AN EXPLICIT LOWER BOUND FOR SPECIAL VALUES
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Abstract. Let d be a fundamental discriminant, x4 be the Dirichlet character
associated to the quadratic field Q(v/d) and L(s, x4) be the Dirichlet L-function.
In [Gol, Goldfeld obtained an effective lower bound for L(1, x4) with uncalculated
constants. For d < 0, the constants are computed in [Oe] and for d > 0, the
constants are computed in [BK] by using elliptic curves with complex multiplication.
In this paper, we show that the result of [BK] is worked out for elliptic curves

without complex multiplication too and compute the corresponding constants.

1. INTRODUCTION AND RESULTS

Let d be a fundamental discriminant, x4 be the Dirichlet character asso-
ciated to the quadratic field Q(v/d) and L(s, x4) be the Dirichlet L-function.
In [Gol, Goldfeld obtained an effective lower bound for L(1, x4).

Theorem 1.1. [Go, Theorem 1] Let E be an elliptic curve over Q with
conductor N. If E has complex multiplication and the L-function associated
to E has a zero of order g at s = 1, then for any xq with (d,N) =1 and
|d| > expexp(c1Ng3), we have

¢ (log|d|)9~+~ 1 exp(—21/gloglog|d])
gN® VIdl 7

where p = 1 or 2 is suitably chosen so that xq4(—N) = (=1)97H, and the

L(1, xq) >

constants c1, ca > 0 can be effectively computed and are independent of g,

N and d.

In fact, Goldfeld proved Theorem 1.1 under the assumption that the as-
sociated base change Hasse-Weil L-function L Q \/&)(3) has a zero of order
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> ¢g. In [BK], we explicitly computed the constants ¢, ¢z for d > 0 in

Theorem 1.1 and proved the following theorem.

Theorem 1.2. [BK, Theorem 1.3] Let d > 0 be a fundamental discriminant
of a real quadratic field Q(v/d). Let E be an elliptic curve over Q with
conductor N and g > 4 be a positive integer. If E has complex multiplication
and the associated base change Hasse-Weil L-function LE/@(\/@(S) has a
zero of order > g at s = 1, then for any such d with (d,N) = 1 and
d > exp exp (4000N g3), we have

10'89 (log d)9~3 exp(—21+/g loglog d)
grIN® Vd ’

In [Go], Goldfeld remarked that Theorem 1.1 also holds for elliptic curves

L(1,xq) >

E without complex multiplication provided that Lg(s) comes from a cusp
form of I'g(IV), which is now true for every elliptic curves E over Q with
conductor N according to the modularity theorem (cf. [BCDT], [Wi]). But
he did not give the proof. In this paper, we show that the result of [BK]
is worked out for elliptic curves without complex multiplication too and

explicitly compute the corresponding constants.

Theorem 1.3. Let d > 0 be a fundamental discriminant of a real quadratic
field Q(\/&) Let E be an elliptic curve over Q with conductor N of which
the product of distinct prime factors is 13 or more and g > 4 be a positive
integer. If the associated base change Hasse-Weil L-function LE/Q(\/E)(S)
has a zero of order > g at s = 1, then for any such d with (d,N) =1 and
d > expexp(300Ng?), we have

6 x 10'8* (log d)9~3 exp(—211/gloglog d)
gYN Vd '

The proof of Theorem 1.3 goes along similar lines as that of Theorem

L(1, xq) >

1.2 in the previous paper [BK]. However, to remove complex multiplication
condition, we will use the motivic symmetric square L-function (see (5) for
the definition) and the modularity theorem instead of Hecke L-function and
Deuring’s Theorem for elliptic curves with complex multiplication (cf. [Go,

Theorem 2J).

Remark 1.4. Let E be an elliptic curve with complex multiplication by

an imaginary quadratic field K = Q(v/—k). In the proof of Theorem 1.1,
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Goldfeld use the fact that £ < N as well as Deuring’s theorem. In the proof
of Theorem 1.2, we use the fact that k£ < 163 as well as Deuring’s theorem.
In the proof of Theorem 1.3, we use theory of the motivic symmetric square
L-function instead of Deuring’s theorem. That is why there is a difference

for exponents of N among Theorem 1.1, Theorem 1.2 and Theorem 1.3.

2. PROOF OF THEOREM 1.3

Let E be an elliptic curve over Q of conductor N. Assume the same

conditions as in Theorem 1.3. When the associated Hasse-Weil L-function

Lp(s) = E/Q( s) over QQ is given by
= Z E,n"?%,
n=1
define
(s, Xa) Zxd E,n~° and Lg(s,\) ZA

where A(n) =[], (=1)". Let

o(5) = Lin(s + ) Ln(s + 3, xa) = Zanns
and
¢1(25) = Lg(s+ 3)Le(s + 5, A).

We note that ¢(s) = E/@ ( 3) has a zero of order > g at s = 1.
Let

G(s) =

SO(;Z) = Zgnn_s and G(s,) Zgn
n=1 n<x
For A = 2 and U = (log d)®9, let
H = ()" " AT (s + )G (s, V) (28)] -1

To prove Theorem 1.3, we need the following propositions.

Proposition 2.1. Assume the same conditions as in Theorem 1.3. Then

for any such d > expexp (300N g?), either L(1,xq) > (log d)g_“_lﬁ or else

1\ ?
1> 125007 oo agosayo [T (24

14+p~ 2
Xa(p)#—1
p<U
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Proposition 2.2. Assume the same conditions as in Theorem 1.3. Then

for any such d > expexp (300N g?), either L(1,x4) > (log d)gfﬂflﬁ or else
9. (80\g, 29+4.5 — 46
[H| <2x 107 ()% *°L(1, xa) A(loglog A)9~H*°.

We will prove Proposition 2.1 in Section 3 and Proposition 2.2 in Section
4. If we assume Proposition 2.1 and 2.2, then we can prove Theorem 1.3 as

follows.

Proof of Theorem 1.3. Let P be the set of primes p < (logd)%? for which
xa(p) # —1. If

L(1,xq) > (log d)g*‘“lﬁ (d > expexp (300Ng3) and N > 13),
then Theorem 1.3 is true. Thus we may assume
L(1, xq) < (log d)gfﬂflﬁ (d > expexp (300N g?) and N > 13).

From [BK, p. 276] we have

|

1.2
log H (M> < 209%(loglog d)%
1-p~ 2
peEP
Let f(N,g,d) = exp (g%(loglogd)%) . (%)_9929_4‘5(10g10g %)_9_5. We
claim that if N > 13, g > 3 and d > expexp (300N g3), then

f(N,g,d) > exp (450).

Since loglog % <loglogd® = loglogd + 1, we have

log f(N, g,d)

> (g%(loglog d)%) —glog % + (29 —4.5)1logg — (9 + 5) log (loglogd + 1),

which is an increasing function for d because its partial derivative with

respect to d is

N{ g+5

2/loglogd(logd)d  (loglogd + 1)(logd)d

Vg(loglogd) — 2(g + 5)

2(loglog d)(log d)d
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So we have

log f(N,g,d)

> (300N)2g% — glog & + (29 — 4.5) log g — (g + 5) log (300N g + 1),

which is an increasing function for g because its partial derivative with

respect to g is

29 — 4.5
2(300N)2 g — log (%) + 2log g + =L — =2

3-300Ng%(g + 5)
300Ng® + 1
> 2(300N)2g — log (52) — 42 —Jog g — log (300N + 1) — %23

e

—log (300N g® 4+ 1) —

> 0.

So we have

log f(N, g,d)

> (300N)z - 3% — 3log 8 + 1.510g 3 — 8log (300 - 3°N + 1),

which is an increasing function for N because its derivative with respect to
N is
V/300-3*  8-300-3° V300-3* 8

— > - —=>0.
2V N 300-33N +1 2V N N

So we have
log f(N, g,d)
> /3900 - 3% — 31log 8 + 1.510g 3 — 8log (3900 - 3% + 1)

> 450
and the claim is proved. Thus we have

exp (g%(log log d)%) (8 )_9929_4'5(10g log %)_9_5 > exp (450).

e
From Proposition 2.1 and Proposition 2.2, we have for d > exp exp (300N g?),

2 x 107 - (82)9g29H45 (1, x4) A(log log A)9~+16

> 1.2x107%- gV N(og N)"'Wd(log d)?~* ! exp (- QOgé(log log d)%)
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Thus we have

1.2 x 1073 gv/N(og N)~t  Vd(logd)9=* exp (- 20gé(log log d)%)

L, xa) 2 x 109 - (8)9429+45 A(log log A)9—#+6
B 1.2x1072 472 . g . (logd)9=+~Lexp ( — 209%(log log d)%)
2 x 109 - (82)9g20+45\/N log N Vid(log log 4% )g—n+6
1.2 x 1073 - 472 . exp(450) (logd)?™ Sexp (— 2147 (log log d)%)
2% 107 g1 N Jd
6 x 10" (log d)9 % exp (- 21¢2 (log log d)%)
gYN Vd '

3. PROOF OF PROPOSITION 2.1

Let k = g — pu and define H; and Hy by

H = Hi+ H,

= 2sVA(log A)1G(L,U)¢h (1)
+VAY (%) tog Ay () [P+ DO D29y
r=2

Since |H| > |Hy| — |H2|, to get an explicit lower bound for |H|, we need an

explicit upper bound for |Hy| and an explicit lower bound for |Hy|.

Upper Bound for |Hs|. By [BK, (3)], we have

|H2|<\/ZZST7"T< ) (log A)" ’”lmax IT?(s+ 1) mlalx1|<p1(25)| max |G(s,U)].

\ S—32I1=%8 \S—*|_*

(1)

By [BK, (4)], we have

max \FQS—i— 3) < 16. (2)

ls—31=

Now we give bounds for ¢;(s). We denote by S¥(N) the set of normalized
primitive holomorphic cusp forms for I'o(N) of weight 2 with trivial neben-
typus 1y. For any f € S5(N), f has a Fourier expansion at infinity of the

form

— Z (lf(TL)\/ﬁGanz

n>1
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with ay(1) = 1 and ay(n) denoting the n-th eigenvalue of the Hecke operator
T,. From the Modularity Theorem, there exists f € S5(NN) such that

Ly(s) = Lr(s)

(cf. [DS, Theorem 8.8.3]).

Then we have
oo

LE(S + %) = Lf(S + %) = Zaf(n)nfs
n=1

= H(l —ar(p)p° + Iy (p)p~25)~"

= IO —ar@p) JJ( — app™*)1 — Bp~>),
pIN ptN

where for (p, N) =1, ap + By = af(p), lop| =16l =1, ap = Bp and for
pIN,

% if E has split multiplicative reduction at p,
ar(p) = —% if F has nonsplit multiplicative reduction at p,
0 if F has additive reduction at p

(cf. [Sil, Appendix C.16]).
For convenience, we follow the notation
Lp(s+3)=][(1—app™) " (1= Bp~*) 7", (3)
p

where

for pt N, ap+ By =as(p), lap| =16y =1, O‘pzﬂp’
for p || N, ap::t#, Bp =0,
for p2 | N, ap,=08,=0

(cf. [Wa, p. 490]).

The analytic symmetric square L-function is defined as

LASym?E,s) = HL;}(Sym2E, s)
P

= [Ia—app™) 1 —apfp™) (1 = Bpp~") 7" (4)

p
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To satisfy the functional equation, we must adjust LA(SmeE , f) by appro-
priate Euler factors when p? | N. We can define the Euler product U(s) by

the motivic symmetric square L-function

LM(Sym?E, s) = L*(Sym2E, s) - U(s) (5)
so that
2
AM(Sym?E, s) = N*x—3s/21 (S ; 1) r <S ; 2) LM (Sym2E, 5)

satisfies the functional equation given by
AM(Sym?E, s) = AM(Sym?E, 1 — ) (6)

(cf. [Wa, p. 490]).
We denote by N = Hp pgp the symmetric square conductor and denote by
Up(s) the local factor of U(s) at a prime p. Then we have

for pt N, gp =0, Up(s) =1,
for p || N, Sp =1, Up(s) =1,
for p? | N, gp > 1, there are three possibilities for Uy (s): 1,(1£p~*)~L.
(7)
For additive reduction, that is, p? | N, both 4, and Up,(s) were determined
by Coates and Schmidt [CS] (with corrections by Watkins [Wa]). We note
that N always divides N and is equal to IV if the conductor is square-free

(cf. [Wa, section 2.2]).

Remark 3.1. In this paper, we normalize the motivic symmetric square
L-function in [Wa] so that s = 1/2 is the point of symmetry. In [Wal], the
symmetric square conductor is defined by NZ2.
From (3), (4), and (5), we have
p1(s) = [ —ar@?p ) ' [JA—alp) 1 - Bp*)!
pIN PIN
LA(Sym?E, s)
— ) 1 _ S —1
Op | S
LM(Sym?E, s) e _
= THO ) ] Unle) 7" (8)

p|N PN

p|N

The following lemma is a generalization of [BK, Lemma 3.1].
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Lemma 3.2. For s =o0 +it € C,

10 . A7346 5 1 3 1
|801(S)‘< 2 x 107 - N°¢ lfl—mgagé, ‘t‘22+8407
Sl 2-Ns+2P ifd3<o<3, It] <2+ g5
Proof. From (4), (5), and (7), we have for o > 1,
MEeym’E,s) = [JA—app ) ' —p*) 1= Bpp )"
PIN
L =pm7 T U
plIN P?IN
By the Euler product, we have
|ILM (Sym®E, 3 — it)| < ¢(3)* < 18.
From (6) we have
N2 |T(5 - z’i) (T —it)
LM(Sym?E, -1 +it)] = 2 42
Lm0l = E T [rE v
‘LM SmeE 5 —it)|
N2 t?13 .t
18— = +i=| |- +i=
< 3|1 + 22 1 + 22’
N2 3
Since N > 13, the function
f(s) = LM (Sym?f,)(s +2)~°
is bounded by
18 N? N2
B = -, 18— p = 18—
HlaX{(g+2>3> ] 3} 87T3
on the lines ¢ = —1 and o = 3. By Lindeldf theorem (cf. [HR, p. 15]), this
implies that
M 2 N? 1 3
|LM(Sym®f,s)| < 18— s+ 2 (-3 <0 <3). 9)
In the proof of [BK, Lemma 3.1], we showed that
2 @3143 1 1
o) < 568407 - G3[t[2 if 0 > 1~ g [t > 2+ g,
| 13 if 3<o<3, It <2+ g5

(10)
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Since

23/4 1 3/4 1
2t g BT
923/4 _ 1 p3/4 -1

< p for p >3,

from (7) we have for o > 2,

—sv—1 -1 L+ [p~
[Ta=p)"" T] Un(s) S H ’p g I1 1— ||
p|N PN pIIN PN

3/4
plt+1
< H 3/4 -1
plN
< 2N.

Thus Lemma 3.2 follows from (8), (9), (10) and (11).

(11)

O

Remark 3.3. In [Go, (49)] and [BK, Lemma 3.1], Deuring’s Theorem and

the functional equation for Hecke L-function are used to give upper bound

for p1(s) in the case of elliptic curves with complex multiplication.

To

remove complex multiplication condition, we use the functional equation for

the motivic symmetric square L-function. We also note that Lemma 3.2

implies [BK, Lemma 3.1].
From Lemma 3.2, we have

max |p1(2s)] < max (2- N312s 4+ 2*)

ls—31=1 |s—1=3
< T70N3
Moreover,
max [G(s,U)| < [ ( ~1)™ (cf. [Go, p.657)).
ls=2l=1 o)1
p<U

Since log A > %logd > %exp (300N g?), we have

ZST’F'T’< > (log A)F " <2.8%.2!. <;> (log A)"—2

thus from (1), (2), (12) and (13) we have

[Ha| <6-10'N°g?VA@log A2 J[ (1—p1)%

Xa(p)#—1
p<U

(12)

(13)

(14)



AN EXPLICIT LOWER BOUND FOR SPECIAL VALUES II 11

Lower Bound for |Hi|. We need the following lemmas; one is [BK, Lemma

3.2] and the other is [Wal, Lemma 3.4].

Lemma 3.4. [BK, Lemma 3.2] If d > exp (500¢%), then either L(1,xq) >

(logd)*~1-L or else we have

Vd
il = ] (

14+p—
Xa(p)#—1
p<U

[N

>2 — (logd)™%.

[N

Lemma 3.5. [Wal, Lemma 3.4] Let E be an elliptic curve over Q with
N? > 142. Then
0.033

LM(Sym?E, 1) > ———.
(Sy ) log N2

Proof. See [Wal, section 3]. Note that the definition of the symmetric square
conductor in [Wal] is different (cf. Remark 3.1). O

Lemma 3.5 implies the following lemma which is a generalization of [BK,

Lemma 3.3].

Lemma 3.6. Let E be an elliptic curve over Q with conductor N of which

the product of distinct prime factors is 13 or more. Then

0.033
2log N'

¢1(1) >
Proof. From (7) we have
N > the product of distinct prime factors of N > 13,

and so

N2 > 142.

From (7) and (8) we have

p|N p2|N pl|N

and
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Since N2 > 142 and N | N, Lemma 3.5 implies

0.033 0.033
"(1) > — > )
Pil) = 2log N ~ 2log N

O

By Lemma 3.4 and Lemma 3.6, we have for d > exp (500¢3), either

L(1,xq) > (logd)”_lﬁ or else

0.033 _ AN -
|H1| > 2k -V A(log A)" 1( H pl) — (logd)™ |. (15)
2log N xa(p)#—1 i
p<U

Now we can prove Proposition 2.1.
Proof of Proposition 2.1. We may assume

L(1, xa) < (logd)* ' 5= (d > exp (50047)).

From (14) and (15), we have

[H| > [Hi| - [Ha|
1

26395 VA@og At [T (223)7
xa(p)#—1 b
p<U

- [2& 201‘(?;?\, -V A(log A" (log d)~%

Y

+6-10°N?g*VA(log )2 T (1 p—%)—ﬂ

Xa(p)#—1
p<U

= H; - H,.

Since g > 4, we have K > g —2 > 4. If %ﬁl > H,, then we have

m o> D
2
0.033 -1\ 2
> -V A(log A)" Lo
- ﬁ2logN (log 4) H (Hp%)
x(p)#—1
p<U
0.033 1\ 2
> 008 og )TV A(og A ] (W_?)
4 1+p~ 2
x(p)#—1
p<U
_1\ 2
> 1.2x107%- gV N(log N)"'Vd(logd)™ ' ] (1"’_§>
xp)#—1 NP
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as desired.
We see that
N 6 - 10°N3g2v/A(log A2 [Ty, me (1 —p 1)~
H2 p<U
H 0.033 K1 1—p~ 312
2R3 T0g N ° VA(log A) [xam#—1 ( 7%)

p<U 1+p
(logd) =2
1
T 3N2
HXd(psf'é 1(1 £ 2)

1
p<U 1+p 2

6-10° - N3(log N)g*(log d)~* H (@)2' <1;i>4

0.033(g — 2 _
(g ) Xa(p)#—1 e
p<U
_1\2
—2g 1+p 2
+(10g d) H (lfpf% )
Xa(p)#—1
p<U
6- 107 3 2 -1 1+ _% 2 4
< N 14 . 1 )
s 2 (33(9—2) N*(log N)g"(log d) H (1—p—%> (1—p—i>)
Xa(p)#—1
p<U

Thus the sufficient condition of %I—j 1> ﬁg is that

(4 6320 N3(Io N)922> (lgé 1<1+Zi>2'<1;i>4) < logd
p<U

From [BK, p. 286] we have

—1\2 4
1+p 2 . 1
ox I () (r) = 6lwiatostona)”

1-p
Xa(p)#—1
p<U

]

Thus the sufficient condition of %ﬂ' 1> ﬁg is that
6-107

loglogd—G(lgzloglogd)% 1g<4~ N3(IogN)ggTZQ). (16)

We note that the left hand in (16) is an increasing function with respect to

d > exp exp (( - 6)* - (10g2)3>.
Since we are assuming that d > expexp(c1Ng®) and g > 3, if ¢; is

sufficiently large, the left hand in (16) is greater than

6 3/4N3/4)

3
ClNg )4 :QB(ClN— (g 2)373 €1

ciNg® — 6(10g2

and the right hand in (16) is less than

16+310gN+10g10gN+10gggT2



14 DONGHO BYEON AND JIGU KIM

Since ¢ > 3 and N > 13, a sufficient condition of %ﬁl > ﬁg is that
c1 > 299.7. For convenience, if we choose ¢; = 300, then Proposition 2.1

follows. O

4. PROOF OF PROPOSITION 2.2

From [BK, (17)] we have
2H| < [2H — T(G(s,U)[ + [T(g(s))| + [S1] + [S2| + 1, (17)
2+1i00

T(F(s)) = (L)~ {% /2 AT (s 4 2+ L) F (s + 2)p1 (25 + 22) &

—100

_1’
5=3

5= 1+ (—1)fxa(—N) =2,
g(s) = G(SvAO) - G(5> U)7

Ag = A(log A)=209

Sy =2 (“)( 3" buv/Afn(log A/n) I (n/A)),
0

Ao<n<J

Sy =2 (“)( 3" buv/Afn(log A/n) L (n/A)),

J<n<A;

J = A((k + 6) loglog A)?,
Ay = A((8 4 2r)log A)?,
> ban " = G(s, A1)ei1(25) — G(s, Ao)pi1(2s),
n=1
and
I, (M) = / / exp(—(u1 + u2))(log uyuz)"duidus (M > 0).
u1=0 Jug=M/uq
As [BK, (21)], let

Sy =2%.3%.4%.20-3000 e (8)9. g>9T5L(1, yq) A(log log A)"T.
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Proof of Proposition 2.2. We may assume

L(1,xq) < (logd)“_lﬁ (d > expexp (300N g®) and N > 13).

By [BK, section 4], we have for d > exp exp (300N g?),

51| < 57,
52| < 57, (18)
T(g(s))] < 57

Since Lemma 3.2 implies [BK, Lemma 3.1] (cf. Remark 3.3), we have for
d > expexp (300N g3),

I2H — T(G(s,U))] < S57. (19)
By (17), (18) and (19) we have

2H|

< 587

< 4x10%- (89421511, x)A(loglog A)~+6

e

and Proposition 2.2 immediately follows. O
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