RESTRICTION OF SCALARS AND CUBIC TWISTS OF ELLIPTIC CURVES

DONGHO BYEON, KEUNYOUNG JEONG AND NAYOUNG KIM

Abstract. Let K be a number field and L a finite abelian extension of K. Let E be an elliptic curve defined over K. The restriction of scalars $\operatorname{Res}_K^L E$ decomposes (up to isogeny) into abelian varieties over K

$$\operatorname{Res}_K^L E \sim \bigoplus_{F \in S} A_F,$$

where S is the set of cyclic extensions of K in L. It is known that if L is a quadratic extension, then A_L is the quadratic twist of E. In this paper, we consider the case that K is a number field containing a primitive third root of unity, $L = K(\sqrt[3]{D})$ is the cyclic cubic extension of K for some $D \in K^{\times}/(K^{\times})^3$, $E = E_a : y^2 = x^3 + a$ is an elliptic curve with j-invariant 0 defined over K, and $E_a^D : y^2 = x^3 + aD^2$ is the cubic twist of E_a . In this case, we prove A_L is isogenous over K to $E_a^D \times E_a^{D^2}$ and a property of the Selmer rank of A_L , which is a cubic analogue of a theorem of Mazur and Rubin on quadratic twists.

1. Introduction

Let K be a number field and L a finite abelian extension of K. Let E be an elliptic curve defined over K. The restriction of scalars $\operatorname{Res}_K^L E$ (for the definition, see §2) of E from L to K decomposes (up to isogeny) into abelian varieties over K

$$\operatorname{Res}_K^L E \sim \bigoplus_{F \in S} A_F,$$

where S is the set of cyclic extensions of K in L (for details, see §2 or [MR, §3]).

In [MR], Mazur and Rubin studied the Selmer rank of E/L by using the Selmer ranks of A_F . In [MR1], as an application to the simplest case that L is a quadratic extension, they obtained many remarkable results on the Selmer rank of E/L. We note that if L is a quadratic extension, then A_L is the quadratic twist of E (for an example of the proof, see [S, §2.1.2 and §2.2.2]).

In this paper, we consider the next simple case that K is a number field containing a primitive third root of unity, $L = K(\sqrt[3]{D})$ is the cyclic cubic extension of K for some $D \in K^{\times}/(K^{\times})^3$ and $E = E_a : y^2 = x^3 + a$ is an elliptic curve with j-invariant 0 defined over K. In this case, we prove the following theorem.

Theorem 1.1. Let K be a number field containing a primitive third root of unity and $L = K(\sqrt[3]{D})$ the cyclic cubic extension of K for some $D \in K^{\times}/(K^{\times})^3$. Let $E = E_a : y^2 = x^3 + a$ be an elliptic curve with j-invariant 0 defined over K and $E_a^D : y^2 = x^3 + aD^2$ the cubic twist of E_a . Then A_L is isogenous over K to $E_a^D \times E_a^{D^2}$.

Let $G := \operatorname{Gal}(L/K)$ be the Galois group L over K. If $F \in S$, let ρ_F be the unique faithful irreducible rational representation of $\operatorname{Gal}(F/K)$. Since the correspondence $F \leftrightarrow \rho_F$ is a bijection between S and the set of irreducible rational representations of G, the semisimple group ring $\mathbb{Q}[G]$ decomposes

$$\mathbb{Q}[G] \cong \bigoplus_{F \in S} \mathbb{Q}[G]_F,$$

where $\mathbb{Q}[G]_F$ is the ρ_F -isotypic component of $\mathbb{Q}[G]$. As a field, $\mathbb{Q}[G]_F$ is isomorphic to the cyclotomic field of [F:K]-th roots of unity.

Suppose that L is a cyclic extension of K with a prime degree p. Since $\mathbb{Q}[G]_L$ is isomorphic to the p-th cyclotomic field, the maximal order of $\mathbb{Q}[G]_L$ has the unique prime ideal above p, which we denote by \mathfrak{p} . Let $\mathrm{Sel}_p(E/K)$ be the p-Selmer group of E/K and $\mathrm{Sel}_{\mathfrak{p}}(A_L/K)$ the \mathfrak{p} -Selmer group of A_L/K (see §2 for the definitions). Define the Selmer ranks

$$d_p(E/K) := \dim_{\mathbb{F}_p} \mathrm{Sel}_p(E/K),$$

$$d_{\mathfrak{p}}(A_L/K) := \dim_{\mathbb{F}_p} \mathrm{Sel}_{\mathfrak{p}}(A_L/K).$$

In our case, we prove the following theorem on the Selmer rank of A_L , which is a cubic analogue of [MR1, Theorem 1.4] on quadratic twists.

Theorem 1.2. Let K be a number field containing a primitive third root of unity, $L = K(\sqrt[3]{D})$ the cyclic cubic extension of K for some $D \in K^{\times}/(K^{\times})^3$ and $\mathfrak{f}(L/K)$ the conductor of L/K. Let $E = E_a : y^2 = x^3 + a$ be an elliptic curve with j-invariant 0 defined over K. If $d_3(E_a/K) = r$ and $E_a(K)[3] = 0$,

then

$$|\{L = K(\sqrt[3]{D}) : d_{\mathfrak{p}}(A_L/K) = r \text{ and } N_{K/\mathbb{Q}}\mathfrak{f}(L/K) < X\}| \gg \frac{X}{(\log X)^{5/6}}.$$

2. Preliminaries

Let L be a finite abelian extension of a number field K with Galois group $G := \operatorname{Gal}(L/K)$. Let \overline{K} be an algebraic closure of K with Galois group $G_K := \operatorname{Gal}(\overline{K}/K)$. Let E be an elliptic curve defined over K. Then the definition of the restriction of scalars ([W, §1.3] or [S, Definition 2.2]) of E from E to E is following.

Definition 2.1. The restriction of scalars of E from L to K, denoted by $\operatorname{Res}_K^L E$, is a commutative algebraic group over K along with a homomorphism

$$\eta_{L/K}: \mathrm{Res}_K^L E \to E$$

defined over L, with the universal property that for every variety X over K, the map

$$\operatorname{Hom}_K(X,\operatorname{Res}_K^L E) \to \operatorname{Hom}_L(X,E)$$
 defined by $f \mapsto \eta_{L/K} \circ f$

is an isomorphism.

Suppose \mathcal{I} is a free \mathbb{Z} -module of finite rank with a continuous right action of G_K and there is a ring homomorphism $\mathbb{Z} \to \operatorname{End}_K(E)$. A twist of a power of E denoted by $\mathcal{I} \otimes_{\mathbb{Z}} E$ is defined in [MRS, Definition 1.1].

Definition 2.2. Let $s := \operatorname{rank}_{\mathbb{Z}}(\mathcal{I})$ and fix an \mathbb{Z} -module isomorphism $j : \mathbb{Z}^s \xrightarrow{\sim} \mathcal{I}$. Let $c_{\mathcal{I}} \in H^1(K, \operatorname{Aut}_{\bar{K}}(E^s))$ be the image of the cocycle $(\gamma \mapsto j^{-1} \circ j^{\gamma})$ under the composition

$$H^1(K,\operatorname{GL}_s(\mathbb{Z})) \to H^1(K,\operatorname{Aut}_K(E^s)) \to H^1(K,\operatorname{Aut}_{\bar{K}}(E^s))$$

induced by the homomorphism $\mathbb{Z} \to \operatorname{End}_K(E)$. Define $\mathcal{I} \otimes_{\mathbb{Z}} E$ to be the twist of E^s by the cocycle $c_{\mathcal{I}}$, i.e., $\mathcal{I} \otimes_{\mathbb{Z}} E$ is the unique commutative algebraic group over K with an isomorphism $\phi : E^s \xrightarrow{\sim} \mathcal{I} \otimes_{\mathbb{Z}} E$ defined over \overline{K} such that for every $\gamma \in G_K$,

$$c_{\mathcal{I}}(\gamma) = \phi^{-1} \circ \phi^{\gamma}.$$

Definition 2.3. For every cyclic extension F of K in L, define

$$\mathcal{I}_F := \mathbb{Q}[G]_F \cap \mathbb{Z}[G] \quad and \quad A_F := \mathcal{I}_F \otimes_{\mathbb{Z}} E.$$

We note that $A_K = E$ and $\operatorname{Res}_K^L(E)$ is isogenous to $\bigoplus_{F \in S} A_F$ by [MR, Theorem 3.5].

From the universal property of $\operatorname{Res}_K^L E$, for each $\sigma \in G$, there is

$$\sigma_{L/K,E} \in \operatorname{Hom}_K(\operatorname{Res}_K^L E, \operatorname{Res}_K^L E)$$

such that $\eta_{L/K} \circ \sigma_{L/K,E} = \eta_{L/K}^{\sigma}$. So we have the following ring homomorphism

$$\theta_E: \mathbb{Z}[G] \to \operatorname{End}_K(\operatorname{Res}_K^L E) \ \text{ defined by } \ \alpha = \sum_{\sigma \in G} a_\sigma \, \sigma \mapsto a_\sigma \, \sigma_{L/K,E}.$$

We denote $\theta_E(\alpha)$ by $\alpha_E \in \operatorname{End}_K(\operatorname{Res}_K^L E)$.

Proposition 2.4. ([MRS, Proposition 4.2 (i)]) If $\mathbb{Z}[G]/\mathcal{I}$ is a projective \mathbb{Z} -module, then

$$\mathcal{I} \otimes_{\mathbb{Z}} E = \bigcap_{\alpha \in \mathcal{I}^{\perp}} \ker (\alpha_E : \operatorname{Res}_K^L E \to \operatorname{Res}_K^L E),$$

where \mathcal{I}^{\perp} is the ideal of $\mathbb{Z}[G]$ defined by $\mathcal{I}^{\perp} := \{\alpha \in \mathbb{Z}[G] : \alpha \mathcal{I} = 0\}.$

Lemma 2.5. ([MRS, Lemma 5.4 (i)]) Let F/K is cyclic of degree n with a generator σ , then

$$\mathcal{I}_F = \Psi_n(\sigma) \, \mathbb{Z}[G] \quad and \quad \mathcal{I}_F^{\perp} = \Phi_n(\sigma) \, \mathbb{Z}[G],$$

where $\Phi_n \in \mathbb{Z}[x]$ is the n-th cyclotomic polynomial and $\Psi_n(x) = (x^n - 1)/\Phi_n(x) \in \mathbb{Z}[x]$.

Suppose that L is a cyclic extension of K with a prime degree p and \mathfrak{p} is the unique prime ideal of $\mathbb{Q}[G]_L$ above p.

Definition 2.6. For every prime v of K, let $H^1_{\mathcal{E}}(K_v, E[p])$ denote the image of the Kummer injection

$$E(K_v)/pE(K_v) \hookrightarrow H^1(K_v, E[p])$$

and let $H^1_{\mathcal{A}}(K_v, A_L[\mathfrak{p}])$ denote the image of the Kummer injection

$$A_L(K_v)/\mathfrak{p}A_L(K_v) \hookrightarrow H^1(K_v, A_L[\mathfrak{p}]).$$

Definition 2.7. Define the Selmer groups

$$\operatorname{Sel}_{p}(E/K) := \ker \left(H^{1}(K, E[p]) \longrightarrow \bigoplus_{v} H^{1}(K_{v}, E[p]) / H^{1}_{\mathcal{E}}(K_{v}, E[p]) \right) \text{ and}$$

$$\operatorname{Sel}_{\mathfrak{p}}(A_{L}/K) := \ker \left(H^{1}(K, A_{L}[\mathfrak{p}]) \longrightarrow \bigoplus_{v} H^{1}(K_{v}, A_{L}[\mathfrak{p}]) / H^{1}_{\mathcal{A}}(K_{v}, A_{L}[\mathfrak{p}]) \right).$$

We note that there is a natural identification of G_K -modules $E[p] = A_L[\mathfrak{p}]$ inside $\operatorname{Res}_K^L E$ (cf. [MR, Proposition 4.1] and [MR, Remark 4.2]).

Definition 2.8. For every prime v of K, define

$$\delta_v(E, L/K) := \dim_{\mathbb{F}_p} \left(H^1_{\mathcal{E}}(K_v, E[p]) / H^1_{\mathcal{E} \cap \mathcal{A}}(K_v, E[p]) \right),$$
where $H^1_{\mathcal{E} \cap \mathcal{A}}(K_v, E[p]) := H^1_{\mathcal{E}}(K_v, E[p]) \cap H^1_{\mathcal{A}}(K_v, E[p]).$

Proposition 2.9. ([MR, Corollary 4.6]) Suppose that S is a set of primes of K containing all primes above p, all primes ramified in L/K, and all primes where E has bad reduction. Then

$$d_p(E/K) \equiv d_p(A_L/K) + \sum_{v \in S} \delta_v(E, L/K) \pmod{2}.$$

3. Proof of Theorem 1.1

For the rest of this paper, let K be a number field containing a primitive third root of unity ω , $L = K(\sqrt[3]{D})$ the cyclic cubic extension of K for some $D \in K^{\times}/(K^{\times})^3$, $E_a: y^2 = x^3 + a$ an elliptic curve with j-invariant 0 defined over K, and $E_a^D: y^2 = x^3 + aD^2$ the cubic twist of E_a .

Proposition 3.1. If we define isomorphisms over L

$$\phi_1: E_a \xrightarrow{\sim} E_a^D \ by \ (x,y) \mapsto (D^{\frac{2}{3}}x, Dy),$$
$$\phi_2: E_a \xrightarrow{\sim} E_a^{D^2} \ by \ (x,y) \mapsto (D^{\frac{4}{3}}x, D^2y),$$

and G_K -invariant subgroup of $E_a \times E_a^D \times E_a^{D^2}$

$$T_a^L := \langle \{ (P, \phi_1(P), \phi_2(P))^{\gamma} \in E_a \times E_a^D \times E_a^{D^2} | 3P = 0, \ \gamma \in G_K \} \rangle,$$

then

$$\operatorname{Res}_K^L E_a = (E_a \times E_a^D \times E_a^{D^2})/T_a^L$$

with the following homomorphisms

$$\eta_{L/K}: (E_a \times E_a^D \times E_a^{D^2})/T_a^L \to E_a \text{ defined by } (P, Q, R) \mapsto P + \phi_1^{-1}(Q) + \phi_2^{-1}(R).$$

Proof. We will show that $(E_a \times E_a^D \times E_a^{D^2})/T_a^L$ satisfies the universal property of $\operatorname{Res}_K^L E_a$ with $\eta_{L/K}$ in Definition 2.1. Suppose X is a variety over K and $\varphi \in \operatorname{Hom}_L(X, E_a)$. Let $[3]^{-1} : E_a \to E_a/E_a[3]$ be the inverse map of the induced isomorphism from multiplication by 3, let

$$\lambda: E_a/E_a[3] \to (E_a \times E_a^D \times E_a^D^2)/T_a^L \text{ defined by } P \mapsto \left(P, \phi_1(P), \phi_2(P)\right) (\text{mod } T_a^L),$$
and let σ be the generator of $\text{Gal}(L/K)$ which maps $\sqrt[3]{D}$ to $\sqrt[3]{D} \omega$. Define
$$\tilde{\varphi} := \lambda \circ [3]^{-1} \circ \varphi + (\lambda \circ [3]^{-1} \circ \varphi)^{\sigma} + (\lambda \circ [3]^{-1} \circ \varphi)^{\sigma^2} \in \text{Hom}_K(X, (E_a \times E_a^D \times E_a^D^2)/T_a^L).$$

Then we have

$$\begin{split} \eta_{L/K} \circ \ \lambda \circ [3]^{-1} \circ \varphi &= \varphi, \\ \eta_{L/K} \circ (\lambda \circ [3]^{-1} \circ \varphi)^{\sigma} &= 0 \quad \text{(because } \phi_1^{\sigma} = [\omega] \phi_1, \ \phi_2^{\sigma} = [\omega]^2 \phi_2 \\ &\quad \text{and } [1] + [\omega] + [\omega]^2 = [0]), \\ \eta_{L/K} \circ (\lambda \circ [3]^{-1} \circ \varphi)^{\sigma^2} &= 0 \quad \text{(by the same reason)}, \end{split}$$

where $[\omega]: (x,y) \mapsto (\omega^2 x, y)$ is an endomorphism of E_a , E_a^D , and $E_a^{D^2}$. Thus $\eta_{L/K} \circ \tilde{\varphi} = \varphi$.

For any $(P,Q,R) \in (E_a \times E_a^D \times E_a^{D^2})/T_a^L$, we have

$$(P,Q,R) \qquad \stackrel{\eta_{L/K}}{\longmapsto} \qquad \qquad P + \phi_1^{-1}(Q) + \phi_2^{-1}(R)$$

$$\stackrel{[3]^{-1}}{\longmapsto} \qquad \qquad P' + \phi_1^{-1}(Q') + \phi_2^{-1}(R')$$

$$\stackrel{\lambda}{\longmapsto} \qquad \qquad (P' + \phi_1^{-1}(Q') + \phi_2^{-1}(R'),$$

$$\phi_1(P') + Q' + \phi_1(\phi_2^{-1}(R')),$$

$$\phi_2(P') + \phi_2(\phi_1^{-1}(Q')) + R') \pmod{T_a^L},$$

$$(P,Q,R) \xrightarrow{(\lambda \circ [3]^{-1} \circ \eta_{L/K})^{\sigma}} (P' + [\omega]^{2} \phi_{1}^{-1}(Q') + [\omega] \phi_{2}^{-1}(R'),$$

$$[\omega] \phi_{1}(P') + Q' + [\omega]^{2} \phi_{1}(\phi_{2}^{-1}(R')),$$

$$[\omega]^{2} \phi_{2}(P') + [\omega] \phi_{2}(\phi_{1}^{-1}(Q')) + R') \pmod{T_{a}^{L}},$$

$$\begin{array}{ccc} (P,Q,R) & \stackrel{(\lambda \circ [3]^{-1} \circ \eta_{L/K})^{\sigma^2}}{\longmapsto} & \left(P' + [\omega]\phi_1^{-1}(Q') + [\omega]^2\phi_2^{-1}(R'), \\ & [\omega]^2\phi_1(P') + Q' + [\omega]\phi_1(\phi_2^{-1}(R')), \\ & [\omega]\phi_2(P') + [\omega]^2\phi_2(\phi_1^{-1}(Q')) + R'\right) & (\operatorname{mod} \, T_a^L), \end{array}$$

where P' (resp. Q', R') is an element satisfying [3]P' = P (resp. [3]Q' = Q, [3]R' = R). So

$$(\lambda \circ [3]^{-1} \circ \eta_{L/K}) + (\lambda \circ [3]^{-1} \circ \eta_{L/K})^{\sigma} + (\lambda \circ [3]^{-1} \circ \eta_{L/K})^{\sigma^2} = id.$$

Hence for every $f \in \operatorname{Hom}_K(X, (E_a \times E_a^D \times E_a^{D^2})/T_a^L)$, we have

$$(\eta_{L/K} \circ f)$$
= $(\lambda \circ [3]^{-1} \circ \eta_{L/K} \circ f) + (\lambda \circ [3]^{-1} \circ \eta_{L/K} \circ f)^{\sigma} + (\lambda \circ [3]^{-1} \circ \eta_{L/K} \circ f)^{\sigma^{2}}$
= $(\lambda \circ [3]^{-1} \circ \eta_{L/K}) \circ f + (\lambda \circ [3]^{-1} \circ \eta_{L/K})^{\sigma} \circ f + (\lambda \circ [3]^{-1} \circ \eta_{L/K})^{\sigma^{2}} \circ f$
= f .

Thus the map

 $\operatorname{Hom}_K\left(X,(E_a\times E_a^D\times E_a^{D^2})/T_a^L\right)\to \operatorname{Hom}_L(X,E_a)$ defined by $f\mapsto \eta_{L/K}\circ f$ is an isomorphism.

Proposition 3.2. Let $A_L = \mathcal{I}_L \otimes_{\mathbb{Z}} E_a$ in Definition 2.3. Then there is a surjective morphism over K with a finite kernel

$$\theta: E_a^D \times E_a^{D^2} \to A_L.$$

Proof. We continue the notations K, L, σ , E_a , E_a^D , T_a^L , $\eta_{L/K}$, $\widetilde{\cdot}$ in Proposition 3.1 and its proof. Recall that $\operatorname{Res}_K^L E_a$ is $(E_a \times E_a^D \times E_a^{D^2}) / T_a^L$ with the homomorphism $\eta_{L/K}$. Note that for the $\sigma \in \operatorname{Gal}(L/K)$, its induced endomorphism $\sigma_{E_a} \in \operatorname{End}_K(\operatorname{Res}_K^L E_a)$ is precisely

$$\sigma_{E_a}(P, Q, R) = \widetilde{\eta_{L/K}^{\sigma}}(P, Q, R) = (P, [\omega]^2 Q, [\omega] R),$$

and hence $\Phi_3(\sigma)_{E_a}$ is given by

$$\Phi_3(\sigma)_{E_a}(P,Q,R) = (\sigma^2 + \sigma + 1)_{E_a}(P,Q,R) = (3P, 0, 0).$$

Thus by Proposition 2.4 and Lemma 2.5, we have

$$A_{L} := \mathcal{I}_{L} \otimes_{\mathbb{Z}} E_{a} = \ker \left(\Phi_{3}(\sigma)_{E_{a}} : \operatorname{Res}_{K}^{L} E_{a} \to \operatorname{Res}_{K}^{L} E_{a} \right)$$

$$= \left\{ (P, Q, R) \in \left(E_{a} \times E_{a}^{D} \times E_{a}^{D^{2}} \right) / T_{a}^{L} \mid (3P, 0, 0) \equiv (0, 0, 0) \pmod{T_{a}^{L}} \right\}$$

$$= \left\{ (P, Q, R) \in \left(E_{a} \times E_{a}^{D} \times E_{a}^{D^{2}} \right) / T_{a}^{L} \mid P \in E_{a}[3] \right\}.$$

Define

$$\theta: E_a^D \times E_a^{D^2} \to A_L$$
 by $(Q, R) \mapsto (0, Q, R)$.

Then θ is a morphism over K with s finite kernel. For $(P,Q,R) \in A_L$,

$$(P, Q, R) = (P, \phi_1(P), \phi_2(P)) + (0, Q - \phi_1(P), R - \phi_2(P))$$
$$\equiv (0, Q - \phi_1(P), R - \phi_2(P)) \pmod{T_a^L}.$$

Thus θ is surjective.

Proof of Theorem 1.1. It follows from Proposition 3.1.

4. Proof of Theorem 1.2

To compare $d_3(E_a/K)$ and $d_{\mathfrak{p}}(A_L/K)$, we apply [MR1, §2 and §3] to our case. By [MR, Proposition 5.2], we have the following lemma which is same to [MR1, Lemma 2.9].

Lemma 4.1. Let v be a prime of K, w a prime of L above v and N_{L_w/K_v} : $E_a(L_w) \to E_a(K_v)$ the norm map. Under the isomorphism $H^1_{\mathcal{E}}(K_v, E_a[3]) \cong E_a(K_v)/3E_a(K_v)$, we have

$$H^1_{\mathcal{E} \cap \mathcal{A}}(K_v, E_a[3]) \cong N_{L_w/K_v} E_a(L_w)/3E_a(K_v).$$

Remark. In [MR1, Definition 2.6], $\delta_v(E, L/K)$ is defined by

$$\dim_{\mathbb{F}_n} E(K_v)/N_{L_w/K_v} E(L_w),$$

where p=2. By Lemma 4.1, [MR1, Definition 2.6] is same to Definition 2.8 for our case.

By Lemma 4.1, we have the following lemmas which are similar to [MR1, Lemma 2.10] and [MR1, Lemma 2.11].

Lemma 4.2. Let Δ_{E_a} be the discriminant of E_a . If at least one of the following conditions (i)-(iv) holds:

- (i) v splits in L/K,
- (ii) $v \nmid 3\infty$ and $E_a(K_v)[3] = 0$,
- (iii) v is real and $(\Delta_{E_a})_v < 0$,
- (iv) v is a prime where E_a has good reduction and v is unramified in L/K, then $H^1_{\mathcal{E}}(K_v, E_a[3]) = H^1_{\mathcal{A}}(K_v, E_a[3])$ and $\delta_v(E_a, L/K) = 0$.

Proof. See the proof of [MR1, Lemma 2.10].

Lemma 4.3. If $v \nmid 3\infty$, E_a has good reduction at v and v is ramified in L/K, then

$$H^1_{\mathcal{E} \cap A}(K_v, E_a[3]) = 0$$
 and $\delta_v(E_a, L/K) = \dim_{\mathbb{F}_3}(E_a(K_v)[3]).$

Proof. See the proof of [MR1, Lemma 2.11].

By Proposition 2.9, Lemma 4.2, and Lemma 4.3, we have the following proposition which is similar to [MR1, Proposition 3.3].

Proposition 4.4. Suppose that all of the following primes split in L/K:

- all primes where E_a has bad reduction,
- all primes above 3,
- all real places v with $(\Delta_{E_a})_v > 0$.

Let \mathcal{T} be the set of (finite) primes \mathfrak{q} of K such that L/K is ramified at \mathfrak{q} and $E_a(K_{\mathfrak{q}})[3] \neq 0$. Let

$$loc_{\mathcal{T}}: H^1(K, E_a[3]) \to \bigoplus_{\mathfrak{q} \in \mathcal{T}} H^1(K_{\mathfrak{q}}, E_a[3])$$

and

$$V_T := \mathrm{loc}_{\mathcal{T}}(\mathrm{Sel}_3(E_a/K)) \subset \bigoplus_{\mathfrak{q} \in \mathcal{T}} H^1_{\mathcal{E}}(K_{\mathfrak{q}}, E_a[3]).$$

Then we have

$$d_{\mathfrak{p}}(A_L/K) = d_3(E_a/K) - \dim_{\mathbb{F}_3} V_{\mathcal{T}} + d$$

for some d satisfying

$$0 \le d \le \dim_{\mathbb{F}_3} \left(\bigoplus_{\mathfrak{q} \in \mathcal{T}} H^1_{\mathcal{E}}(K_{\mathfrak{q}}, E_a[3]) / V_{\mathcal{T}} \right) \quad and$$
$$d \equiv \dim_{\mathbb{F}_3} \left(\bigoplus_{\mathfrak{q} \in \mathcal{T}} H^1_{\mathcal{E}}(K_{\mathfrak{q}}, E_a[3]) / V_{\mathcal{T}} \right) \pmod{2}.$$

Proof. Define strict and relaxed 3-Selmer groups $\mathcal{S}_{\mathcal{T}} \subset \mathcal{S}^{\mathcal{T}} \subset H^1(K, E_a[3])$ by the exactness of

$$0 \to \mathcal{S}^{\mathcal{T}} \to H^1(K, E_a[3]) \to \bigoplus_{\mathfrak{q} \notin \mathcal{T}} H^1(K_{\mathfrak{q}}, E_a[3]) / H^1_{\mathcal{E}}(K_{\mathfrak{q}}, E_a[3]) \text{ and}$$

$$0 \to \mathcal{S}_{\mathcal{T}} \to \mathcal{S}^{\mathcal{T}} \longrightarrow \bigoplus_{\mathfrak{q} \in \mathcal{T}} H^1(K_{\mathfrak{q}}, E_a[3]).$$

Then we have $\mathcal{S}_{\mathcal{T}} \subset \operatorname{Sel}_p(E_a/K) \subset \mathcal{S}^{\mathcal{T}}$. By Lemma 4.2 we also have $\mathcal{S}_{\mathcal{T}} \subset \operatorname{Sel}_{\mathfrak{p}}(A_L/K) \subset \mathcal{S}^{\mathcal{T}}$ and by Lemma 4.3 we have $\operatorname{Sel}_p(E_a/K) \cap \operatorname{Sel}_{\mathfrak{p}}(A_L/K) = \mathcal{S}_{\mathcal{T}}$.

Let $V_T^L := \operatorname{loc}_{\mathcal{T}}(\operatorname{Sel}_{\mathfrak{p}}(A_L/K)) \subset \bigoplus_{\mathfrak{q} \in \mathcal{T}} H^1_{\mathcal{A}}(K_{\mathfrak{q}}, E_a[3])$ and $d := \dim_{\mathbb{F}_3} V_T^L$. Then the theorem follows from the same argument in the proof of [MR1, Proposition 3.3].

By Proposition 4.4, we have the following proposition which is similar to [MR1, Corollary 3.4].

Proposition 4.5. Suppose $E_a, L/K$, and T are as in Proposition 4.4.

(a) If
$$\dim_{\mathbb{F}_p}(\bigoplus_{\mathfrak{q}\in\mathcal{T}} H^1_{\mathcal{E}}(K_{\mathfrak{q}}, E_a[3])/V_{\mathcal{T}}) \leq 1$$
, then

$$d_{\mathfrak{p}}(A_L/K) = d_p(E_a/K) - 2\dim_{\mathbb{F}_p} V_{\mathcal{T}} + \sum_{\mathfrak{q} \in \mathcal{T}} \dim_{\mathbb{F}_p} H^1_{\mathcal{E}}(K_{\mathfrak{q}}, E_a[3]).$$

(b) If
$$E(K_{\mathfrak{q}})[3] = 0$$
 for every $\mathfrak{q} \in \mathcal{T}$, then $d_{\mathfrak{p}}(A_L/K) = d_3(E_a/K)$.

Proof. For (a), see the proof of [MR1, Corollary 3.4 (i)]. (b) follows from (a) because \mathcal{T} is empty in this case.

Let $M := K(E_a[3])$ and \mathfrak{S} be the set of elements of order 2 in Gal(M/K).

Lemma 4.6. Suppose that $E_a(K)[3] = 0$. Then $Gal(M/K) \cong \mathbb{Z}/2\mathbb{Z}$ or $\mathbb{Z}/6\mathbb{Z}$, depending on whether $K \ni \sqrt[3]{-4a}$ or not, so $|\mathfrak{S}| = 1$.

Proof. The lemma follows from

$$E_a[3] = \{O, (0, \pm \sqrt{a}), (\sqrt[3]{-4a}, \pm \sqrt{-3a}), (\sqrt[3]{-4a}\omega, \pm \sqrt{-3a}), (\sqrt[3]{-4a}\omega^2, \pm \sqrt{-3a})\}.$$

Let $N := K(27\Delta_{E_a}\infty)$ be the ray class field of K modulo $27\Delta_{E_a}$ and all infinite primes. Define a set of primes of K

$$\mathcal{P} := \{v : v \text{ is unramified in } NM/K \text{ and } \operatorname{Frob}_v(M/K) \subset \mathfrak{S}\},$$

where $\operatorname{Frob}_v(M/K)$ denotes the Frobenius conjugacy class of v in $\operatorname{Gal}(M/K)$, and two sets of ideals $\mathcal{N}_1 \subset \mathcal{N}$ of K

$$\mathcal{N} := \{ \mathfrak{a} : \mathfrak{a} \text{ is a cubefree product of primes in } \mathcal{P} \},$$

$$\mathcal{N}_1 := \{ \mathfrak{a} \in \mathcal{N} : [\mathfrak{a}, N/K] = 1 \},$$

where $[\cdot, N/K]$ denotes the global Artin symbol.

Lemma 4.7. [MR1, Lemma 4.1] There is a constant c such that

$$|\{\mathfrak{a} \in \mathcal{N}_1: N_{K/\mathbb{Q}}\mathfrak{a} < X\}| = (c+o(1))\frac{X}{(\log X)^{1-|\mathfrak{S}|/[M:K]}}.$$

Proposition 4.8. Suppose that $E_a(K)[3] = 0$. For $\mathfrak{a} \in \mathcal{N}_1$, there is a cyclic cubic extension L/K of conductor \mathfrak{a} such that $d_{\mathfrak{p}}(A_L/K) = d_3(E_a/K)$.

Proof. Fix $\mathfrak{a} \in \mathcal{N}_1$. Then \mathfrak{a} is principal, with a totally positive generator $\alpha \equiv 1 \pmod{27\Delta_{E_a}}$. Let $L := K(\sqrt[3]{\alpha})$. Then all primes above 3, all primes of bad reduction, and all infinite primes split in L/K. If v ramifies in L/K then $v|\mathfrak{a}$, so $v \in \mathcal{P}$. Thus the Frobenius of v in Gal(M/K) has order 2, which shows that $E_a(K_v)[3] = 0$. Now the proposition follows from Proposition 4.5 (b).

Proof of Theorem 1.2. It follows from Lemma 4.6, Lemma 4.7 and Proposition 4.8. \Box

References

- [MR] B. Mazur, K. Rubin, Finding large Selmer rank via an arithmetic theory of local constants, Annals of Math. 166 (2007), 579-612.
- [MR1] B. Mazur, K. Rubin, Ranks of twists of elliptic curves and Hilbert's tenth problem, Invent. Math. 181 (2010), 541-575.
- [MRS] B. Mazur, K. Rubin, A. Silverberg, Twisting commutative algebraic groups, Journal of Algebra 314 (2007), 419-438.
- [S] A. Silverberg, Applications to cryptography of twisting commutative algebraic groups, Discrete Appl. Math. 156 (2008), 3122-3138.
- [W] A. Weil, Adeles and Algebraic Groups, Progress in Math. vol. 23, Birkhäuser, Boston, 1982.

Department of Mathematical Sciences,

Seoul National University, Seoul, Korea

E-mail: dhbyeon@snu.ac.kr

Department of Mathematical Sciences,

Ulsan National Institute of Science and Technology, Ulsan, Korea

E-mail: kyjeong@unist.ac.kr

Department of Mathematical Sciences,

Seoul National University, Seoul, Korea

E-mail: na0@snu.ac.kr