A CONJECTURE OF GROSS AND ZAGIER: CASE

 $E(\mathbb{Q})_{\mathrm{tor}} \cong \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}, \ \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/4\mathbb{Z} \ \mathbf{OR} \ \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/6\mathbb{Z}$

DONGHO BYEON, TAEKYUNG KIM AND DONGGEON YHEE

Abstract. Let E be an elliptic curve defined over \mathbb{Q} of conductor N, c the Manin constant of E, and m the product of Tamagawa numbers of E at prime divisors of N. Let E be an imaginary quadratic field where all prime divisors of E split in E, E, the Heegner point in E, and III(E/E) the Shafarevich-Tate group of E over E. Let E be the number of roots of unity contained in E. Gross and Zagier conjectured that if E has infinite order in E, then the integer E and E is divisible by E and E in this paper, we show that this conjecture is true if E and E is divisible by E and E and E are E are E and E are E are E and E are E and E are E are E are E are E are E and E are E are E are E and E are E are E and E are E are E are E and E are E are E are E are E and E are E are E and E are E are E and E are E and E are E are E and E are E are E are E and E are E and E are E are E and E are E are E are E are E are E and E are E and E are E are E are E are E are E and E are E and E are E are E are E are E are E and E are E and E are E are E are E are E are E and E are E are E are E are E are E and E are E are E are E are E and E are E are E are E and E are E are E and E are E are E and E are E are E are E and E are E

1. Introduction

Let E be an elliptic curve defined over \mathbb{Q} of conductor N, c the Manin constant of E and $m = \prod_{p|N} m_p$, where m_p is the Tamagawa number of E at a prime divisor p of N. Let K be an imaginary quadratic field where all prime divisors of N split in K, P_K the Heegner point in E(K) and III(E/K) the Shafarevich-Tate group of E over K. Let $2u_K$ be the number of roots of unity contained in K. In [GZ], Gross and Zagier conjectured

Conjecture. ([GZ, p. 311, (2.3) Conjecture]) If P_K has infinite order in E(K), then the integer $c \cdot m \cdot u_K \cdot |\mathrm{III}(E/K)|^{\frac{1}{2}}$ is divisible by $|E(\mathbb{Q})_{\mathrm{tor}}|$.

Rational torsion subgroups of elliptic curves E over \mathbb{Q} are completely classified by Mazur [Ma]: $E(\mathbb{Q})_{\text{tor}}$ is isomorphic to one of the following 15 groups:

$$\begin{cases} \mathbb{Z}/n\mathbb{Z} & \text{for } 1 \leq n \leq 10, \ n = 12, \\ \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/n\mathbb{Z} & \text{for } n = 2, 4, 6, 8. \end{cases}$$

From [Lo, Proposition 1.1], we know that the conjecture is true when $E(\mathbb{Q})_{\text{tor}}$ is isomorphic to $\mathbb{Z}/n\mathbb{Z}$ for $5 \leq n \leq 10$, n = 12 or to $\mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/8\mathbb{Z}$ (cf. [BKY, Theorem 1.1]). In [BKY, Theorem 1.2], we proved that the conjecture is true when $E(\mathbb{Q})_{\text{tor}}$ is isomorphic to $\mathbb{Z}/3\mathbb{Z}$.

So the only remaining cases for the validity of the conjecture are those when $E(\mathbb{Q})_{\text{tor}}$ is isomorphic to the following 5 groups: $\mathbb{Z}/2\mathbb{Z}$, $\mathbb{Z}/4\mathbb{Z}$, $\mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$, and $\mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/6\mathbb{Z}$.

In this paper, we prove the following theorem.

Theorem 1.1. Let E be an elliptic curve defined over \mathbb{Q} such that $E(\mathbb{Q})_{tor}$ is isomorphic to $\mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$, $\mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/4\mathbb{Z}$ or $\mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/6\mathbb{Z}$. Then the conjecture is true.

2. Preliminaries

The following two lemmas are needed to compute the Tamagawa number m_p of E at a prime divisor p of N.

Lemma 2.1. (i) If E has additive reduction at p, then the prime to p part of $|E(\mathbb{Q})_{tor}|$ divides m_p .

(ii) Suppose that $\mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z} \subseteq E(\mathbb{Q})$. If $p \neq 2$ is a prime at which E has multiplicative reduction, then $2 \mid m_p$.

Proof. Consider the exact sequence (cf. [Si, VII Proposition 2.1])

$$0 \to E_1(\mathbb{Q}_p) \to E_0(\mathbb{Q}_p) \to \widetilde{E}_{\mathrm{ns}}(\mathbb{F}_p) \to 0.$$

We note that every element of finite order in $E_1(\mathbb{Q}_p) \cong \hat{E}(p\mathbb{Z}_p)$ has order that is a power of p, where \hat{E} is the formal group associated to E (cf. [Si, IV Proposition 3.2]).

(i) If E has additive reduction at p, every element in $\widetilde{E}_{ns}(\mathbb{F}_p) \subset \overline{\mathbb{F}}_p^+$ (cf. [Si, VII Proposition 5.1]) has order that is a power of p. From the above exact sequence, we see that the prime to p part of $E(\mathbb{Q})_{tor}$ has trivial intersection with $E_0(\mathbb{Q}_p)$. Thus the prime to p part of $E(\mathbb{Q})_{tor}$ injects into $E(\mathbb{Q}_p)/E_0(\mathbb{Q}_p)$ and the prime to p part of $|E(\mathbb{Q})_{tor}|$ divides $m_p = |E(\mathbb{Q}_p)/E_0(\mathbb{Q}_p)|$.

(ii) If E has multiplicative reduction at p, $\widetilde{E}_{ns}(\mathbb{F}_p) \subset \overline{\mathbb{F}}_p^*$ (cf. [Si, VII Proposition 5.1]) is cyclic. Suppose $p \neq 2$. From the above exact sequence, we see that $\mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z} \subseteq E(\mathbb{Q})$ has proper intersection with $E_0(\mathbb{Q}_p)$, i.e. $\mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z} \not\subseteq E_0(\mathbb{Q}_p)$. This implies that $2 \mid m_p$.

Lemma 2.2. For $\lambda \in \mathbb{Q}$, let E_{λ} be an elliptic curve defined by the Weierstrass equation

$$E_{\lambda}: y^2 + xy - \lambda y = x^3 - \lambda x^2, \tag{1}$$

with discriminant $\Delta = \lambda^4 (1+16\lambda) \neq 0$. If p is a prime such that $\operatorname{ord}_p \lambda > 0$, then E_{λ} has split multiplicative reduction of type $I_{4\operatorname{ord}_p \lambda}$. So $4 \mid m_p$.

Proof. See [Si, Table 15.1] and the proof of [Lo, Proposition 2.4].
$$\Box$$

The following two lemmas are needed to find some special elliptic curves.

Lemma 2.3. Let u, v, w be positive integers and let p, q be odd primes. Then the system of equations

$$2^{u} + 1 = p^{v}$$
 (resp. $2^{u} - 1 = p^{v}$); $2^{u+1} + 1 = q^{w}$ (resp. $2^{u+1} - 1 = q^{w}$) (2)

has no other solutions than

$$(p,q,u,v,w) = (3,5,1,1,1), (5,3,2,1,2) \text{ or } (3,17,3,2,1) \text{ (resp. } (p,q,u,v,w) = (3,7,2,1,1)).$$

Proof. Note that the Mihilescu's theorem (originally Catalan's conjecture; see e.g. [Mi]) says that when x, y, r, s > 1 are integers, the equation $x^r - y^s = 1$ has no other solutions than (x, y, r, s) = (3, 2, 2, 3). Then the assertion follows by an easy case-by-case study using Mihilescu's theorem and the fact that the two expressions $2^u + 1$ (resp. $2^u - 1$) and $2^{u+1} + 1$ (resp. $2^{u+1} - 1$) are both primes only when u = 1, $2^1 + 1 = 3$ and $2^2 + 1 = 5$ (resp. u = 2, $2^2 - 1 = 3$, $2^3 - 1 = 7$).

Lemma 2.4. Let

$$g(\alpha, \beta) := (4\alpha - \beta)(4\alpha + \beta)$$
 and $f(\alpha, \beta) := g(\alpha, \beta)\alpha\beta$,

let α and β be relatively prime positive integers such that one of the two is a power of 2 and let S be the set of pairs (α, β) of such integers satisfying one of the following conditions:

- there is at most one odd prime divisor in $f(\alpha, \beta)$,
- there are two distinct odd prime divisors in $f(\alpha, \beta)$, but $g(\alpha, \beta)$ has at most one odd prime divisor, or
- there are three distinct odd prime divisors in $f(\alpha, \beta)$, but $g(\alpha, \beta)$ has no odd prime divisors.

Then S is a finite set:

$$S = \{(1,2), (1,3), (1,4), (1,5), (1,6), (1,8), (1,12), (1,20), (1,28), (1,36), (1,68), (2,9), (3,4), (3,8), (3,16), (5,4), (5,16), (7,4), (9,4), (9,32), (17,4)\}.$$

Proof. Let $(\alpha, \beta) \in S$. We see that one of $|4\alpha - \beta|$ and $|4\alpha + \beta|$ is a power of 2.

Case 1. Assume $\alpha = 1$, and let $\beta > 4$ (noting $(1, \beta) \in S$ for $\beta = 2, 3, 4$). Then $|4 \mp \beta| = 2^n$ for some $n \ge 0 \iff \beta = 2^n \pm 4$ and $|4 \pm \beta| = |2^n \pm 8|$. We see that each of β and $4 \pm \beta$ has an odd prime divisor except when $\beta = 8$ or $\beta = 12$, so $(1, 8), (1, 12) \in S$. Checking $(1, 5), (1, 6) \in S$, we let $n \ge 4$. Now we may assume that each of β and $4 \pm \beta$ contains only one odd prime divisor; we can write $\beta = 2^n \pm 4 = 4(2^{n-2} \pm 1) = 4q^l$ for some odd prime q and l > 0 and $4 \pm \beta = \pm 2^n + 8 = 8(\pm 2^{n-3} + 1) = \pm 8p^k$ for some odd prime $p \ne q$ and $p \ne q$ and

Case 2. Assume $\alpha = 2^n$ for some $n \ge 1$. Then β must be odd. As in the above Case, we have $|4\alpha - \beta| = 1$ and so $\beta = 2^{n+2} \pm 1$. Then $4\alpha + \beta$ must have an odd prime factor. In order to $(\alpha, \beta) \in S$, we may assume that each of β and $4\alpha + \beta$ has at most one odd prime divisor. As $\beta = 1$ is absurd, we write $\beta = p^l$ for some $l \ge 1$ and $4\alpha + \beta = 2^{n+3} \pm 1 = q^k$ for some $k \ge 1$. By Lemma 2.3, we then have $(2, 9) \in S$.

Case 3. Now suppose that $\beta=2^n$ for some $n\geq 0$. If $|g(\alpha,\beta)|$ is simply a power of 2, then we can see $\alpha=3$ and $\beta=4$, i.e. $(3,4)\in S$. So assume that $g(\alpha,\beta)$ has only one odd prime divisor. As one of $|4\alpha-\beta|$ or $|4\alpha+\beta|$ is a power of 2, $\beta\neq 1$. So $n\geq 1$ and α must be odd. As the case $\alpha=1$ was already dealt with in Case 1, we assume α has only one odd prime divisor, i.e. $\alpha=p^l$ for some odd prime p and $l\geq 1$. Moreover we can see that $\beta=2$ is impossible in this case. Now suppose that $\beta=4$. If $4\alpha-\beta=4(p^l-1)=2^{u+2}$ (resp. $4\alpha+\beta=4(p^l+1)=2^{u+2}$) with $u\geq 1$, then $4\alpha+\beta=4(p^l+1)=8(2^{u-1}+1)$ (resp. $4\alpha-\beta=4(p^l-1)=8(2^{u-1}-1)$) has at most one odd prime divisor only if $\alpha=3,5,7,9$ or 17 by Lemma 2.3. Now assume $\beta=2^n$ with $n\geq 3$. then $4\alpha+\beta$ cannot be a power of 2. However, $|4\alpha-\beta|$ is a power of 2 if and only if $p^l=\alpha=2^{n-2}\pm 1$. In

this case $4\alpha + \beta = 4(2^{n-1} \pm 1)$ has at most one odd prime divisor only when $(\alpha, \beta) = (3, 8), (5, 16), (9, 32)$ or (3, 16) by Lemma 2.3.

3. Proof of Theorem 1.1

Proposition 3.1. Let E be an elliptic curve over \mathbb{Q} with $\mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/4\mathbb{Z} \subseteq E(\mathbb{Q})$. Then $16 \mid m$, except for '15a1' having m = 8, '15a3' having m = 4 and c = 2, '21a1' with m = 8 and '24a1' having m = 8. In any case we have $8 \mid m \cdot c$.

Proof. Assume to the contrary that 16 does not divide m. Elliptic curves E having $\mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/4\mathbb{Z} \subseteq E(\mathbb{Q})$ are parametrized by one parameter $\lambda \in \mathbb{Q}$ with the Weierstrass equation (1), where λ is given by $\lambda = (\alpha/\beta)^2 - 1/16 = (4\alpha - \beta)(4\alpha + \beta)/(16\beta^2)$ for some relatively prime positive integers α and β such that the discriminant of the equation $\Delta = \lambda^4(16\lambda + 1) \neq 0$ (cf. [Ku, Table 3]). In this case, the j-invariant of the curve is given by

$$j = \frac{256\alpha^4 + 224\alpha^2\beta^2 + \beta^4}{(4\alpha - \beta)^4(4\alpha + \beta)^4\alpha^2\beta^2}.$$

We note that there is no cancellation by odd primes in this expression and the equation (1) is minimal at any odd prime p dividing $\alpha\beta(4\alpha-\beta)(4\alpha+\beta)$.

By Lemma 2.1 (resp. Lemma 2.2), any odd prime p dividing $\alpha\beta$ (resp. $(4\alpha - \beta)(4\alpha + \beta)$) contributes the Tamagawa number $m = \prod_p m_p$ of the curve by $2 \mid m_p$ (resp. $4 \mid m_p$). Hence, when one of α or β is a power of 2, the pair (α, β) we need to consider is exactly contained in the set S in Lemma 2.4. By computation, we can see that the only curves that are obtained from the pair $(\alpha, \beta) \in S$ with $16 \nmid m$ are '15a1', '21a1' and '24a1', all having m = 8 (cf. [Cr]).

Now the only remaining cases to consider is when the two relatively prime positive integers α and β have at least one odd prime divisor each. We can also assume that $|(4\alpha - \beta)(4\alpha + \beta)|$ is a power of 2; write $4\alpha + \beta = 2^n$ for some $n \geq 0$ and $4\alpha - \beta = \pm 2^l$ for some $l \geq 0$. Then $8\alpha = 2^n \pm 2^l$ and $2\beta = 2^n \mp 2^l$. As $\alpha, \beta > 0$, we have $n > l \geq 3$. Now β is divisible by 4 and hence α is odd. So l = 3 and $\alpha = 2^{n-3} \pm 1$ and $\beta = 4(2^{n-3} \mp 1)$. When n = 4, then we have $(\alpha, \beta) = (3, 4)$ or (1, 12), which are included in the set S and computed already. When n = 5, we have $(\alpha, \beta) = (5, 12)$ or (3, 20), both of which give the curve '15a3' having m = 4 and c = 2 (cf. [Cr]).

Assuming $n \geq 6$, we get $\operatorname{ord}_2 \lambda = n + l - 4 - 2\operatorname{ord}_2 \beta = n - 5 \geq 1$, so by Lemma 2.2, $4 \mid m_2$. As each of odd prime factors of α and β contributes a factor of 2, we have $16 \mid m$.

Proposition 3.2. Let E be an elliptic curve defined over \mathbb{Q} with $\mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z} \subseteq E(\mathbb{Q})$. Then $4 \mid m$, except for '17a2' and '32a2'. For these exceptions, we have m = c = 2.

Proof. Assume to the contrary that 4 does not divide m. Elliptic curves E with $\mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z} \subseteq E(\mathbb{Q})$ have the following Weierstrass equation:

$$E: y^2 = x(x+a)(x+b)$$
 (3)

with $a, b \in \mathbf{Z}$ and with discriminant $\Delta = 16a^2b^2(a-b)^2 \neq 0$ (cf. [Ku, Table 3]). We note that $c_4 = 16a^2 - 16ab + 16b^2$.

By Lemma 2.1 (i), we know that all bad odd primes are multiplicative. Suppose there is an odd prime p dividing both a and b. If $\operatorname{ord}_p a$ and $\operatorname{ord}_p b$ are both ≥ 2 , then the equation (3) can be reduced to the equation of the same form with a and b replaced by a/p^2 and b/p^2 . So we assume either $\operatorname{ord}_p a = 1$ or $\operatorname{ord}_p b = 1$. If only one of $\operatorname{ord}_p a$ and $\operatorname{ord}_p b$ is equal to 1, then $\operatorname{ord}_p c_4 = 2$. So the equation (3) is minimal at p and E has additive reduction modulo p. Suppose that $\operatorname{ord}_p a = 1$ and $\operatorname{ord}_p b = 1$. Write a = a'p $(p \nmid a')$ and b = b'p $(p \nmid b')$. If $p \nmid (a' - b')$, then $\operatorname{ord}_p \Delta = 6$ and $\operatorname{ord}_p c_4 > 0$. So the equation (3) is minimal at p and p and p has additive reduction modulo p. If $p \mid (a' - b')$, then $\operatorname{ord}_p c_4 = \operatorname{ord}_p p^2((a' - b')^2 + a'b') = 2$. So the equation (3) is minimal at p and p has additive reduction modulo p. Thus we can assume that p and p are pairwise relatively prime away from 2. By Lemma 2.1 (ii), we can further assume p contains at most one odd prime factor.

Note that by changing variables of the equation (3) if necessary we may assume at least one of a and b is not divisible by 4. Suppose that both a and b do not have any odd prime factor. Then we can further assume $b=\pm 1$ or ± 2 . Write $a=\pm 2^n$. If |a-b| is also a power of 2, then we have the curves '32a2' (m=c=2) and '64a1' (m=4) (cf. [Cr]). Suppose that a-b has an odd prime divisor. We can readily check that $\operatorname{ord}_2 j = 8 - 2\operatorname{ord}_2 a$ when $b=\pm 1$ and $\operatorname{ord}_2 j = 10 - 2\operatorname{ord}_2 a$ when $b=\pm 2$. If $n\geq 6$, we have $\operatorname{ord}_2 j < 0$

so E is potentially multiplicative modulo 2 (cf. [Si, VII Proposition 5.4 and 5.5]). Moreover, as $\operatorname{ord}_2 j \in 2\mathbb{Z}$, m_2 must be even in any cases (cf. [Si, Table 15.1]). If n < 6, we only have finitely many cases ($a \in \{\pm 2^n : 0 \le n < 6\}$ and $b \in \{\pm 1, \pm 2\}$). By computation, we can see that all of $4 \mid m$, except for '17a2', for which we have m = c = 2 (cf. [Cr]).

When a (resp. b) has an odd prime factor, the change of variables x' = x + b (resp. x' = x + a) reduces this case into the cases we treated above. This completes the proof.

Proposition 3.3. Let E be an elliptic curve defined over \mathbb{Q} with $E(\mathbb{Q})[3] \cong \mathbb{Z}/3\mathbb{Z}$. If P_K has infinite order in E(K), then $3 \mid c \cdot m \cdot u_K \cdot |\mathrm{III}(E/K)|^{\frac{1}{2}}$.

Proof. The proof is exactly same as that of the proof of [BKY, Theorem 1.2].

Proof of Theorem 1.2. Theorem 1.1 follows from Proposition 3.1, 3.2 and 3.3. \Box

Acknowledgment. The authors thank the referees for their careful readings and many valuable suggestions.

References

- [BKY] D. Byeon, T. Kim and D. Yhee, A conjecture of Gross and Zagier: case $E(\mathbb{Q})_{tor} \cong \mathbb{Z}/3\mathbb{Z}$, Int. J. Number Theory, **15** (2019), 1793–1800.
- $[\mathrm{Cr}] \qquad \mathrm{J.\ Cremona}, \ Elliptic\ curve\ data, \ \mathrm{available\ at\ http://johncremona.github.io/ecdata.}$
- [Ku] D. S. Kubert, Universal bounds on the torsion of elliptic curves, Proc. London Math. Soc., 33 (1976), 193–237.
- [GZ] B. H. Gross and D. Zagier, Heegner points and derivatives of L-series, Invent. Math. 84 (1986), 225–320.
- [Lo] D. Lorenzini, Torsion and Tamagawa numbers, Annales de L'Institut Fourier, 61 (2011), 1995–2037.
- [Ma] B. Mazur, Modular curves and the Eisenstein ideal, Publ. Math. I.H.E.S., 47 (1977), 33–186.
- [Mi] P. Mihilescu, Primary cyclotomic units and a proof of Catalan's conjecture, J. Reine Angew. Math., 572 (2004), 167–195.
- [Si] J. H. Silverman, The arithmetic of Elliptic Curves, 2nd ed., Grad. Texts in Math. 106, Springer 2009.

Department of Mathematical Sciences, Seoul National University Seoul, Korea,

 $\hbox{E-mail: dhbyeon@snu.ac.kr}$

Center for Geometry and Physics, Institute of Basic Science

Pohang, Korea

E-mail: Taekyung.Kim.Maths@gmail.com

Department of Mathematical Sciences, Seoul National University Seoul, Korea

E-mail: dgyhee@gmail.com