A CONJECTURE OF GROSS AND ZAGIER: CASE
E(Q)ior 2 Z/27 & 7.)27., 7./27. & ZJAZ OR Z)2Z & /67
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Abstract. Let E be an elliptic curve defined over QQ of conductor IV, ¢ the Manin
constant of E, and m the product of Tamagawa numbers of E at prime divisors
of N. Let K be an imaginary quadratic field where all prime divisors of N split
in K, Pk the Heegner point in E(K), and III(E/K) the Shafarevich-Tate group
of E over K. Let 2ui be the number of roots of unity contained in K. Gross
and Zagier conjectured that if Pk has infinite order in F(K), then the integer
¢-m-ug - [II(E/K)|2 is divisible by |E(Q)tor|. In this paper, we show that this
conjecture is true if E(Q)or 2 Z/27 $ Z/27., 7./27 & Z/AZ or Z./27 & Z]/6Z.

1. INTRODUCTION

Let E be an elliptic curve defined over QQ of conductor N, ¢ the Manin
constant of £ and m = Hp‘ N Mp, Where m,, is the Tamagawa number of
at a prime divisor p of N. Let K be an imaginary quadratic field where all
prime divisors of N split in K, Px the Heegner point in F(K) and III(E/K)
the Shafarevich-Tate group of E over K. Let 2ugx be the number of roots

of unity contained in K. In [GZ], Gross and Zagier conjectured

Conjecture. ([GZ, p. 311, (2.3) Conjecture]) If Pk has infinite order in
E(K), then the integer ¢-m - ug - |III(E/K)|% is divisible by |E(Q)tor|-

Rational torsion subgroups of elliptic curves F over Q are completely
classified by Mazur [Ma]: E(Q)tc is isomorphic to one of the following 15
groups:

Z/nZ for 1 <n <10, n =12,
Z/2Z®Z/nZ  for n = 2,4,6,8.

From [Lo, Proposition 1.1}, we know that the conjecture is true when
E(Q)tor is isomorphic to Z/nZ for 5 < n < 10, n = 12 or to Z/2Z & 7./8Z
(cf. [BKY, Theorem 1.1]). In [BKY, Theorem 1.2], we proved that the

conjecture is true when F(Q)oy is isomorphic to Z/3Z.
1
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So the only remaining cases for the validity of the conjecture are those
when E(Q)io is isomorphic to the following 5 groups: Z/2Z, Z/AZ, 7.]27 ®
Z)27, 2)27 & ZJAZ, and Z/27 @ 7/ 6Z.

In this paper, we prove the following theorem.

Theorem 1.1. Let E be an elliptic curve defined over Q such that E(Q)ior
is isomorphic to Z/2Z & L)27, L]27 & Z/AZ or /27 & 7/6Z. Then the

conjecture is true.

2. PRELIMINARIES

The following two lemmas are needed to compute the Tamagawa number

my, of I at a prime divisor p of N.

Lemma 2.1. (i) If E has additive reduction at p, then the prime to p part
of |[E(Q)tor| divides my.
(ii) Suppose that Z/2Z & Z/2Z C E(Q). If p # 2 is a prime at which E has

multiplicative reduction, then 2 | my,.
Proof. Consider the exact sequence (cf. [Si, VII Proposition 2.1])

0— El(@p) - EO(QP) - EHS(IFP) — 0.

We note that every element of finite order in E1(Q,) = E(pZ,) has order
that is a power of p, where F is the formal group associated to F (cf. [Si,
IV Proposition 3.2]).
(i) If E has additive reduction at p, every element in EHS(IFP) C E: (cf. [Si,
VII Proposition 5.1]) has order that is a power of p. From the above exact
sequence, we see that the prime to p part of E(Q)o, has trivial intersection
with Ey(Qp). Thus the prime to p part of E(Q)tor injects into £(Q))/Eo(Qy)
and the prime to p part of |[E(Q)ior| divides my, = [E(Qp)/Eo(Qp)].
(ii) If E has multiplicative reduction at p, E'ns(IE‘p) C ﬁ; (cf. [Si, VII Propo-
sition 5.1]) is cyclic. Suppose p # 2. From the above exact sequence,
we see that Z/2Z & Z/2Z C E(Q) has proper intersection with Ep(Qp),
ie Z/2Z & Z/27 ¢ Eo(Qp). This implies that 2 | m,.

O



A CONJECTURE OF GROSS AND ZAGIER 3

Lemma 2.2. For A € Q, let E) be an elliptic curve defined by the Weier-
strass equation

Ey vyt +xy— dy =2 — Ao, (1)
with discriminant A = X*(1+16)) # 0. If p is a prime such that ord, A > 0,

then E has split multiplicative reduction of type lyora, x- So 4 | mp.

Proof. See [Si, Table 15.1] and the proof of [Lo, Proposition 2.4]. O

The following two lemmas are needed to find some special elliptic curves.

Lemma 2.3. Let u, v, w be positive integers and let p, q be odd primes. Then

the system of equations
2U 41 =p" (resp. 2* — 1 =p"); 271 41 =¢%(resp. 2“7 —1=¢") (2)

has no other solutions than
(p’ Q7 u7 ’U7 w) = (37 57 17 ]‘? 1)7 (57 37 27 17 2) 07“ (37 17’ 37 27 1) (resp' (p’ Q7 u7 ’U7 w)
= (3,7,2,1,1)).

Proof. Note that the Mihilescu’s theorem (originally Catalan’s conjecture;
see e.g. [Mi]) says that when z,y, 7, s > 1 are integers, the equation z" —y* =
1 has no other solutions than (z,y,r,s) = (3,2,2,3). Then the assertion
follows by an easy case-by-case study using Mihilescu’s theorem and the fact
that the two expressions 2* + 1 (resp. 2% — 1) and 24" + 1 (resp. 2vT! — 1)
are both primes only when u = 1, 2! +1 =3 and 22+ 1 =5 (resp. u = 2,
22 -1=3,22-1=7). O

Lemma 2.4. Let

9(e, 8) = (4o = B)(4a+ B) and  f(a, B) := g(a, B)ap,

let a and B be relatively prime positive integers such that one of the two is
a power of 2 and let S be the set of pairs (a, 3) of such integers satisfying

one of the following conditions:

e there is at most one odd prime divisor in f(«, ),

e there are two distinct odd prime divisors in f(«, 3), but g(a, 3) has
at most one odd prime divisor, or

e there are three distinct odd prime divisors in f(a, 3), but g(c, 8) has

no odd prime divisors.
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Then S is a finite set:

S =1{(1,2),(1,3),(1,4),(1,5),(1,6),(1,8),(1,12), (1,20), (1, 28), (1, 36), (1, 68),

(2,9),(3,4),(3,8),(3,16),(5,4), (5,16),(7,4),(9,4),(9,32), (17,4) }.

Proof. Let (o, ) € S. We see that one of |[4a — 3] and |4 + (] is a power
of 2.

Case 1. Assume a = 1, and let 8 > 4 (noting (1,5) € S for 8 = 2,3,4).
Then |4 F | = 2" for some n >0 <= [F=2"+t4and [4+ 5] =|2" L8|
We see that each of # and 44 (3 has an odd prime divisor except when § = 8
or =12, s0 (1,8),(1,12) € S. Checking (1,5),(1,6) € S, we let n > 4.
Now we may assume that each of § and 4 + § contains only one odd prime
divisor; we can write § = 2" £4 = 4(2"2 £ 1) = 44 for some odd prime ¢
and [ > 0 and 44 3 = 42" +8 = 8(+£2" 3 + 1) = £8p* for some odd prime
p # q and k > 0. By Lemma 2.3, this is possible only if 5 = 20, 28, 36 or 68.

Case 2. Assume a = 2" for some n > 1. Then § must be odd. As in the
above Case, we have [4a — 3| = 1 and so 8 = 2"*2 4+ 1. Then 4a + 8 must
have an odd prime factor. In order to (a, 3) € S, we may assume that each
of # and 4o+ B has at most one odd prime divisor. As 0 = 1 is absurd, we
write 3 = p! for some [ > 1 and 4a + 3 = 2"T3 £ 1 = ¢* for some k > 1. By
Lemma 2.3, we then have (2,9) € S.

Case 3. Now suppose that § = 2" for some n > 0. If |g(a, 3)| is simply
a power of 2, then we can see a = 3 and [ = 4, i.e. (3,4) € S. So assume
that g(a, 3) has only one odd prime divisor. As one of |[4a — | or [4a + [
is a power of 2, 8 # 1. Son > 1 and o must be odd. As the case a = 1
was already dealt with in Case 1, we assume « has only one odd prime
divisor, i.e. & = p! for some odd prime p and I > 1. Moreover we can
see that 0 = 2 is impossible in this case. Now suppose that 6 = 4. If
4o—f3 = 4(pt —1) = 2+ (resp. 4a+ [ = 4(p' +1) = 2%*2) with u > 1, then
da+ B =4(p'+1) =8(2% 1 + 1) (resp. 4a — B =4(p' — 1) = 8(2v"1 — 1))
has at most one odd prime divisor only if « = 3,5,7,9 or 17 by Lemma
2.3. Now assume = 2" with n > 3. then 4« + (8 cannot be a power of
2. However, |[4a — f3] is a power of 2 if and only if p! = a =2"2+1. In
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this case 4o+ 3 = 4(2"~1 4 1) has at most one odd prime divisor only when

(o, 8) = (3,8),(5,16),(9,32) or (3,16) by Lemma 2.3. O
3. PROOF OoF THEOREM 1.1

Proposition 3.1. Let E be an elliptic curve over Q with Z/27 @ 7./AZ C
E(Q). Then 16 | m, except for ‘15al1’ having m = 8, ‘1543’ having m = 4
and ¢ = 2, ‘21al’ with m = 8 and ‘24al’ having m = 8. In any case we

have 8 | m - c.

Proof. Assume to the contrary that 16 does not divide m. Elliptic curves
E having Z/27 © 7./47 C E(Q) are parametrized by one parameter A € Q
with the Weierstrass equation (1), where X is given by A = (a/3)? —1/16 =
(4o — B) (4 + B)/(163?) for some relatively prime positive integers o and
3 such that the discriminant of the equation A = A (16 + 1) # 0 (cf. [Ku,
Table 3]). In this case, the j-invariant of the curve is given by

2560t + 2240252 + 4
(4a — B)4(4a + B)*a232”

We note that there is no cancellation by odd primes in this expression and

the equation (1) is minimal at any odd prime p dividing a5(4a — 3)(4da+ 3).

By Lemma 2.1 (resp. Lemma 2.2), any odd prime p dividing af (resp.
(4a — B)(4a + B)) contributes the Tamagawa number m = [],m, of the
curve by 2 | my, (resp. 4 | m,). Hence, when one of a or  is a power
of 2, the pair (a, ) we need to consider is exactly contained in the set S
in Lemma 2.4. By computation, we can see that the only curves that are
obtained from the pair (a, §) € S with 16 { m are ‘15al’, ‘21al’ and ‘24al’,
all having m = 8 (cf. [Cr]).

Now the only remaining cases to consider is when the two relatively prime
positive integers o and 3 have at least one odd prime divisor each. We can
also assume that |(4da — )(4da + )] is a power of 2; write 4o + 3 = 2" for
some n > 0 and 4o — B = +9! for some I > 0. Then 8a = 2" + 2! and
28=2"F2". As a,3 > 0, we have n > > 3. Now [ is divisible by 4 and
hence a is odd. Sol =3 and o = 2" 3 £ 1 and 3 = 4(2" 3 F 1). When
n = 4, then we have («a, 3) = (3,4) or (1,12), which are included in the set
S and computed already. When n = 5, we have (a, 3) = (5,12) or (3,20),
both of which give the curve ‘15a3’ having m = 4 and ¢ = 2 (cf. [Cr]).
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Assuming n > 6, we get ordo A =n—+1—4 —2ordof =n—5 > 1, so by
Lemma 2.2, 4 | mg. As each of odd prime factors of o and [ contributes a

factor of 2, we have 16 | m. O

Proposition 3.2. Let E be an elliptic curve defined over Q with Z/27 &
Z)27Z C E(Q). Then 4 | m, except for ‘1702’ and ‘32a2’. For these excep-

tions, we have m = c = 2.

Proof. Assume to the contrary that 4 does not divide m. Elliptic curves £

with Z/27Z @ Z /27 C E(Q) have the following Weierstrass equation:
E:y*=x(z+a)(x +D) (3)

with a,b € Z and with discriminant A = 16a%b*(a — b)? # 0 (cf. [Ku, Table
3]). We note that ¢4 = 16a® — 16ab + 16b%.

By Lemma 2.1 (i), we know that all bad odd primes are multiplicative.
Suppose there is an odd prime p dividing both a and b. If ord, a and ord, b
are both > 2, then the equation (3) can be reduced to the equation of the
same form with a and b replaced by a/p? and b/p?. So we assume either
ordpa = 1 or ord, b = 1. If only one of ord,a and ord, b is equal to 1,
then ord,cs = 2. So the equation (3) is minimal at p and E has additive
reduction modulo p. Suppose that ord, a =1 and ord, b = 1. Write a = da'p
(pta)and b="b'p (pt?d). If pf(a’ —¥'), then ord, A = 6 and ord, cq > 0.
So the equation (3) is minimal at p and E has additive reduction modulo p.
If p|(a’ — ¥'), then ord, ¢y = ord, p?((a’ — b')? + a’b’) = 2. So the equation
(3) is minimal at p and E has additive reduction modulo p. Thus we can
assume that a, b and a — b are pairwise relatively prime away from 2. By
Lemma 2.1 (ii), we can further assume ab(a — b) contains at most one odd
prime factor.

Note that by changing variables of the equation (3) if necessary we may
assume at least one of @ and b is not divisible by 4. Suppose that both a and
b do not have any odd prime factor. Then we can further assume b = +1 or
+2. Write a = £2". If |a — b| is also a power of 2, then we have the curves
‘32a2’ (m = ¢ = 2) and ‘64al’ (m = 4) (cf. [Cr]). Suppose that a — b has
an odd prime divisor. We can readily check that ordsj = 8 — 2ords a when

b= =41 and ords j = 10 — 20ordy a when b = +2. If n > 6, we have ordsj < 0
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so E is potentially multiplicative modulo 2 (cf. [Si, VII Proposition 5.4 and
5.5]). Moreover, as ordy j € 2Z, my must be even in any cases (cf. [Si, Table
15.1]). If n < 6, we only have finitely many cases (a € {£2" : 0 < n < 6}
and b € {£1,42}). By computation, we can see that all of 4 | m, except for
‘17a2’, for which we have m = ¢ =2 (cf. [Cr]).

When a (resp. b) has an odd prime factor, the change of variables 2’ = z+b
(resp. ' = = + a) reduces this case into the cases we treated above. This

completes the proof. O

Proposition 3.3. Let E be an elliptic curve defined over Q with E(Q)[3] =
Z/3Z. If Pk has infinite order in E(K), then 3| c-m - ug - ]III(E/K)\%

Proof. The proof is exactly same as that of the proof of [BKY, Theorem
1.2]. O

Proof of Theorem 1.2. Theorem 1.1 follows from Proposition 3.1, 3.2 and
3.3. O
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