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Abstract. Let E be an elliptic curve defined over Q of conductor N , c the Manin

constant of E, and m the product of Tamagawa numbers of E at prime divisors

of N . Let K be an imaginary quadratic field where all prime divisors of N split

in K, PK the Heegner point in E(K), and III(E/K) the Shafarevich-Tate group

of E over K. Let 2uK be the number of roots of unity contained in K. Gross

and Zagier conjectured that if PK has infinite order in E(K), then the integer

c ·m · uK · |III(E/K)| 12 is divisible by |E(Q)tor|. In this paper, we show that this

conjecture is true if E(Q)tor ∼= Z/2Z⊕ Z/2Z, Z/2Z⊕ Z/4Z or Z/2Z⊕ Z/6Z.

1. Introduction

Let E be an elliptic curve defined over Q of conductor N , c the Manin

constant of E and m =
∏

p|N mp, where mp is the Tamagawa number of E

at a prime divisor p of N . Let K be an imaginary quadratic field where all

prime divisors of N split in K, PK the Heegner point in E(K) and III(E/K)

the Shafarevich-Tate group of E over K. Let 2uK be the number of roots

of unity contained in K. In [GZ], Gross and Zagier conjectured

Conjecture. ([GZ, p. 311, (2.3) Conjecture]) If PK has infinite order in

E(K), then the integer c ·m · uK · |III(E/K)|
1
2 is divisible by |E(Q)tor|.

Rational torsion subgroups of elliptic curves E over Q are completely

classified by Mazur [Ma]: E(Q)tor is isomorphic to one of the following 15

groups: Z/nZ for 1 ≤ n ≤ 10, n = 12,

Z/2Z⊕ Z/nZ for n = 2, 4, 6, 8.

From [Lo, Proposition 1.1], we know that the conjecture is true when

E(Q)tor is isomorphic to Z/nZ for 5 ≤ n ≤ 10, n = 12 or to Z/2Z ⊕ Z/8Z

(cf. [BKY, Theorem 1.1]). In [BKY, Theorem 1.2], we proved that the

conjecture is true when E(Q)tor is isomorphic to Z/3Z.
1
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So the only remaining cases for the validity of the conjecture are those

when E(Q)tor is isomorphic to the following 5 groups: Z/2Z, Z/4Z, Z/2Z⊕

Z/2Z, Z/2Z⊕ Z/4Z, and Z/2Z⊕ Z/6Z.

In this paper, we prove the following theorem.

Theorem 1.1. Let E be an elliptic curve defined over Q such that E(Q)tor

is isomorphic to Z/2Z ⊕ Z/2Z, Z/2Z ⊕ Z/4Z or Z/2Z ⊕ Z/6Z. Then the

conjecture is true.

2. Preliminaries

The following two lemmas are needed to compute the Tamagawa number

mp of E at a prime divisor p of N .

Lemma 2.1. (i) If E has additive reduction at p, then the prime to p part

of |E(Q)tor| divides mp.

(ii) Suppose that Z/2Z⊕Z/2Z ⊆ E(Q). If p 6= 2 is a prime at which E has

multiplicative reduction, then 2 | mp.

Proof. Consider the exact sequence (cf. [Si, VII Proposition 2.1])

0 → E1(Qp) → E0(Qp) → Ẽns(Fp) → 0.

We note that every element of finite order in E1(Qp) ∼= Ê(pZp) has order

that is a power of p, where Ê is the formal group associated to E (cf. [Si,

IV Proposition 3.2]).

(i) If E has additive reduction at p, every element in Ẽns(Fp) ⊂ F+
p (cf. [Si,

VII Proposition 5.1]) has order that is a power of p. From the above exact

sequence, we see that the prime to p part of E(Q)tor has trivial intersection

with E0(Qp). Thus the prime to p part of E(Q)tor injects into E(Qp)/E0(Qp)

and the prime to p part of |E(Q)tor| divides mp = |E(Qp)/E0(Qp)|.

(ii) If E has multiplicative reduction at p, Ẽns(Fp) ⊂ F∗
p (cf. [Si, VII Propo-

sition 5.1]) is cyclic. Suppose p 6= 2. From the above exact sequence,

we see that Z/2Z ⊕ Z/2Z ⊆ E(Q) has proper intersection with E0(Qp),

i.e. Z/2Z⊕ Z/2Z 6⊆ E0(Qp). This implies that 2 | mp.

�
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Lemma 2.2. For λ ∈ Q, let Eλ be an elliptic curve defined by the Weier-

strass equation

Eλ : y2 + xy − λy = x3 − λx2, (1)

with discriminant ∆ = λ4(1+16λ) 6= 0. If p is a prime such that ordp λ > 0,

then Eλ has split multiplicative reduction of type I4ordp λ. So 4 | mp.

Proof. See [Si, Table 15.1] and the proof of [Lo, Proposition 2.4]. �

The following two lemmas are needed to find some special elliptic curves.

Lemma 2.3. Let u, v, w be positive integers and let p, q be odd primes. Then

the system of equations

2u + 1 = pv (resp. 2u − 1 = pv); 2u+1 + 1 = qw(resp. 2u+1 − 1 = qw) (2)

has no other solutions than

(p, q, u, v, w) = (3, 5, 1, 1, 1), (5, 3, 2, 1, 2) or (3, 17, 3, 2, 1) (resp. (p, q, u, v, w)

= (3, 7, 2, 1, 1)).

Proof. Note that the Mihilescu’s theorem (originally Catalan’s conjecture;

see e.g. [Mi]) says that when x, y, r, s > 1 are integers, the equation xr−ys =

1 has no other solutions than (x, y, r, s) = (3, 2, 2, 3). Then the assertion

follows by an easy case-by-case study using Mihilescu’s theorem and the fact

that the two expressions 2u + 1 (resp. 2u − 1) and 2u+1 + 1 (resp. 2u+1 − 1)

are both primes only when u = 1, 21 + 1 = 3 and 22 + 1 = 5 (resp. u = 2,

22 − 1 = 3, 23 − 1 = 7). �

Lemma 2.4. Let

g(α, β) := (4α− β)(4α + β) and f(α, β) := g(α, β)αβ,

let α and β be relatively prime positive integers such that one of the two is

a power of 2 and let S be the set of pairs (α, β) of such integers satisfying

one of the following conditions:

• there is at most one odd prime divisor in f(α, β),

• there are two distinct odd prime divisors in f(α, β), but g(α, β) has

at most one odd prime divisor, or

• there are three distinct odd prime divisors in f(α, β), but g(α, β) has

no odd prime divisors.
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Then S is a finite set:

S = {(1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (1, 8), (1, 12), (1, 20), (1, 28), (1, 36), (1, 68),

(2, 9), (3, 4), (3, 8), (3, 16), (5, 4), (5, 16), (7, 4), (9, 4), (9, 32), (17, 4)}.

Proof. Let (α, β) ∈ S. We see that one of |4α − β| and |4α + β| is a power

of 2.

Case 1. Assume α = 1, and let β > 4 (noting (1, β) ∈ S for β = 2, 3, 4).

Then |4∓ β| = 2n for some n ≥ 0 ⇐⇒ β = 2n ± 4 and |4± β| = |2n ± 8|.

We see that each of β and 4±β has an odd prime divisor except when β = 8

or β = 12, so (1, 8), (1, 12) ∈ S. Checking (1, 5), (1, 6) ∈ S, we let n ≥ 4.

Now we may assume that each of β and 4± β contains only one odd prime

divisor; we can write β = 2n ± 4 = 4(2n−2 ± 1) = 4ql for some odd prime q

and l > 0 and 4± β = ±2n + 8 = 8(±2n−3 + 1) = ±8pk for some odd prime

p 6= q and k > 0. By Lemma 2.3, this is possible only if β = 20, 28, 36 or 68.

Case 2. Assume α = 2n for some n ≥ 1. Then β must be odd. As in the

above Case, we have |4α− β| = 1 and so β = 2n+2 ± 1. Then 4α + β must

have an odd prime factor. In order to (α, β) ∈ S, we may assume that each

of β and 4α + β has at most one odd prime divisor. As β = 1 is absurd, we

write β = pl for some l ≥ 1 and 4α + β = 2n+3 ± 1 = qk for some k ≥ 1. By

Lemma 2.3, we then have (2, 9) ∈ S.

Case 3. Now suppose that β = 2n for some n ≥ 0. If |g(α, β)| is simply

a power of 2, then we can see α = 3 and β = 4, i.e. (3, 4) ∈ S. So assume

that g(α, β) has only one odd prime divisor. As one of |4α− β| or |4α + β|

is a power of 2, β 6= 1. So n ≥ 1 and α must be odd. As the case α = 1

was already dealt with in Case 1, we assume α has only one odd prime

divisor, i.e. α = pl for some odd prime p and l ≥ 1. Moreover we can

see that β = 2 is impossible in this case. Now suppose that β = 4. If

4α−β = 4(pl−1) = 2u+2 (resp. 4α+β = 4(pl +1) = 2u+2) with u ≥ 1, then

4α + β = 4(pl + 1) = 8(2u−1 + 1) (resp. 4α − β = 4(pl − 1) = 8(2u−1 − 1))

has at most one odd prime divisor only if α = 3, 5, 7, 9 or 17 by Lemma

2.3. Now assume β = 2n with n ≥ 3. then 4α + β cannot be a power of

2. However, |4α − β| is a power of 2 if and only if pl = α = 2n−2 ± 1. In
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this case 4α+β = 4(2n−1± 1) has at most one odd prime divisor only when

(α, β) = (3, 8), (5, 16), (9, 32) or (3, 16) by Lemma 2.3. �

3. Proof of Theorem 1.1

Proposition 3.1. Let E be an elliptic curve over Q with Z/2Z ⊕ Z/4Z ⊆

E(Q). Then 16 | m, except for ‘15a1’ having m = 8, ‘15a3’ having m = 4

and c = 2, ‘21a1’ with m = 8 and ‘24a1’ having m = 8. In any case we

have 8 | m · c.

Proof. Assume to the contrary that 16 does not divide m. Elliptic curves

E having Z/2Z ⊕ Z/4Z ⊆ E(Q) are parametrized by one parameter λ ∈ Q

with the Weierstrass equation (1), where λ is given by λ = (α/β)2− 1/16 =

(4α − β)(4α + β)/(16β2) for some relatively prime positive integers α and

β such that the discriminant of the equation ∆ = λ4(16λ + 1) 6= 0 (cf. [Ku,

Table 3]). In this case, the j-invariant of the curve is given by

j =
256α4 + 224α2β2 + β4

(4α− β)4(4α + β)4α2β2
.

We note that there is no cancellation by odd primes in this expression and

the equation (1) is minimal at any odd prime p dividing αβ(4α−β)(4α+β).

By Lemma 2.1 (resp. Lemma 2.2), any odd prime p dividing αβ (resp.

(4α − β)(4α + β)) contributes the Tamagawa number m =
∏

p mp of the

curve by 2 | mp (resp. 4 | mp). Hence, when one of α or β is a power

of 2, the pair (α, β) we need to consider is exactly contained in the set S

in Lemma 2.4. By computation, we can see that the only curves that are

obtained from the pair (α, β) ∈ S with 16 - m are ‘15a1’, ‘21a1’ and ‘24a1’,

all having m = 8 (cf. [Cr]).

Now the only remaining cases to consider is when the two relatively prime

positive integers α and β have at least one odd prime divisor each. We can

also assume that |(4α − β)(4α + β)| is a power of 2; write 4α + β = 2n for

some n ≥ 0 and 4α − β = ±2l for some l ≥ 0. Then 8α = 2n ± 2l and

2β = 2n ∓ 2l. As α, β > 0, we have n > l ≥ 3. Now β is divisible by 4 and

hence α is odd. So l = 3 and α = 2n−3 ± 1 and β = 4(2n−3 ∓ 1). When

n = 4, then we have (α, β) = (3, 4) or (1, 12), which are included in the set

S and computed already. When n = 5, we have (α, β) = (5, 12) or (3, 20),

both of which give the curve ‘15a3’ having m = 4 and c = 2 (cf. [Cr]).
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Assuming n ≥ 6, we get ord2 λ = n + l − 4 − 2ord2 β = n − 5 ≥ 1, so by

Lemma 2.2, 4 | m2. As each of odd prime factors of α and β contributes a

factor of 2, we have 16 | m. �

Proposition 3.2. Let E be an elliptic curve defined over Q with Z/2Z ⊕

Z/2Z ⊆ E(Q). Then 4 | m, except for ‘17a2’ and ‘32a2’. For these excep-

tions, we have m = c = 2.

Proof. Assume to the contrary that 4 does not divide m. Elliptic curves E

with Z/2Z⊕ Z/2Z ⊆ E(Q) have the following Weierstrass equation:

E : y2 = x(x + a)(x + b) (3)

with a, b ∈ Z and with discriminant ∆ = 16a2b2(a− b)2 6= 0 (cf. [Ku, Table

3]). We note that c4 = 16a2 − 16ab + 16b2.

By Lemma 2.1 (i), we know that all bad odd primes are multiplicative.

Suppose there is an odd prime p dividing both a and b. If ordp a and ordp b

are both ≥ 2, then the equation (3) can be reduced to the equation of the

same form with a and b replaced by a/p2 and b/p2. So we assume either

ordp a = 1 or ordp b = 1. If only one of ordp a and ordp b is equal to 1,

then ordp c4 = 2. So the equation (3) is minimal at p and E has additive

reduction modulo p. Suppose that ordp a = 1 and ordp b = 1. Write a = a′p

(p - a′) and b = b′p (p - b′). If p - (a′ − b′), then ordp ∆ = 6 and ordp c4 > 0.

So the equation (3) is minimal at p and E has additive reduction modulo p.

If p|(a′ − b′), then ordp c4 = ordp p2((a′ − b′)2 + a′b′) = 2. So the equation

(3) is minimal at p and E has additive reduction modulo p. Thus we can

assume that a, b and a − b are pairwise relatively prime away from 2. By

Lemma 2.1 (ii), we can further assume ab(a − b) contains at most one odd

prime factor.

Note that by changing variables of the equation (3) if necessary we may

assume at least one of a and b is not divisible by 4. Suppose that both a and

b do not have any odd prime factor. Then we can further assume b = ±1 or

±2. Write a = ±2n. If |a− b| is also a power of 2, then we have the curves

‘32a2’ (m = c = 2) and ‘64a1’ (m = 4) (cf. [Cr]). Suppose that a − b has

an odd prime divisor. We can readily check that ord2 j = 8− 2ord2 a when

b = ±1 and ord2 j = 10− 2ord2 a when b = ±2. If n ≥ 6, we have ord2 j < 0
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so E is potentially multiplicative modulo 2 (cf. [Si, VII Proposition 5.4 and

5.5]). Moreover, as ord2 j ∈ 2Z, m2 must be even in any cases (cf. [Si, Table

15.1]). If n < 6, we only have finitely many cases (a ∈ {±2n : 0 ≤ n < 6}

and b ∈ {±1,±2}). By computation, we can see that all of 4 | m, except for

‘17a2’, for which we have m = c = 2 (cf. [Cr]).

When a (resp. b) has an odd prime factor, the change of variables x′ = x+b

(resp. x′ = x + a) reduces this case into the cases we treated above. This

completes the proof. �

Proposition 3.3. Let E be an elliptic curve defined over Q with E(Q)[3] ∼=
Z/3Z. If PK has infinite order in E(K), then 3 | c ·m · uK · |III(E/K)|

1
2 .

Proof. The proof is exactly same as that of the proof of [BKY, Theorem

1.2]. �

Proof of Theorem 1.2. Theorem 1.1 follows from Proposition 3.1, 3.2 and

3.3. �
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