , let mp =

|E(Kp)/E0(Kp)|, where E0(Kp) is the set of points of E(Kp) with non-

singular reduction. Since p · p̄ = p, we see that Kp = Kp̄ = Qp and mp =

mp̄ = mp. Thus our assumption is in fact

3 -
∏
q

mq, (5)

where q runs through the finite places of K. Let Selπ(E/K) be the π-Selmer

group (for definition, see [KS]) of E over K, Selπ̂(E′/K) the π̂-Selmer group

of E′ over K and m′
q = |E′(Kq)/E′

0(Kq)|. Then from (3), (4), (5) and

Cassels’s theorem (cf. [Ca] or [KS, Theorem 1]):

|Selπ(E/K)|
|Selπ̂(E′/K)|

=
|E(K)[π]| ·

∏
ν

∫
E′(Kν) |ωE′ |ν ·

∏
q m′

q

|E′(K)[π̂]| ·
∏

ν

∫
E(Kν) |ωE |ν ·

∏
q mq

,

we have

dimF3 Selπ(E/K) ≥ ord3

(∏
q

m′
q

)
. (6)



8 DONGHO BYEON, TAEKYUNG KIM AND DONGGEON YHEE

Suppose that there are at least two distinct primes p and q dividing a2 +

3a + 9. By Theorem 2.3 and Proposition 3.1, we have 3 | m′
p = m′

p = m′
p

and 3 | m′
q = m′

q = m′
q. Thus from (6), we have

dimF3Selπ(E/K) ≥ 4.

Suppose that there is a prime p such p | (a − 3) and p ≡ 1 (mod 6).

Then there is at least one prime q 6= p such that q | (a2 + 3a + 9). Again

by Theorem 2.3 and Proposition 3.1, we have 3 | m′
q = m′

q = m′
q̄. Since

the slopes of the tangent lines at the node (− (a+6)2

9 , (a+6)3

27 ) ∈ E′(Fp) are
−3(a+6)±(a+6)

√
−3

6 ∈ Fp, E′ has split multiplicative reduction at p. Since

3 | ordp(∆′) = −ordp(j′), where ∆′ and j′ are the discriminant and the

j-invariant of E′ respectively, we have 3 | m′
p = m′

p = m′
p (cf. [Si, Appendix

C, Corollary 15.2.1]). Thus from (6), we have

dimF3Selπ(E/K) ≥ 4.

From the following short exact sequence of GK-modules

0 → E[π] → E[3] π−→ E′[π̂] → 0,

we have the following long exact sequence:

· · · → H0(GK , E′[π̂]) → H1(GK , E[π]) ı−→ H1(GK , E[3]) → · · · .

Since E′(K)[π̂] = 0, ı is injective and thus

dimF3Sel3(E/K) ≥ dimF3Selπ(E/K).

Thus we conclude that for the two cases,

dimF3Sel3(E/K) ≥ 4. (7)

If dimF3E(K)[3] = 2, then µ3 ⊂ K (cf. [Si, Corollary 8.1.1]), but it is

contradiction. So we have E(K)[3] ∼= Z/3Z. Since E(K) has rank 1, we

have

E(K)/3E(K) ∼= Z/3Z⊕ Z/3Z.

Thus the following descent exact sequence

0 → E(K)/3E(K) → Sel3(E/K) → III(E/K)[3] → 0
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and (7) imply

dimF3III(E/K)[3] ≥ 2

and therefore, 3 | |III(E/K)[3]|1/2. �

Proof of Theorem 1.2. Theorem 1.2 follows from Proposition 3.1, 3.2 and

3.3. �
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