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Abstract. Let K be a number field and L a finite abelian extension of K. Let F
be an elliptic curve defined over K. The restriction of scalars ResﬂE decomposes
(up to isogeny) into abelian varieties over K

Resk E ~ @ Ap.,
Fes

where S is the set of cyclic extensions of K in L. It is known that if L is a quadratic
extension, then Ay is the quadratic twist of E. In this paper, we consider the case
that K is a number field containing a primitive third root of unity, L = K (\3@) is
the cyclic cubic extension of K for some D € K*/(K*)3, E=E, :y* =23 +a
is an elliptic curve with j-invariant 0 defined over K, and EP : y? = 23 + aD? is
the cubic twist of E,. In this case, we prove Ay is isogenous over K to EP x E(?Q
and a property of the Selmer rank of Ay, which is a cubic analogue of a theorem

of Mazur and Rubin on quadratic twists.

1. INTRODUCTION

Let K be a number field and L a finite abelian extension of K. Let E
be an elliptic curve defined over K. The restriction of scalars Resk E (for
the definition, see §2) of E from L to K decomposes (up to isogeny) into

abelian varieties over K

Resk B ~ @ Ar,
Fes

where S is the set of cyclic extensions of K in L (for details, see §2 or [MR,
53).

In [MR], Mazur and Rubin studied the Selmer rank of /L by using the
Selmer ranks of Ap. In [MR1], as an application to the simplest case that
L is a quadratic extension, they obtained many remarkable results on the
Selmer rank of F/L. We note that if L is a quadratic extension, then Ay
is the quadratic twist of E (for an example of the proof, see [S, §2.1.2 and
§2.2.2]).
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In this paper, we consider the next simple case that K is a number field
containing a primitive third root of unity, L = K (3/17) is the cyclic cubic
extension of K for some D € K*/(K*)3 and E = E, : y*> = 23 + a is an
elliptic curve with j-invariant 0 defined over K. In this case, we prove the

following theorem.

Theorem 1.1. Let K be a number field containing a primitive third root
of unity and L = K(\g’/ﬁ) the cyclic cubic extension of K for some D €
K*)(K*)3. Let E = E, : y*> = 2° + a be an elliptic curve with j-invariant
0 defined over K and EP : y?> = 23 4+ aD? the cubic twist of E,. Then Ap

.. 2
is isogenous over K to EP x ED”.

Let G := Gal(L/K) be the Galois group L over K. If F' € S, let pr be the
unique faithful irreducible rational representation of Gal(F/K). Since the
correspondence F' < pp is a bijection between S and the set of irreducible
rational representations of G, the semisimple group ring Q[G] decomposes

QG = P G,
FeS
where Q[G]F is the pp-isotypic component of Q[G]. As a field, Q[G]F is
isomorphic to the cyclotomic field of [F' : K]-th roots of unity.

Suppose that L is a cyclic extension of K with a prime degree p. Since
Q[G]L is isomorphic to the p-th cyclotomic field, the maximal order of Q[G]L
has the unique prime ideal above p, which we denote by p. Let Sel,(E/K)
be the p-Selmer group of E/K and Sel,(Ar/K) the p-Selmer group of Ar /K
(see §2 for the definitions). Define the Selmer ranks

dp(E/K) := dimg, Sel,(E/K),
dp(AL/K) = dim]FpSelp(AL/K).

In our case, we prove the following theorem on the Selmer rank of Ay,

which is a cubic analogue of [MR1, Theorem 1.4] on quadratic twists.

Theorem 1.2. Let K be a number field containing a primitive third root of
unity, L = K (/D) the cyclic cubic extension of K for some D € K> /(K*)3
and f(L/K) the conductor of L/K. Let E = E, : y*> = 2® + a be an elliptic
curve with j-invariant O defined over K. Ifds(E,/K) = r and E,(K)[3] =0,
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then

{L = K(VD) : dy(AL/K) =1 and Nigjof(L/K) < X}| > (logXX)m

2. PRELIMINARIES

Let L be a finite abelian extension of a number field K with Galois group
G := Gal(L/K). Let K be an algebraic closure of K with Galois group
Gk = Gal(K/K). Let E be an elliptic curve defined over K. Then the
definition of the restriction of scalars ([W, §1.3] or [S, Definition 2.2]) of E
from L to K is following.

Definition 2.1. The restriction of scalars of E from L to K, denoted by
Resf(E, is a commutative algebraic group over K along with a homomor-
phism

NL/K Resf(E — F
defined over L, with the universal property that for every variety X over K,

the map
Homp (X, Resi E) — Homp (X, E) defined by f — np/x o f
s an isomorphism.

Suppose 7 is a free Z-module of finite rank with a continuous right action
of Gk and there is a ring homomorphism Z — Endg (F). A twist of a power
of E denoted by Z ®z E is defined in [MRS, Definition 1.1].

Definition 2.2. Let s := ranky(Z) and fix an Z-module isomorphism j :
78 = I. Let ez € HYK,Autg(E®)) be the image of the cocycle (y

j~ 1o 47) under the composition
HY(K,GLs(Z)) — HY(K, Autg (E®)) — HY(K, Aut(E*))

induced by the homomorphism Z — Endg (E). Define T ®yz E to be the twist
of E° by the cocycle cz, i.e., T ®z F is the unique commutative algebraic
group over K with an isomorphism ¢ : E° = T @7 E defined over K such
that for every v € Gg,

cr(v) =¢ lod.
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Definition 2.3. For every cyclic extension F of K in L, define
:ZFZZZQQK;h?r\ZH(;] and Ap =TrpQz E

We note that Ax = E and Resk(E) is isogenous to @peg Ar by [MR,
Theorem 3.5].

From the universal property of Res%(E, for each o € G, there is
oL/K,E € Hompg (Resk E, Resk E)

such that 0y /g oor/kE = 77%/1(' So we have the following ring homomor-

phism

0 : Z[G] — Endg (Resk E) defined by o = Z U5 O V= Qg 0L/ KB
oeG

We denote 0g(a) by ap € Endg(Resk E).

Proposition 2.4. (MRS, Proposition 4.2 (i)]) If Z[G]/Z is a projective
Z-module, then

IRz E = m ker (ap : Resk E — Resk F),
aEeZt

where I+ is the ideal of Z|G] defined by I+ := {a € Z|G] : oI = 0}.

Lemma 2.5. (MRS, Lemma 5.4 (i)]) Let F'/K is cyclic of degree n with a

generator o, then

Ir =V, (0) Z[G] and Iy = ®,(0)Z[G],

n

where ®,, € Z[z] is the n-th cyclotomic polynomial and ¥, (x) = (z" —
1)/®,(x) € Zx].

Suppose that L is a cyclic extension of K with a prime degree p and p is

the unique prime ideal of Q[G];, above p.

Definition 2.6. For every prime v of K, let H:(K,, E[p]) denote the image

of the Kummer injection
E(Ky)/pE(Ky) — Hl(KwE[pD
and let HY(K,, Ar[p]) denote the image of the Kummer injection

AL(Ko)/pAL(Ky) — H' (Ko, AL[p]).
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Definition 2.7. Define the Selmer groups

Sely(E/K) := ker(H' (K, E[p]) — EDH" (K., Elp])/H} Ky, E[p])) and
Selp(A/K) = ker (H' (K, A [p]) — EDH (Ko, AL[p))/HA (Ko, ALlP]))-

We note that there is a natural identification of G x-modules E[p] = A [p]
inside Res% F (cf. [MR, Proposition 4.1] and [MR, Remark 4.2]).

Definition 2.8. For every prime v of K, define
0u(E, L/K) = dims, (Hg (Ko, Elp])/ Hgn a(Ko, Elp])) .
where H}, y(K., Elp]) = HM(K,, E[pl) N H\(K., E[p).
Proposition 2.9. ([MR, Corollary 4.6]) Suppose that S is a set of primes

of K containing all primes above p, all primes ramified in L/K, and all

primes where E has bad reduction. Then

dp(E/K) = dy(AL/K) + > 6,(E,L/K) (mod 2).
vES

3. PROOF OF THEOREM 1.1

For the rest of this paper, let K be a number field containing a primitive
third root of unity w, L = K (¥/D) the cyclic cubic extension of K for some
D e K*/(K*)3, E, :y* = 23 +a an elliptic curve with j-invariant 0 defined
over K, and EP : y? = 23 + aD? the cubic twist of E,.

Proposition 3.1. If we define isomorphisms over L
é1:Ey = EP by (2,y) = (Diz, Dy),
b2 Ba — B by (z,y) — (Dix, D),
and G -invariant subgroup of E, x EP x E(?Q
T} = ({ (P, ¢1(P), 62(P))" € B x EY x E"[3P =0, 7 € G},

then
Resk E, = (E, x EP x EP*)/TF

with the following homomorphisms

Nkt (BaxEPXEP®)/TE — E, defined by (P,Q,R) — P+¢7(Q)+¢3 ' (R).
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Proof. We will show that (E, x EP x EP*)/TE satisfies the universal prop-
erty of Resk F, with n, sk in Definition 2.1. Suppose X is a variety over K
and ¢ € Homp (X, E,). Let [3]7!: E, — E, /E,[3] be the inverse map of

the induced isomorphism from multiplication by 3, let

X: By JE4[3] — (EoxEP xEP*)/TE defined by P — (P, ¢1(P), ¢2(P)) (mod TF),
and let o be the generator of Gal(L/K) which maps v/D to v/Dw. Define

& := Ao[3] o + (Mo[3] Lo)? + (Ao[3] o) € Homx (X, (B, x EPxEP*)/ TL).
Then we have

Nk © Ao[3]lop = o,
npyk o (Ao 3]t op)? =0 (because ¢f = [wg1, 3 = [w]>¢2
and [1] 4 [w] + [w]* = [0]),

“1op)?” =0 (by the same reason),

Nk © (Ao 3]

where [w] : (z,y) — (w?z,y) is an endomorphism of E,, EP, and EaDQ. Thus

NL/K © P = ¢
For any (P,Q,R) € (Eq x EP x EP*)/TL, we have

(P,Q,R) [ P +¢74Q) + 67 (R)
e P+ o7 @) + 65 (R)
2 (P'+¢71(Q) + 63 (R),
P1(P') + Q" + ¢1(p5 (R)),
62(P') + 62671 (@) + R))  (mod T),
PR N (e (@) + Wl (R,

[wlp1(P') + Q" + [w?é1 (63 (R)),
[w]Pé2(P") + [wlg2(é7 (@) + R')  (mod Tf),

P r) T (o e (@) + P (),
W21 (P) + Q' + [wler(¢3 1 (R)),

[W]ga(P') + [w]?pa(67(Q") + R')  (mod TF),
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where P’ (resp. @', R') is an element satisfying [3]P’ = P (resp. [3]Q" =
Q, [3]R' = R). So

2

(Ao[3]7'o nL/k) + (Ao [3]7'o o)’ + (Ao [3]71o nLyi)’ = id.

Hence for every f € Homg (X, (E, x EP x EP*)/TL we have

(/K © f)
= (o8] Yoo f)+ (o8] Loy ko f)”+(Nol3] L onp ko )T
= (Ao to nr/k)o f+ (Ao B8] to nrr)’ o f+ (Ao 3871 o nL/K)J2 of

Thus the map
Homy (X, (B, x EP x EP*)/TF) — Homy (X, E,) defined by f 1y 0 f
is an isomorphism. O

Proposition 3.2. Let A; = 71 ®z E, in Definition 2.3. Then there is a

surjective morphism over K with a finite kernel
0:EP x EP* = Ap.

Proof. We continue the notations K , L, o, E,, EP  TL Nk > - in Propo-
sition 3.1 and its proof. Recall that Resk E, is (E, x EP x EP*) / T with
the homomorphism 7,x. Note that for the o € Gal(L/K), its induced

endomorphism op, € Endg(Resk E,) is precisely

05, (P,Q, R) = 17 ;e (P.Q, R) = (P, []*Q, [w]R),

and hence ®3(0)g, is given by

®3(0)p, (P,Q,R) = (6> 4+ 0+ 1)g, (P,Q,R)=(3P,0,0).
Thus by Proposition 2.4 and Lemma 2.5, we have
Ay =15, ®y E, = ker (@3(0)Ea : Resf(Ea — Resf(Ea)
= {(P.Q.R) € (E. x E? x EP*)/ T |(3P,0,0)=(0,0,0) (modT}) }
= {(P,Q,R) € (B, x E? x EP")/ TX| P € E,[3]}.

Define
0: E(? X EaD2 — AL by (Q?R) = (07Q7R)
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Then 6 is a morphism over K with s finite kernel. For (P,Q, R) € Ay,
(PaQaR) = (Pv ¢1(P)a ¢2(P)) + (0’ Q - ¢1(P)a R— ¢2(P))
= (0, Q = ¢1(P), R — $2(P)) (mod T;").

Thus @ is surjective. O

Proof of Theorem 1.1. It follows from Proposition 3.1. a

4. PROOF OF THEOREM 1.2

To compare d3(E,/K) and dp(Ar/K), we apply [MR1, §2 and §3] to our
case. By [MR, Proposition 5.2, we have the following lemma which is same

to [MR1, Lemma 2.9].

Lemma 4.1. Let v be a prime of K, w a prime of L above v and Np, /k, :
Eo(Ly) — E4(Ky) the norm map. Under the isomorphism HL (K, Eq[3]) &
E.(K,)/3E.(K,), we have

HémA(Kva Ea[3]) = NLw/Kan(Lw)/?’Ea(Kv)-

Remark. In [MR1, Definition 2.6}, 6,(E, L/K) is defined by
dimp, E(K,)/Np, Kk, E(Lw),

where p = 2. By Lemma 4.1, [MR1, Definition 2.6] is same to Definition 2.8

for our case.

By Lemma 4.1, we have the following lemmas which are similar to [MR1,

Lemma 2.10] and [MR1, Lemma 2.11].

Lemma 4.2. Let Ag, be the discriminant of E,. If at least one of the
following conditions (i)-(iv) holds:

(i) v splits in L/K,

(ii) v 1 300 and E,(K,)[3] =0,
(iii) v is real and (Ag,), <0,
(

iv) v is a prime where E, has good reduction and v is unramified in L/K,

then HE(K,, Ea[3]) = HY(Ky, E4[3]) and 8,(E,, L/K) = 0.



RESTRICTION OF SCALARS AND CUBIC TWISTS OF ELLIPTIC CURVES 9

Proof. See the proof of [MR1, Lemma 2.10]. O

Lemma 4.3. If v { 300, E, has good reduction at v and v is ramified in

L/K, then
Hioa(Ky, Ea[3]) =0 and  6,(E,, L/K) = dimpg, (Eq(K,)[3]).
Proof. See the proof of [MR1, Lemma 2.11]. O

By Proposition 2.9, Lemma 4.2, and Lemma 4.3, we have the following

proposition which is similar to [MR1, Proposition 3.3].

Proposition 4.4. Suppose that all of the following primes split in L/K :

e all primes where E, has bad reduction,
e all primes above 3,

e all real places v with (Ag,), > 0.

Let T be the set of (finite) primes q of K such that L/K is ramified at q
and E,(Kq)[3] #0. Let
locr : H'(K, Eq[3]) — @DH" (Kq, Ea[3))
qeT

and

Vi :=locr(Sels(E,/K)) C @Hé(KCDEaBD'
€T
Then we have

dy(Ap/K) = d3(E,/K) — dimp, V7 + d

for some d satisfying

0<d< diHlIF3 @Hg*(an Ea[B])/VT and
qeT

d = dimp, | PH(Kq, Eaf3))/Vr | (mod 2).
qe7T
Proof. Define strict and relaxed 3-Selmer groups Sy € 87 ¢ HY (K, E,[3])
by the exactness of
0— 87 — HY(K,E,[3]) - @H" (Ky, Ea[3])/HE(Kq, Eq[3]) and
agT

0— Sr— 87 — PH (K, El[3)).
qgeT
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Then we have St C Sel,(E,/K) C ST. By Lemma 4.2 we also have St C
Sely(Ar/K) C ST and by Lemma 4.3 we have Sel,(E,/K) N Sel,(AL/K) =
Sr.

Let VF = locr(Sely(AL/K)) C @ HY(Kq, Eu[3]) and d := dimg, VE.
qeT

Then the theorem follows from the same argument in the proof of [MRI,

Proposition 3.3]. O

By Proposition 4.4, we have the following proposition which is similar to

[MR1, Corollary 3.4].

Proposition 4.5. Suppose E,,L/K, and T are as in Proposition 4.4.

(a) If dimp, (Pyer HE(Kq, Ea[3])/Vr) <1, then

dy(AL/K) = dp(Ea/K) — 2dimg, Vr + Y _ dimg, Hi(Ky, Ea[3]).
qeT

(b) If E(Kg)[3] =0 for every q € T, then dy(Ar/K) = d3(Eq/K).

Proof. For (a), see the proof of [MR1, Corollary 3.4 (i)]. (b) follows from

(a) because 7 is empty in this case. O

Let M := K(E,[3]) and & be the set of elements of order 2 in Gal(M/K).

Lemma 4.6. Suppose that E,(K)[3] = 0. Then Gal(M/K) = 7Z/27 or
Z/6Z, depending on whether K 5 /—4a or not, so |6 = 1.

Proof. The lemma follows from

E,[3] = {0, (0, £v/a), (V—4a, £v—3a), (V—4aw, =v/—3a), (V—4aw?, £v/—3a)}.
O

Let N := K(27Ap,o0) be the ray class field of K modulo 27Ag, and all

infinite primes. Define a set of primes of K

P :={v : v is unramified in NM/K and Frob,(M/K) C &},
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where Frob, (M /K') denotes the Frobenius conjugacy class of v in Gal(M/K),
and two sets of ideals N7 C N of K

N :={a:ais a cubefree product of primes in P},
M :={aeN:[a,N/K|=1},
where [-, N/K] denotes the global Artin symbol.

Lemma 4.7. [MR1, Lemma 4.1] There is a constant ¢ such that

X
(log X )~ 1SI/DIK]

[{a € N1: Ngjga < X} = (c+o0o(1))

Proposition 4.8. Suppose that E,(K)[3] = 0. For a € N1, there is a cyclic
cubic extension L/K of conductor a such that dy(Ar/K) = d3(Eq/K).

Proof. Fix a € Ni. Then a is principal, with a totally positive generator
a =1 (mod 27Ag,). Let L := K (/). Then all primes above 3, all primes
of bad reduction, and all infinite primes split in L/K. If v ramifies in L/K
then v|a, so v € P. Thus the Frobenius of v in Gal(M/K) has order 2, which
shows that F,(K,)[3] = 0. Now the proposition follows from Proposition
4.5 (b). O

Proof of Theorem 1.2. It follows from Lemma 4.6, Lemma 4.7 and Proposi-

tion 4.8. O
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