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Abstract. In this paper, we show that class number problem for a family of

infinitely many real quadratic fields can be reduced to a finite computation by

using an effectively computable lower bound for class numbers of real quadratic

fields in [BK1].

1. Introduction

Let d > 0 be a fundamental discriminant of a real quadratic field. Let

h(d) be the class number and εd the fundamental unit of the real quadratic

field Q(
√

d). In [BK1], we proved the following theorem.

Theorem 1.1. Let E be an elliptic curve over Q and D(g) the set of funda-

mental discriminants d > 0 of real quadratic fields such that the base change

Hasse-Weil L-function LE/Q(
√

d)(s) has a zero of order ≥ g at s = 1. Then

there are effectively computable positive constants c1 and c2 such that for

any d ∈ D(g) greater than c1,

h(d) log εd ≥ c2(log d)g−3
∏

p∈P (d)

(
1− b2√pc

p+1

)
,

where P (d) is the set of primes p dividing d except for the largest of them.

Since log εd � log d, it is required that LE/Q(
√

d)(s) has a zero of order ≥ 5

at s = 1 to get a non-trivial lower bound from Theorem 1.1. But there is

no known elliptic curve E whose Hasse-Weil L-function LE/Q(s) has a zero

of order ≥ 4 at s = 1.
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Let E be an elliptic curve over Q with a rational point of order 2 whose

LE/Q(s) has a zero of order g(1) ≥ 3 at s = 1. We note that there are infin-

itely many such elliptic curves (cf. [RS], [ST]). If we assume by translating

the x-coordinates that (0, 0) is a point of order 2, then we have the following

Weierstrass equation

E : y2 = x3 + ax2 + bx.

Let E(δ) : δy2 = x3 + ax2 + bx be the quadratic twist of E. If v2δm =

m4 + am2 + b = (m2 + a
2 )2 + b − a2

4 for a nonzero integer v, then E(δm)

has a rational point (m2,mv). If we can choose m such that (m2,mv) has

infinite order and E(δm) has the root number W (E(δm)) = (−1)g(δm) = 1,

where g(δm) is the order of zero of LE(δm)/Q(s) at s = 1, then g(δm) ≥ 2 (cf.

[GM]). So LE/Q(
√

δm)(s) has a zero of order g(1) + g(δm) ≥ 5 at s = 1.

Further, if D is a positive square-free integer and v be the least positive

integer such that v2D = n2 + r holds with integers n, r satisfying −n <

r ≤ n and r | 4n, then the fundamental unit εd of Q(
√

D), where d is

the fundamental discriminant of the real quadratic field Q(
√

D), is of the

following form (cf. [De], [Ku]):

εd =


n + v

√
D if |r| = 1, (except for D = 5, v = 1)

n+v
√

D
2 if |r| = 4,

2n2+r+2nv
√

D
|r| if |r| 6= 1, 4.

Thus, for an even integer a and a sufficiently small integer v, if we can chose

m such that δm is a positive square-free integer and (b − a2

4 ) | 4(m2 + a
2 ),

then the fundamental unit εdm of the real quadratic field Q(
√

δm) satisfies

log εdm � log dm, where dm is the fundamental discriminant of the real

quadratic field Q(
√

δm). Thus we can obtain an effectively computable lower

bound of the class number of the real quadratic field Q(
√

δm) by Theorem

1.1.

In this paper, for an example, we take the following elliptic curve E over

Q with a rational point of order 2 whose LE/Q(s) has a zero of order 3 at

s = 1

E : y2 = x3 − 100x2 + 2508x
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of conductor N = 80256 = 27 · 3 · 11 · 19 (cf. [Cr]) and prove the following

theorem.

Theorem 1.2. Let δm = ((2m2−25)2+2)/9 be a square-free positive integer

such that m ≡ 1 (mod 81). Then, for any fundamental discriminant dm =

4δm of the real quadratic field Q(
√

δm) such that (dm, 11 · 19) = 1, we have

h(dm) ≥ 1
3600

· log dm

∏
p∈P (dm)

(
1− b2√pc

p+1

)
,

where P (dm) is the set of primes p dividing dm except for the largest of them.

Thus the class number problem for the family of the real quadratic fields

Q(
√

δm) in Theorem 1.2 is reduced to a finite computation. For the odd

class number problem, we have the following corollary from Theorem 1.2.

Corollary 1.3. Let δm = ((2m2−25)2+2)/9 be a square-free positive integer

such that m ≡ 1 (mod 81) and n an odd positive integer. If h(dm) = n, then

δm is a prime such that dm = 4δm ≤ e10800n.

Remark. For the real quadratic fields of narrow Richaud-Degert type, that

is, Q(
√

m2 ± 1) or Q(
√

m2 ± 4), we proved a theorem similar to Theorem 1.2

under the Birch and Swinnerton-Dyer conjecture (cf. [BK1, Theorem 3]).

To get an explicit lower bound of class numbers for this family without the

Birch and Swinnerton-Dyer conjecture by using the method in this paper,

we need suitable elliptic curves for this family. But it is difficult to find a

cubic polynomial f(x), which has rational solutions (x, y) satisfying

(m2 ± 1)y2 = f(x) or (m2 ± 4)y2 = f(x)

for any integer m. In [La] and [BK], there are similar works to Theorem 1.2

for subfamilies of narrow Richaud-Degert type. However, [La, Theorem 1.2]

does not get an explicit lower bound and [BK, Theorem 1.6] is less effective.

For some families of real quadratic fields of known fundamental units, we

can have explicit lower bounds of class numbers by using quadratic residue

covers (cf. [LMW, Section 4]). But the family of real quadratic fields in

Theorem 1.2 can not be dealt with this method, because we can show that

there exist infinitely many δm in Theorem 1.2 such that ( δm
p ) = −1 for all

p ∈ C, where C is any finite set of odd prime integers by using [MV, Theorem],
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the fact that δm = 9A2+8A+2, where m = 81a+1 and A = 1458a2+36a−3,

is a square-free polynomial of degree 4 modulo p for all prime p 6= 2, 3, and

direct computations for finite exceptional cases in [DKM, Theorem 1.1].

2. Preliminaries

In this section, we briefly explain how to compute c1 and c2 in Theorem

1.1. For more details, see [BK1].

Let E be an elliptic curve over Q of conductor N . We denote by Sp
2(N)

the set of normalized primitive holomorphic cusp forms for the congruence

subgroup Γ0(N) of weight 2 with trivial nebentypus 1N . From the Modu-

larity Theorem, there exists f =
∑∞

n=1 anqn (q = e2πiτ ) ∈ Sp
2(N) such that

the associated L-function L(f, s) satisfies

LE/Q(s) = L(f, s) =
∞∑

n=1

an

ns
.

If necessary, we denote an by an(f). Thus LE/Q(s) has an analytic contin-

uation to an entire function satisfying the functional equation

Λ(f, 2− s) = W (f)Λ(f, s),

where Λ(f, s) =
(√

N
2π

)sΓ(s)L(f, s) and W (f) = ±1 is the root number of f

or E/Q.

For a Dirichlet character χd, there exist an integer Nχd
≥ 1 and f ⊗χd ∈

Sp
2(Nχd

) such that the p-th Fourier coefficient is given by

ap(f ⊗ χd) = ap(f)χd(p)

for almost all primes p. This condition uniquely determines Nχd
and f⊗χd.

Let

Md =

√
NNχd

|d|
.

and

M = 2n2 · 3n3 ·N,

where  n2 = maxχd

{
0,

ord2(Nχd
)−ord2(N)

2 − 2
}
,

n3 = maxχd

{
0,

ord3(Nχd
)−ord3(N)

2 − 1
}
.
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Let L(sym2
i E, s) be the imprimitive symmetric square L-function associ-

ated to E/Q, B the symmetric square conductor of E/Q and

Fd(s) =
(Md

4π2

)sΓ2(s)
L(sym2

i E, 2s)
(s− 1)ζN (2s− 1)

,

where the subscript N of ζN means that we have omitted the Euler factors

at the primes dividing N . Let F
(k)
d (s) be its k-th derivative and F = {Fd |

d ∈ D(g)}.

Now we assume that LE/Q(
√

d)(s) has a zero of order ≥ g at s = 1.

Let Wd = W (f)W (f ⊗ χd), µ′ ∈ {1, 2} such that Wd = (−1)g−µ′ and ρ =

g − µ′ − 1. Let qi be the i-th prime splitting in Q(
√

d) (or the i-th prime).

Then we can compute c1 and c2 in Theorem 1.1 as follows

c1 = max
Fd∈F ,
1≤k≤ρ

{
c3, exp (2ρ−1ρ!

√
N), exp (L(Sym2

i E, 2)), exp (2ρ
|F (k)

d (1)|
|Fd(1)|

)
}

,

c2 =
L(Sym2

i E, 2)
c4c52ρ+1ρ!2n2/23n3/2

√
N

∏
p|N

p

p− 1

ρ∏
i=1

(qi − 1)(qi + 1− b2√qic)
(qi + 1)(qi + 1 + b2√qic)

.

Here, c3 ≥ exp (6ρρ+1) is a positive real number such that if d ≥ c3, then

1
m

log

√
d

4
> max

{
2
(

(31/4)
√

M log d

2(ρ + 1)L(Sym2
i E, 2)

∏
p|N

p
p−1

) 1
ρ+1

, log
(

Me4

16π2

)}
,

(1)

where m is the largest integer such that

(ρ + 1)L(Sym2
i E, 2)

∏
p|N

p
p−1

(31/4)22ρ+2
√

M
(log d)ρ > (m− 1)ρ+1,

c4 > (1 + ec6 + ec7 + ec8), where
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c6 = max
d∈D(g),

d>c1

{
log

12
(
ρ+3
3

)
L(Sym2

i E, 2)
∏

p|N
p

p−1

π
− log M + log Md

2

+(2ρ + 3) log log d−

(
(31/4)

√
M log d

2(ρ + 1)L(Sym2
i E, 2)

∏
p|N

p
p−1

) 1
ρ+1 }

,

c7 = max
d∈D(g),

d>c1

{
log

L(Sym2
i E, 2)

∏
p|N

p
p−1

2ρ+1ρ!
− log M

2
+ ρ log log d

−2

(
(31/4)

√
M log d

2(ρ + 1)L(Sym2
i E, 2)

∏
p|N

p
p−1

) 1
ρ+1 }

,

c8 = max
d∈D(g),

d>c1

{
log

L(Sym2
i E, 2)

∏
p|N

p
p−1

22ρ+1ρ!
+ ρ log log d− log d

2

}
,

and c5 > 1 such that

2− exp
(

2
log d

( log log d

log 2
+ 1
)2
)

−
ρ max Fd∈F

1≤k≤ρ

{
|F (k)

d (1)|
|Fd(1)|

}
log d

· exp
(

4
log d

( log log d

log 2
+ 1
)2
)

−
280π · 25ρ ·B2

∏
p‖N

√
p√

p−1

∏
p2|N

(√
p+1√

p

)2 √
p+1√
p−1

∏
p|N (p−1

p )
4
√

Md

1

d
1
4 (log d)

>
1
c5

for any d ∈ D(g) greater than c1.

Remark. To get a better bound, we slightly change the assumption

h(d) log εd ≥
L(Sym2

i E, 2)
∏

p|N
p

p−1

2ρ+1ρ!
√

M
(log d)ρ

in [BK, Proposition 4] to

h(d) log εd ≥
L(Sym2

i E, 2)
∏

p|N
p

p−1

(31/4)2ρ+1ρ!
√

M
(log d)ρ.

So only (31/4) is different for (1), c6, c7 here and (4.7.1), c6, c7 in [BK1].
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3. Proof of Theorem 1.2 and Corollary 1.3

To prove Theorem 1.2, we need the following propositions.

Proposition 3.1. Let δm = ((2m2 − 25)2 + 2)/9 be a square-free positive

integer such that m ≡ 1 (mod 81) and dm = 4δm the fundamental discrimi-

nant of the real quadratic field Q(
√

δm). If ( δm
p ) = 1 for some prime p, then

we have

h(dm) ≥ 1
2 log p

· log
dm

4
,

except for m = 1.

Proof. Let m = 81a + 1 for some nonzero integer a. Then we have δm =

((2m2 − 25)2 + 2)/9 = 19131876a4 + 944784a3 − 55404a2 − 1656a + 59. Let

A = 1458a2 + 36a − 3. Then δm = 9A2 + 8A + 2 and
√

δm has continued

fraction [3A+1, 2, 1, 3A, 1, 2, 2(3A + 1)] of length 6. Let Qi (i = 0, · · · , 6) be

the usual invariants of the continued fraction of
√

δm (cf. [Mo, p. 42]). Then

we have Q0 = 1, Q1 = 2A+1, Q2 = 4A+1, Q3 = 2, Q4 = 4A+1, Q5 = 2A+1

and Q6 = 1. Thus {Qi/Q0 | i = 1, · · · , 6} = {1, 2, 2A + 1, 4A + 1}. Suppose

that ( δm
p ) = 1 for some prime p. If ph(dm) ≤ 1

2

√
dm, then ph(dm) = 2A + 1 or

4A + 1 by [Lo, Lemma 1 and Proposition 2]. But it is impossible because

2A + 1 = (18a + 1)(162a− 5) and 4A + 1 ≥ 1
2

√
dm. Thus we have ph(dm) ≥

1
2

√
dm (cf. [Lo, p. 171, Proof of (iii)]). �

Proposition 3.2. Let δm = ((2m2 − 25)2 + 2)/9 be a square-free positive

integer such that m ≡ 1 (mod 81) and dm = 4δm the fundamental discrimi-

nant of the real quadratic field Q(
√

δm). If ( δm
11 ) = −1 and ( δm

19 ) = −1, then

we have

h(dm) ≥ 1
3600

· log dm

∏
p∈P (dm)

(
1− b2√pc

p+1

)
,

where P (dm) is the set of primes p dividing dm except for the largest of them.

Proof. Let E : y2 = x3 − 100x2 + 2508x be an elliptic curve over Q of

conductor N = 80256 = 27 · 3 · 11 · 19. It is known that LE/Q(s) has a zero

of order g(1) = 3 at s = 1 (cf. [Cr]). Let δm = ((2m2 − 25)2 + 2)/9 be a

square-free integer such that m ≡ 1 (mod 81). We note that δm ≡ 3 (mod

8) and δm ≡ 5 (mod 9).
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Let E(δm) : δmy2 = x3 − 100x2 + 2508x be the quadratic twist of E.

Then E(δm) has a rational point (4m2, 12m). By the substitution (x, y) →

(x/δm, y/δm
2), we have the following Weierstrass equation

E(δm) : y2 = x3 − 100δmx2 + 2508δm
2x

and this equation has a rational point P = (4m2δm, 12mδm
2). Let c4(δm),

c6(δm) be the usual invariants of E(δm) and ∆(δm) the discriminant of

E(δm). Then we have c4(δm) = 26 · 619 · δm
2, c6(δm) = −29 · 52 · 643 · δm

3

and ∆(δm) = −213 · 32 · 112 · 192 · δm
6.

Firstly we show that P = (4m2δm, 12mδm
2) has infinite order. By the

substitution (x, y) → (x+1200
36 , y

216), we have E(δm) : y2 = x3 − 27c4(δm)x−

54c6(δm) (cf. [Si, p. 43]). Since (216 · 12mδm
2)2 = 210 · 38 · m2 · δm

4 does

not divide 4(−27c4(δm))3 +27(−54c6(δm))2 = 221 · 314 · 112 · 192 · δm
6, P has

infinite order (cf. [Si, p. 240, Corollary 7.2]).

Secondly we compute the root number of E(δm). Since (N, dm) 6= 1,

we directly compute the root number of E(δm) by using Rizzo’s tables in

[Ri]. Let (a, b, c) be the smallest triplet of nonnegative integers such that

a ≡ vp(c4(δm)) (mod 4), b ≡ vp(c6(δm)) (mod 6) and c ≡ vp(∆(δm)) (mod

12). For any x ∈ Qp, we write x′p = x′ for x/pvp(x). Let Wp(E(δm)) be the

local root number at p. Then we have the following table.

p (a, b, c) Wp(E(δm))

2 (2, 3, 1) −1 (∵ c4(δm)′ + 4c6(δm)′ ≡ 15 (16) and c4(δm)′ ≡ 3 (16))

3 (0, 0, 2) −1 (∵ c6(δm)′ ≡ 2 (3))

11 (0, 0, 2) −(−c6(δm)′

11 ) = −1 (∵ −c6(δm)′ ≡ 2 · δm
3 (11) and ( 2

11) = −1)

19 (0, 0, 2) − (−c6(δm)′

19 ) = −1 (∵ −c6(δm)′ ≡ 18 · δm
3 (19) and (18

19) = −1)

p|δm (2, 3, 6) (−1
p )

Thus E(δm) has the root number W (E(δm)) = W∞(E(δm)) · W2(E(δm)) ·

W3(E(δm)) · W11(E(δm)) · W19(E(δm)) ·
∏

p|δm
Wp(E(δm)) = (−1) · (−1) ·

(−1) · (−1) · (−1) · (−1) = 1 and LE(δm)/Q(s) has a zero of order g(δm) ≥ 2

at s = 1. So LE/Q(
√

δm)(s) has a zero of order g(1) + g(δm) ≥ 5 at s = 1.
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Finally we compute c1 and c2 in Theorem 1.1. We note that δm ≡ 3

(mod 4) and δm ≡ 2 (mod 3). Therefore we have that dm = 4δm and 2

(respectively, 3) ramifies (respectively, is inert) in Q(
√

δm). Since ord2(N) =

7 and 3 - dm, we have n2 = 0, n3 = 0 and M = N = 80256. Since Nχ−4 = N

and −δm is relatively prime to 3 · 11 · 19, we have Mdm = N/4 = 20064.

Thus we have

Fdm(s) = L(Sym2
i E, 2s)(

N

16π2
)sΓ(s)2

1
(s− 1)ζ(2s− 1)

· 1
1− 2−2s+1

1
1− 3−2s+1

1
1− 11−2s+1

1
1− 19−2s+1

.

Since g = 5 and Wdm = −1 for dm = 4δm, we have µ′ = 2 and ρ = 2.

Let c(E) be the Manin’s constant of E, vol(E) the volume of a minimal

period lattice Λ with E ' C/Λ and deg(E) the modular degree of E. These

invariants can be calculated by Sage and we have

L(Sym2
i E, 2) =

2πc(E)2vol(E) deg(E)
N

= 2.840615....

The Laurent expansion of the Riemann zeta function can be written in the

form,

ζ(s) =
1

s− 1
+

∞∑
n=0

(−1)n

n!
γn(s− 1)n

where γn are the so-called Stieltjes constants. Then we have

(s− 1)ζ(2s− 1) =
1
2

+
∞∑

n=0

(−2)nγn

n!
(s− 1)n+1.

It is well known that Γ(1)(1) = −γ0 and Γ(2)(1) = γ2
0 + π2

6 . Thus we have

∣∣∣∣∣F
(1)
dm

(1)
Fdm(1)

∣∣∣∣∣ =

∣∣∣∣∣∣2L(1)(Sym2
i E, 2)

L(Sym2
i E, 2)

+ log (
N

16π2
) + 2

Γ(1)(1)
Γ(1)

− 2γ0 −
∑
p|N

2 log p

p− 1

∣∣∣∣∣∣
< 2

|L(1)(Sym2
i E, 2)|

L(Sym2
i E, 2)

+ 0.7

and∣∣∣∣∣F
(2)
dm

(1)
Fdm(1)

∣∣∣∣∣ =

∣∣∣∣∣4L(2)(Sym2
i E, 2)

L(Sym2
i E, 2)

+
(

log (
N

16π2
)
)2

+ 2
Γ(1)Γ(2)(1) + Γ(1)(1)2

Γ(1)2
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+8(γ2
0 + γ1) +

∑
p|N

4(p + 1)(log p)2

(p− 1)2

+4
L(1)(Sym2

i E, 2)
L(Sym2

i E, 2)

(
log (

N

16π2
) + 2

Γ(1)(1)
Γ(1)

− 2γ0 −
∑
p|N

2 log p

p− 1

)

+2 log (
N

16π2
)
(
2
Γ(1)(1)
Γ(1)

− 2γ0 −
∑
p|N

2 log p

p− 1

)

+4
Γ(1)(1)
Γ(1)

(
− 2γ0 −

∑
p|N

2 log p

p− 1

)
+ 8γ0

∑
p|N

log p

p− 1

+8
∑

p1|N, p2|N
p1<p2

log p1

p1 − 1
log p2

p2 − 1

∣∣∣∣∣∣∣∣
< 4

|L(2)(Sym2
i E, 2)|

L(Sym2
i E, 2)

+ 0.7 · 4 |L
(1)(Sym2

i E, 2)|
L(Sym2

i E, 2)
+ 16.5.

By numerical computations with Magma, we have the following rough upper

bounds

|L(1)(Sym2
i E, 2)| ≤ 8

and

|L(2)(Sym2
i E, 2)| ≤ 120.

We note that if dm ≥ exp(3600), then (1) holds. Therefore we can take

c1 = max
1≤k≤ρ

{
exp(3600), exp (2ρ−1ρ!

√
N), exp (L(Sym2

i E, 2)), exp (2ρ
|F (k)

dm
(1)|

|Fdm(1)|
)
}

= exp(3600).

Further, we can take

c5 = 1.29.

Since

∂

∂X

(2ρ + 3) log X −

(
(31/4)

√
N

2(ρ + 1)L(Sym2
i E, 2)

∏
p|N

p
p−1

) 1
ρ+1

X
1

ρ+1


=

1
X

(2ρ + 3)− 1
ρ + 1

(
(31/4)

√
N

2(ρ + 1)L(Sym2
i E, 2)

∏
p|N

p
p−1

) 1
ρ+1

X
1

ρ+1


and

X = log dm ≥ 3600 ≥
(ρ + 1)ρ+2(2ρ + 3)ρ+1L(Sym2

i E, 2)
∏

p|N
p

p−1

(31/8)
√

N
,
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its primitive function of X = log dm attains the maximum value at log dm =

3600. Therefore we can take

c6

≤ log
12
(
ρ+3
3

)
L(Sym2

i E, 2)
∏

p|N
p

p−1

π
√

N
√

N/4
+ (2ρ + 3) log log dm

−2

( √
N log dm

2(ρ + 1)L(Sym2
i E, 2)

∏
p|N

p
p−1

) 1
ρ+1

≤ log
24
(
ρ+3
3

)
L(Sym2

i E, 2)
∏

p|N
p

p−1

πN
+ (2ρ + 3) log (3600)

−2

( √
N(3600)

2(ρ + 1)L(Sym2
i E, 2)

∏
p|N

p
p−1

) 1
ρ+1

= log (4.906...).

Similarly, we can calculate c7 and c8 and so we can take

c4 = 1 + ec6 + ec7 + ec8 < 5.91.

Thus we have

2n2/2 · 3n3/2 · c4 · c5 < 7.7.

By Proposition 3.1, we may assume that q1, q2 > exp (1000). Then we can

take

c2 =
1

7.7
L(Sym2

i , 2)
2ρ+1ρ!

√
N

∏
p|N

p

p− 1

ρ∏
i=1

(qi − 1)(qi + 1− b
√

2qic)
(qi + 1)(qi + 1 + b

√
2qic)

>
1

3550
.

Since εdm = (2m2 − 25)2 + 1 + 3(2m2 − 25)
√

δm < 2 · 32dm (cf. [Ku]), we

have for dm > c1 = exp (3600),

h(dm) ≥ c′2(log dm)
∏

p∈P (dm)

(
1− b2√pc

p+1

)
, (2)

where

c′2 = c2
log c1

log c1 + log 18
≥ 1

3600
.

Since (2) is also true for dm ≤ exp(3600), we complete the proof. �



12 DONGHO BYEON AND JIGU KIM

Proof of Theorem 1.2. Theorem 1.2 follows from Proposition 3.1 and Propo-

sition 3.2. �

Proof of Corollary 1.3. By the genus theory of quadratic fields, if h(dm) is

odd, then δm should be a prime. By Theorem 1.2, if dm = 4δm > e10800n,

then we have h(dm) > n. �

Remark. We note that h(dm) > 2 for all dm, except for m = 1, because

if p is a prime such that p | 2A + 1 = (18a + 1)(162a − 5), where A and

a are in the proof of Proposition 3.1, then p splits in Q(
√

δm) by the fact

δm = 9A2 + 8A + 2 and 9A2 + 8A + 2 − (3A + 1)2 = 2A + 1, so we have

h(dm) ≥ 1
2 log (|18a+1|) · log dm

4 > 2 by Proposition 3.1. If m = 1, then

δm = 59 and h(4 ∗ 59) = 1 (cf. [Mo, p. 271, Table A1]). Here, we mention

that, in general, dealing with the class number one problem for families of

real quadratic fields of known fundamental units is a difficult problem (cf.

[Bi], [Bi1], [BLK]).

Acknowledgment. The authors thank the referees for their careful read-

ings and many valuable suggestions.
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