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Abstract. Let d be a fundamental discriminant, χd be the Dirichlet character

associated to the quadratic field Q(
√

d) and L(s, χd) be the Dirichlet L-function.

In [Go], Goldfeld obtained an effective lower bound for L(1, χd) with uncalculated

constants. For d < 0, the constants are computed in [Oe] and for d > 0, the

constants are computed in [BK] by using elliptic curves with complex multiplication.

In this paper, we show that the result of [BK] is worked out for elliptic curves

without complex multiplication too and compute the corresponding constants.

1. Introduction and results

Let d be a fundamental discriminant, χd be the Dirichlet character asso-

ciated to the quadratic field Q(
√

d) and L(s, χd) be the Dirichlet L-function.

In [Go], Goldfeld obtained an effective lower bound for L(1, χd).

Theorem 1.1. [Go, Theorem 1] Let E be an elliptic curve over Q with

conductor N . If E has complex multiplication and the L-function associated

to E has a zero of order g at s = 1, then for any χd with (d,N) = 1 and

|d| > exp exp(c1Ng3), we have

L(1, χd) >
c2

g4gN13

(log |d|)g−µ−1 exp(−21
√

g log log |d|)√
|d|

,

where µ = 1 or 2 is suitably chosen so that χd(−N) = (−1)g−µ, and the

constants c1, c2 > 0 can be effectively computed and are independent of g,

N and d.

In fact, Goldfeld proved Theorem 1.1 under the assumption that the as-

sociated base change Hasse-Weil L-function L
E/Q(

√
d)

(s) has a zero of order
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≥ g. In [BK], we explicitly computed the constants c1, c2 for d > 0 in

Theorem 1.1 and proved the following theorem.

Theorem 1.2. [BK, Theorem 1.3] Let d > 0 be a fundamental discriminant

of a real quadratic field Q(
√

d). Let E be an elliptic curve over Q with

conductor N and g ≥ 4 be a positive integer. If E has complex multiplication

and the associated base change Hasse-Weil L-function L
E/Q(

√
d)

(s) has a

zero of order ≥ g at s = 1, then for any such d with (d, N) = 1 and

d > exp exp (4000Ng3), we have

L(1, χd) >
10180

g4gN5

(log d)g−3 exp(−21
√

g log log d)√
d

.

In [Go], Goldfeld remarked that Theorem 1.1 also holds for elliptic curves

E without complex multiplication provided that LE(s) comes from a cusp

form of Γ0(N), which is now true for every elliptic curves E over Q with

conductor N according to the modularity theorem (cf. [BCDT], [Wi]). But

he did not give the proof. In this paper, we show that the result of [BK]

is worked out for elliptic curves without complex multiplication too and

explicitly compute the corresponding constants.

Theorem 1.3. Let d > 0 be a fundamental discriminant of a real quadratic

field Q(
√

d). Let E be an elliptic curve over Q with conductor N of which

the product of distinct prime factors is 13 or more and g ≥ 4 be a positive

integer. If the associated base change Hasse-Weil L-function L
E/Q(

√
d)

(s)

has a zero of order ≥ g at s = 1, then for any such d with (d, N) = 1 and

d > exp exp(300Ng3), we have

L(1, χd) >
6× 10184

g4gN

(log d)g−3 exp(−21
√

g log log d)√
d

.

The proof of Theorem 1.3 goes along similar lines as that of Theorem

1.2 in the previous paper [BK]. However, to remove complex multiplication

condition, we will use the motivic symmetric square L-function (see (5) for

the definition) and the modularity theorem instead of Hecke L-function and

Deuring’s Theorem for elliptic curves with complex multiplication (cf. [Go,

Theorem 2]).

Remark 1.4. Let E be an elliptic curve with complex multiplication by

an imaginary quadratic field K = Q(
√
−k). In the proof of Theorem 1.1,
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Goldfeld use the fact that k ≤ N as well as Deuring’s theorem. In the proof

of Theorem 1.2, we use the fact that k ≤ 163 as well as Deuring’s theorem.

In the proof of Theorem 1.3, we use theory of the motivic symmetric square

L-function instead of Deuring’s theorem. That is why there is a difference

for exponents of N among Theorem 1.1, Theorem 1.2 and Theorem 1.3.

2. Proof of Theorem 1.3

Let E be an elliptic curve over Q of conductor N . Assume the same

conditions as in Theorem 1.3. When the associated Hasse-Weil L-function

LE(s) = L
E/Q(s) over Q is given by

LE(s) =
∞∑

n=1

Enn−s,

define

LE(s, χd) =
∞∑

n=1

χd(n)Enn−s and LE(s, λ) =
∞∑

n=1

λ(n)Enn−s,

where λ(n) =
∏

pr||n(−1)r. Let

ϕ(s) = LE(s + 1
2)LE(s + 1

2 , χd) =
∞∑

n=1

ann−s

and

ϕ1(2s) = LE(s + 1
2)LE(s + 1

2 , λ).

We note that ϕ(s) = L
E/Q(

√
d)

(s + 1
2) has a zero of order ≥ g at s = 1

2 .

Let

G(s) =
ϕ(s)

ϕ1(2s)
=

∞∑
n=1

gnn−s and G(s, x) =
∑
n<x

gnn−s.

For A = dN
4π2 and U = (log d)8g, let

H =
(

d
ds

)g−µ
[AsΓ2(s + 1

2)G(s, U)ϕ1(2s)]s= 1
2
.

To prove Theorem 1.3, we need the following propositions.

Proposition 2.1. Assume the same conditions as in Theorem 1.3. Then

for any such d ≥ exp exp (300Ng3), either L(1, χd) > (log d)g−µ−1 1√
d

or else

|H| ≥ 1.2× 10−3 · g
√

N(log N)−1
√

d(log d)g−µ−1
∏

χd(p) 6=−1
p<U

(
1−p−

1
2

1+p−
1
2

)2

.



4 DONGHO BYEON AND JIGU KIM

Proposition 2.2. Assume the same conditions as in Theorem 1.3. Then

for any such d ≥ exp exp (300Ng3), either L(1, χd) > (log d)g−µ−1 1√
d

or else

|H| ≤ 2× 109 · (80
e )gg2g+4.5L(1, χd)A(log log A)g−µ+6.

We will prove Proposition 2.1 in Section 3 and Proposition 2.2 in Section

4. If we assume Proposition 2.1 and 2.2, then we can prove Theorem 1.3 as

follows.

Proof of Theorem 1.3. Let P be the set of primes p < (log d)8g for which

χd(p) 6= −1. If

L(1, χd) > (log d)g−µ−1 1√
d

(d ≥ exp exp (300Ng3) and N ≥ 13),

then Theorem 1.3 is true. Thus we may assume

L(1, χd) ≤ (log d)g−µ−1 1√
d

(d ≥ exp exp (300Ng3) and N ≥ 13).

From [BK, p. 276] we have

log
∏
p∈P

(
1+p−

1
2

1−p−
1
2

)2
≤ 20g

1
2 (log log d)

1
2 .

Let f(N, g, d) = exp
(
g

1
2 (log log d)

1
2

)
· (80

e )−gg2g−4.5(log log dN
4π2 )−g−5. We

claim that if N ≥ 13, g ≥ 3 and d ≥ exp exp (300Ng3), then

f(N, g, d) ≥ exp (450).

Since log log dN
4π2 ≤ log log de = log log d + 1, we have

log f(N, g, d)

≥
(
g

1
2 (log log d)

1
2
)
− g log 80

e + (2g − 4.5) log g − (g + 5) log (log log d + 1),

which is an increasing function for d because its partial derivative with

respect to d is
√

g

2
√

log log d(log d)d
− g + 5

(log log d + 1)(log d)d

>

√
g(log log d)− 2(g + 5)
2(log log d)(log d)d

> 0.
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So we have

log f(N, g, d)

≥ (300N)
1
2 g2 − g log 80

e + (2g − 4.5) log g − (g + 5) log (300Ng3 + 1),

which is an increasing function for g because its partial derivative with

respect to g is

2(300N)
1
2 g − log (80

e ) + 2 log g +
2g − 4.5

g

− log (300Ng3 + 1)− 3 · 300Ng2(g + 5)
300Ng3 + 1

> 2(300N)
1
2 g − log (80

e )− 4.5
g − log g − log (300N + 1)− 3(g+5)

g

> 0.

So we have

log f(N, g, d)

≥ (300N)
1
2 · 32 − 3 log 80

e + 1.5 log 3− 8 log (300 · 33N + 1),

which is an increasing function for N because its derivative with respect to

N is
√

300 · 32

2
√

N
− 8 · 300 · 33

300 · 33N + 1
>

√
300 · 32

2
√

N
− 8

N
> 0.

So we have

log f(N, g, d)

≥
√

3900 · 32 − 3 log 80
e + 1.5 log 3− 8 log (3900 · 33 + 1)

> 450

and the claim is proved. Thus we have

exp
(
g

1
2 (log log d)

1
2
)
· (80

e )−gg2g−4.5(log log dN
4π2 )−g−5 ≥ exp (450).

From Proposition 2.1 and Proposition 2.2, we have for d ≥ exp exp (300Ng3),

2× 109 · (80
e )gg2g+4.5L(1, χd)A(log log A)g−µ+6

≥ 1.2× 10−3 · g
√

N(log N)−1
√

d(log d)g−µ−1 exp
(
− 20g

1
2 (log log d)

1
2
)
.
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Thus we have

L(1, χd) >
1.2× 10−3 · g

√
N(log N)−1

2× 109 · (80
e )gg2g+4.5

·
√

d(log d)g−µ−1 exp
(
− 20g

1
2 (log log d)

1
2

)
A(log log A)g−µ+6

=
1.2× 10−3 · 4π2 · g

2× 109 · (80
e )gg2g+4.5

√
N log N

·
(log d)g−µ−1 exp

(
− 20g

1
2 (log log d)

1
2

)
√

d(log log dN
4π2 )g−µ+6

>
1.2× 10−3 · 4π2 · exp(450)

2× 109 · g4gN
·
(log d)g−3 exp

(
− 21g

1
2 (log log d)

1
2

)
√

d

>
6× 10184

g4gN
·
(log d)g−3 exp

(
− 21g

1
2 (log log d)

1
2

)
√

d
.

�

3. Proof of Proposition 2.1

Let κ = g − µ and define H1 and H2 by

H = H1 + H2

= 2κ
√

A(log A)κ−1G(1
2 , U)ϕ′1(1)

+
√

A
κ∑

r=2

(
κ

r

)
(log A)κ−r

(
d
ds

)r [
Γ2(s + 1

2)G(s, U)ϕ1(2s)
]
s= 1

2
.

Since |H| ≥ |H1| − |H2|, to get an explicit lower bound for |H|, we need an

explicit upper bound for |H2| and an explicit lower bound for |H1|.

Upper Bound for |H2|. By [BK, (3)], we have

|H2| ≤
√

A
κ∑

r=2

8rr!r
(

κ

r

)
(log A)κ−r max

|s− 1
2 |=

1
8

|Γ2(s + 1
2 )| max

|s− 1
2 |=

1
8

|ϕ1(2s)| max
|s− 1

2 |=
1
4

|G(s, U)|.

(1)

By [BK, (4)], we have

max
|s− 1

2
|= 1

8

|Γ2(s + 1
2)| ≤ 1.6. (2)

Now we give bounds for ϕ1(s). We denote by Sp
2(N) the set of normalized

primitive holomorphic cusp forms for Γ0(N) of weight 2 with trivial neben-

typus 1N . For any f ∈ Sp
2(N), f has a Fourier expansion at infinity of the

form

f(z) =
∑
n≥1

af (n)
√

ne2πinz
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with af (1) = 1 and af (n) denoting the n-th eigenvalue of the Hecke operator

Tn. From the Modularity Theorem, there exists f ∈ Sp
2(N) such that

Lf (s) = LE(s)

(cf. [DS, Theorem 8.8.3]).

Then we have

LE(s + 1
2) = Lf (s + 1

2) =
∞∑

n=1

af (n)n−s

=
∏
p

(1− af (p)p−s + 1N (p)p−2s)−1

=
∏
p|N

(1− af (p)p−s)
∏
p-N

(1− αpp
−s)(1− βpp

−s),

where for (p, N) = 1, αp + βp = af (p), |αp| = |βp| = 1, αp = βp and for

p | N ,

af (p) =


1√
p if E has split multiplicative reduction at p,

− 1√
p if E has nonsplit multiplicative reduction at p,

0 if E has additive reduction at p

(cf. [Sil, Appendix C.16]).

For convenience, we follow the notation

LE(s + 1
2) =

∏
p

(1− αpp
−s)−1(1− βpp

−s)−1, (3)

where 
for p - N, αp + βp = af (p), |αp| = |βp| = 1, αp = βp,

for p ‖ N, αp = ± 1√
p , βp = 0,

for p2 | N, αp = βp = 0

(cf. [Wa, p. 490]).

The analytic symmetric square L-function is defined as

LA(Sym2E, s) =
∏
p

LA
p (Sym2E, s)

=
∏
p

(1− α2
pp
−s)−1(1− αpβpp

−s)−1(1− β2
pp−s)−1. (4)
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To satisfy the functional equation, we must adjust LA(Sym2E, f) by appro-

priate Euler factors when p2 | N . We can define the Euler product U(s) by

the motivic symmetric square L-function

LM (Sym2E, s) = LA(Sym2E, s) · U(s) (5)

so that

ΛM (Sym2E, s) = Ñ sπ−3s/2Γ
(

s + 1
2

)2

Γ
(

s + 2
2

)
LM (Sym2E, s)

satisfies the functional equation given by

ΛM (Sym2E, s) = ΛM (Sym2E, 1− s) (6)

(cf. [Wa, p. 490]).

We denote by Ñ =
∏

p pδ̃p the symmetric square conductor and denote by

Up(s) the local factor of U(s) at a prime p. Then we have
for p - N, δ̃p = 0, Up(s) = 1,

for p ‖ N, δ̃p = 1, Up(s) = 1,

for p2 | N, δ̃p ≥ 1, there are three possibilities for Up(s): 1, (1± p−s)−1.

(7)

For additive reduction, that is, p2 | N , both δ̃p and Up(s) were determined

by Coates and Schmidt [CS] (with corrections by Watkins [Wa]). We note

that Ñ always divides N and is equal to N if the conductor is square-free

(cf. [Wa, section 2.2]).

Remark 3.1. In this paper, we normalize the motivic symmetric square

L-function in [Wa] so that s = 1/2 is the point of symmetry. In [Wa1], the

symmetric square conductor is defined by Ñ2.

From (3), (4), and (5), we have

ϕ1(s) =
∏
p|N

(1− af (p)2p−s)−1
∏
p-N

(1− α2
pp
−s)−1(1− β2

pp−s)−1

=
LA(Sym2E, s)

ζ(s)

∏
p|N

(1− p−s)−1

=
LM (Sym2E, s)

ζ(s)

∏
p|N

(1− p−s)−1
∏
p2|N

Up(s)−1. (8)

The following lemma is a generalization of [BK, Lemma 3.1].
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Lemma 3.2. For s = σ + it ∈ C,

|ϕ1(s)| ≤

 2× 1010 ·N3t6 if 1− 1
100800 log |t| ≤ σ ≤ 3

2 , |t| ≥ 2 + 1
840 ,

2 ·N3|s + 2|3 if 3
4 ≤ σ ≤ 3

2 , |t| ≤ 2 + 1
840 .

Proof. From (4), (5), and (7), we have for σ > 1,

LM (Sym2E, s) =
∏
p-N

(1− α2
pp
−s)−1(1− p−s)−1(1− β2

pp−s)−1

·
∏
p‖N

(1− p−s−1)−1 ·
∏
p2|N

Up(s).

By the Euler product, we have∣∣LM (Sym2E, 3
2 − it)

∣∣ ≤ ζ(3
2)3 < 18.

From (6) we have

∣∣LM (Sym2E,−1
2 + it)

∣∣ =
Ñ2

π3

∣∣∣∣∣Γ(5
4 − i t

2)
Γ(1

4 + i t
2)

∣∣∣∣∣
2 ∣∣∣∣∣Γ(7

4 − i t
2)

Γ(3
4 + i t

2)

∣∣∣∣∣
·
∣∣LM (Sym2E, 3

2 − it)
∣∣

< 18
N2

π3

∣∣∣∣14 + i
t

2

∣∣∣∣2 ∣∣∣∣34 + i
t

2

∣∣∣∣
< 18

N2

8π3

∣∣∣∣32 + it

∣∣∣∣3 .

Since N ≥ 13, the function

f(s) = LM (Sym2f, s)(s + 2)−3

is bounded by

B = max
{

18
(3
2 + 2)3

, 18
N2

8π3

}
= 18

N2

8π3

on the lines σ = −1
2 and σ = 3

2 . By Lindelöf theorem (cf. [HR, p. 15]), this

implies that ∣∣LM (Sym2f, s)
∣∣ ≤ 18

N2

8π3
|s + 2|3 (−1

2 ≤ σ ≤ 3
2). (9)

In the proof of [BK, Lemma 3.1], we showed that

|ζ(s)−1| ≤

 56 · 8402 · 63|t|3 if σ ≥ 1− 1
840·6·20 log |t| , |t| ≥ 2 + 1

840 ,

13 if 3
4 ≤ σ ≤ 3

2 , |t| ≤ 2 + 1
840 .

(10)
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Since
23/4 + 1
23/4 − 1

< 4 and
p3/4 + 1
p3/4 − 1

< p for p ≥ 3,

from (7) we have for σ ≥ 3
4 ,∣∣∣∣∣∣

∏
p|N

(1− p−s)−1
∏
p2|N

Up(s)−1

∣∣∣∣∣∣ ≤
∏
p‖N

1
1− |p−s|

∏
p2|N

1 + |p−s|
1− |p−s|

≤
∏
p|N

p3/4 + 1
p3/4 − 1

< 2N. (11)

Thus Lemma 3.2 follows from (8), (9), (10) and (11). �

Remark 3.3. In [Go, (49)] and [BK, Lemma 3.1], Deuring’s Theorem and

the functional equation for Hecke L-function are used to give upper bound

for ϕ1(s) in the case of elliptic curves with complex multiplication. To

remove complex multiplication condition, we use the functional equation for

the motivic symmetric square L-function. We also note that Lemma 3.2

implies [BK, Lemma 3.1].

From Lemma 3.2, we have

max
|s− 1

2
|= 1

8

|ϕ1(2s)| ≤ max
|s− 1

2
|= 1

8

(2 ·N3|2s + 2|3)

≤ 70N3. (12)

Moreover,

max
|s− 1

2
|= 1

4

|G(s, U)| <
∏

χd(p) 6=−1
p<U

(1− p−
1
4 )−4 (cf. [Go, p.657]). (13)

Since log A > 1
2 log d ≥ 1

2 exp (300Ng3), we have

κ∑
r=2

8rr!r
(

κ

r

)
(log A)κ−r ≤ 2 · 82 · 2! · 2

(
κ

2

)
(log A)κ−2,

thus from (1), (2), (12) and (13) we have

|H2| ≤ 6 · 104N3g2
√

A(log A)κ−2
∏

χd(p) 6=−1
p<U

(1− p−
1
4 )−4. (14)
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Lower Bound for |H1|. We need the following lemmas; one is [BK, Lemma

3.2] and the other is [Wa1, Lemma 3.4].

Lemma 3.4. [BK, Lemma 3.2] If d > exp (500g3), then either L(1, χd) >

(log d)κ−1 1√
d

or else we have

|G(1
2 , U)| ≥

∏
χd(p) 6=−1

p<U

(
1−p−

1
2

1+p−
1
2

)2

− (log d)−2g.

Lemma 3.5. [Wa1, Lemma 3.4] Let E be an elliptic curve over Q with

Ñ2 ≥ 142. Then

LM (Sym2E, 1) ≥ 0.033

log Ñ2
.

Proof. See [Wa1, section 3]. Note that the definition of the symmetric square

conductor in [Wa1] is different (cf. Remark 3.1). �

Lemma 3.5 implies the following lemma which is a generalization of [BK,

Lemma 3.3].

Lemma 3.6. Let E be an elliptic curve over Q with conductor N of which

the product of distinct prime factors is 13 or more. Then

ϕ′1(1) ≥ 0.033
2 log N

.

Proof. From (7) we have

Ñ ≥ the product of distinct prime factors of N ≥ 13,

and so

Ñ2 ≥ 142.

From (7) and (8) we have∏
p|N

(1− p−1)−1
∏
p2|N

Up(1)−1 ≥
∏
p‖N

1
1− p−1

∏
p2|N

1− p−1

1− p−1
≥ 1,

and

ϕ′1(1) = LM (Sym2E, 1)
∏
p|N

(1− p−1)−1
∏
p2|N

Up(1)−1

≥ LM (Sym2E, 1).
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Since Ñ2 ≥ 142 and Ñ | N , Lemma 3.5 implies

ϕ′1(1) ≥ 0.033

2 log Ñ
≥ 0.033

2 log N
.

�

By Lemma 3.4 and Lemma 3.6, we have for d > exp (500g3), either

L(1, χd) > (log d)κ−1 1√
d

or else

|H1| ≥ 2κ
0.033

2 log N
·
√

A(log A)κ−1

( ∏
χd(p) 6=−1

p<U

(
1−p−

1
2

1+p−
1
2

)2

− (log d)−2g

)
. (15)

Now we can prove Proposition 2.1.

Proof of Proposition 2.1. We may assume

L(1, χd) ≤ (log d)κ−1 1√
d

(d > exp (500g3)).

From (14) and (15), we have

|H| ≥ |H1| − |H2|

≥
[
2κ 0.033

2 log N ·
√

A(log A)κ−1
∏

χd(p) 6=−1
p<U

(1−p−
1
2

1+p−
1
2

)2]

−
[
2κ 0.033

2 log N ·
√

A(log A)κ−1(log d)−2g

+6 · 104N3g2
√

A(log A)κ−2
∏

χd(p) 6=−1
p<U

(1− p−
1
4 )−4

]

= H̃1 − H̃2.

Since g ≥ 4, we have κ ≥ g − 2 ≥ g
2 . If 1

2H̃1 ≥ H̃2, then we have

|H| ≥ H̃1

2

≥ κ
0.033

2 log N
·
√

A(log A)κ−1
∏

χ(p) 6=−1
p<U

(
1−p−

1
2

1+p−
1
2

)2

≥ 0.033
4

· g(log N)−1
√

A(log A)κ−1
∏

χ(p) 6=−1
p<U

(
1−p−

1
2

1+p−
1
2

)2

≥ 1.2× 10−3 · g
√

N(log N)−1
√

d(log d)κ−1
∏

χ(p) 6=−1
p<U

(
1−p−

1
2

1+p−
1
2

)2
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as desired.

We see that

H̃2

H̃1

=
6 · 104N3g2

√
A(log A)κ−2

∏
χd(p) 6=−1

p<U

(1− p−
1
4 )−4

2κ 0.033
2 log N ·

√
A(log A)κ−1

∏
χd(p) 6=−1

p<U

(1−p−
1
2

1+p−
1
2

)2
+

(log d)−2g∏
χd(p) 6=−1

p<U

(1−p−
1
2

1+p−
1
2

)2
≤ 6 · 104

0.033(g − 2)
·N3(log N)g2(log d)−1

∏
χd(p) 6=−1

p<U

(
1+p−

1
2

1−p−
1
2

)2
·
(

1

1−p−
1
4

)4

+(log d)−2g
∏

χd(p) 6=−1
p<U

(
1+p−

1
2

1−p−
1
2

)2

≤ 2 ·
( 6 · 107

33(g − 2)
·N3(log N)g2(log d)−1

∏
χd(p) 6=−1

p<U

(
1+p−

1
2

1−p−
1
2

)2
·
(

1

1−p−
1
4

)4)
.

Thus the sufficient condition of 1
2H̃1 ≥ H̃2 is that(

4 · 6 · 107

33
N3(log N) g2

g−2

) ∏
χd(p) 6=−1

p<U

(
1+p−

1
2

1−p−
1
2

)2
·
(

1

1−p−
1
4

)4)
≤ log d

From [BK, p. 286] we have

log
∏

χd(p) 6=−1
p<U

(
1+p−

1
2

1−p−
1
2

)2
·
(

1

1−p−
1
4

)4
≤ 6
(

g
log 2 log log d

) 3
4
.

Thus the sufficient condition of 1
2H̃1 ≥ H̃2 is that

log log d− 6( g
log 2 log log d)

3
4 ≥ log

(
4 · 6 · 107

33
N3(log N) g2

g−2

)
. (16)

We note that the left hand in (16) is an increasing function with respect to

d ≥ exp exp
(
(3
4 · 6)4 · ( g

log 2)3
)
.

Since we are assuming that d ≥ exp exp (c1Ng3) and g ≥ 3, if c1 is

sufficiently large, the left hand in (16) is greater than

c1Ng3 − 6( 1
log 2c1Ng4)

3
4 = g3(c1N − 6

(log 2)3/4 c
3/4
1 N3/4),

and the right hand in (16) is less than

16 + 3 log N + log log N + log g2

g−2 .
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Since g ≥ 3 and N ≥ 13, a sufficient condition of 1
2H̃1 ≥ H̃2 is that

c1 ≥ 299.7. For convenience, if we choose c1 = 300, then Proposition 2.1

follows. �

4. Proof of Proposition 2.2

From [BK, (17)] we have

|2H| ≤ |2H − T (G(s, U))|+ |T (g(s))|+ |S1|+ |S2|+ 1, (17)

where

T (F (s)) = ( d
ds)

κ
[

δ
2πi

∫ 2+i∞

2−i∞
As+zΓ2(s + z + 1

2)F (s + z)ϕ1(2s + 2z)dz
z

]
s= 1

2

,

δ = 1 + (−1)κχd(−N) = 2,

g(s) = G(s,A0)−G(s, U),

A0 = A(log A)−20g,

S1 = 2
κ∑

r=0

(
κ

r

)
(
∑

A0≤n≤J

bn

√
A/n(log A/n)κ−rIr(n/A)),

S2 = 2
κ∑

r=0

(
κ

r

)
(
∑

J≤n≤A1

bn

√
A/n(log A/n)κ−rIr(n/A)),

J = A((κ + 6) log log A)2,

A1 = A((8 + 2κ) log A)2,

∞∑
n=1

bnn−s = G(s,A1)ϕ1(2s)−G(s,A0)ϕ1(2s),

and

Ir(M) =
∫ ∞

u1=0

∫ ∞

u2=M/u1

exp(−(u1 + u2))(log u1u2)rdu1du2 (M ≥ 0).

As [BK, (21)], let

S∗1 = 23 · 32 · 43 · 20 · 3000 · e · (80
e )g · g2g+4.5L(1, χd)A(log log A)κ+6.
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Proof of Proposition 2.2. We may assume

L(1, χd) ≤ (log d)κ−1 1√
d

(d > exp exp (300Ng3) and N ≥ 13).

By [BK, section 4], we have for d > exp exp (300Ng3),
|S1| ≤ S∗1 ,

|S2| ≤ S∗1 ,

|T (g(s))| ≤ S∗1 .

(18)

Since Lemma 3.2 implies [BK, Lemma 3.1] (cf. Remark 3.3), we have for

d > exp exp (300Ng3),

|2H − T (G(s, U))| ≤ S∗1 . (19)

By (17), (18) and (19) we have

|2H|

≤ 5S∗1

< 4× 109 · (80
e )gg2g+4.5L(1, χ)A(log log A)κ+6

and Proposition 2.2 immediately follows. �
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