CLASS NUMBERS OF REAL QUADRATIC FIELDS

DONGHO BYEON AND JIGU KIM

Abstract. Let d > 0 be a fundamental discriminant of a real quadratic field. Let
h(d) be the class number and g4 the fundamental unit of the real quadratic field
Q(v/d). In this paper, we prove that if there is an elliptic curve E over Q whose
Hasse-Weil L-function Lg,g(s) has a zero of order g at s = 1, then there is an
effectively computable constant x > 0 satisfying

h(d)logeq > L(logd)?™? H (1- %).
pld, p#d

1. INTRODUCTION AND RESULTS

Let d be a fundamental discriminant, x4 the Dirichlet character associated
to the quadratic field Q(v/d) and L(s,x4) the Dirichlet L-function. The

Dirichlet class number formula is as follows

2nhld) - if g < 0,
L(17Xd) = wyld
2h(d)logeg .
2hideess if g > 0,

where h(d) is the class number of Q(v/d), w the number of roots of unity in
Q(vd) (d < 0) and &4 the fundamental unit of Q(v/d) (d > 0). Siegel [Si]

proved that there is a positive constant k(e) such that

1
L(1 ——|d|€ .
(L) > ™ (>0
Thus we have
k(€) h(d) for d <0,

jd|27¢ <
k(e) h(d)logey for d> 0.

But there is no known method to compute the constant x(e).
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2 DONGHO BYEON AND JIGU KIM

In [Go], Goldfeld proved that if there is an elliptic curve E over Q of
conductor N whose Hasse-Weil L-function Ly /Q(s) has a zero of order g at

s =1, then there is an effectively computable constant x > 0 satisfying

exp(~21y/gloglog d))log |d)r -1 < § MY o 4 <
kh(d)logey for d >0,
where p € {1,2} satisfying x4(—N) = (=1)7#. In [BK] and [BK1], we
explicitly compute the constant x for d > 0.
In [Oe], Oesterlé simplified the method of Goldfeld [Go] by using definite
binary quadratic forms and proved that there is an effectively computable

constant x > 0 satisfying
0(d) logd < Kk h(d)

for any fundamental discriminant d < 0 of imaginary quadratic fields, where
2
0d) = ][ <1 - L\/ﬁJ> (1.0.1)
p+1
pEP(d)
and P(d) is the set of primes p dividing d except for the largest of them.
Moreover, using an elliptic curve E over QQ of conductor 5077 whose Hasse-

Weil L-function Lg,q(s) has a zero of order 3, Oesterlé proved that for any
d < 0 with (5077,d) =1,

2
hd) > S(ogld) [ (1- L2,
pld, p£d

In this paper, we modify the method of Oesterlé [Oe] by using indefinite

binary quadratic forms and prove the following theorem.

Theorem 1. If there is an elliptic curve E over Q whose Hasse-Weil L-
function Lgq(s) has a zero of order g at s = 1, then there is an effectively

computable constant k > 0 satisfying
0(d) (logd)?™3 < kh(d) logeg
for any fundamental discriminant d > 0 of a real quadratic field.

Theorem 1 immediately follows from Theorem 2.
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Theorem 2. Let E be an elliptic curve over Q and D(g) the set of funda-
mental discriminants d > 0 of real quadratic fields such that the base change
Hasse-Weil L-function LE/@(\/E)(S) has a zero of order > g at s = 1. Then
there are effectively computable constants c¢1 and co > 0 such that for any

d € D(g) greater than ci,
h(d)logeq > ca(logd)?~36(d).

Since logeg > logd, it is required that L, 1 \/E)(S) has a zero of order
> 5 at s =1 to get a non-trivial lower bound. But there is no known elliptic
curve E whose L /q(s) has a zero of order > 4 at s = 1. Let E(Q) be the
Mordell-Weil group of an elliptic curve F over Q. Birch and Swinnerton-
Dyer conjectured that if the rank of E(Q) is equal to g, then Lg,g(s) has a
zero of order g at s = 1.

Among the known elliptic curves E whose Mordell-Weil group F(Q) has

rank 4, for example, choose the curve
E:y?4+y=2a®+2%— 72z +210

with the smallest prime conductor N = 501029 (cf. [Cr]). Then Lgiowa(s)
has a zero of order > 5 at s = 1 for any d such that (%) = —1 under the
assumption that the conjecture of Birch and Swinnerton-Dyer is true.

Let A = n? +r be a positive square free integer with » € {£1,+4}. The
real quadratic field Q(v/A) is called a real quadratic field of narrow Richaud-
Degert type (cf. [De]). Let d be the fundamental discriminant of the real
quadratic field Q(v/A) of narrow Richaud-Degert type. Then we have

n+vn2+r ifr=4+£1,

Ed =
nAVRATif = 44,

Thus logeg < log (2v/d). By numerically computing the constants ¢; and
¢y in Theorem 2, we can obtain the following lower bound for the class
number of the real quadratic field of narrow Richaud-Degert type under the

assumption that the conjecture of Birch and Swinnerton-Dyer is true.

Theorem 3. Let E : y? +y = 23+ 22 — 722 +210 be an elliptic curve over Q
of conductor N = 501029. If the conjecture of Birch and Swinnerton-Dyer
is true for E, that is, the Hasse-Weil L-function LE/Q(S) associated to E
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has a zero of order 4 at s = 1, then for any fundamental discriminant d > 0
of the real quadratic field Q(v/A) of narrow Richaud-Degert type such that
(d,501029) = 1, we have

1 [2,/p]
h(d) > o (log d) I -2,
pld, p#d

2. REAL QUADRATIC FIELDS AND BINARY QUADRATIC FORMS

In this section, we introduce Hecke’s idea [He] which shows how a Dirichlet
series involving an indefinite quadratic form can be written as an integral of
a series involving a definite quadratic form. For more details, see Section 3,
Zeta functions of quadratic fields in [Go| and Section 3, Hecke’s Theorem in
[Za].

Let d > 0 be a fundamental discriminant of a real quadratic field. Let
Ck(s) be the Dedekind zeta function of the real quadratic field K = Q(v/d).

Then we have
Ciels) = 3 ¢(s,20),
A

where 2 runs over the ideal class group of K and

1
((s:%) =) 7=
aez;l/\/(a)

with the absolute norm N from nonzero integral ideals of the ring of integers
Ok of K to N* defined by a — |Ok/al.
If b € 2A~!, then the correspondence

a+— ab = (v)

is a bijection between ideals a € 2 and principal ideals (v) with v € b. Let
Uk = {£e4" | n € Z} be the group of units of K. Then v; and vy in b define
the same principal ideal if and only if vy /ve € Ux. Hence we have

(= Y MO

[ov'|*”
veb/Uk

where (here and in the sequel) the prime on the summation sign indicates
that the value 0 is to be omitted and v’ is the conjugate of v in K/Q.
By the reduction of indefinite binary quadratic forms, we can choose the

basis of an ideal b
—b++Vd
b= [a 7}

’ 2
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such that b4 +v/d > 2|a| > —b+ v/d > 0 and N'(b) = |a| (cf. [p. 633, Go]).
Note that b corresponds to an indefinite binary quadratic form (a,b,c) =

ax? + bry + cy? with d = b — 4ac > 0. Let

~b+Vd , ~b—Vd
—_—n, UV =am-+———n

v =am + 9 5

and

—b+Vd , —b—d
w=———, W =——-,
2|al 2|al

where m, n are rational integers. Since

/00 d o /°° do
Lo (02€® +0%e=%)s o5 o (e +e9)s

1 D(s/2)?
lvv!|s 2T(s)

for nonzero real numbers v and v’, we have

i) = X Y A

(a,b,c)veb/Uk

= X Ve | X [t

(a,b,c) veb/Ukg ¥

['(s) ! $(p2e® 4 o295

—logeg

logeg

F(S) logeg / A m2 B mn -+ C n2 —sd

where (a, b, ¢) runs over basis of ideals representing the ideal class group of

K and
A(¢) = lal(e? +e7?), B(¢) = 2a(we’ +w'e™?), C(¢) = |a|(w’e? +we™?)

for a variable ¢ € R (cf. [p. 161, Za]). Note that A(¢)m?+B(¢)mn+C(¢p)n?
is a positive-definite binary quadratic form.

Let Am?+ Bmn+Cn? be the reduced form of the positive-definite binary
quadratic form Am? 4+ Bmn + Cn? with real coefficients, that is, it satisfies
simultaneously

() JA|<B<C
(ii) B>0if A=|B| or C
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with
B? —4AC = B* - 4AC = —4d < 0.
Note that A, B, C are piecewise continuous real-valued functions of a vari-
able ¢ € R and the integral
logeq . .
/ (Am? + Bmn + Cn?)"%d¢
—logey
is well-defined. Therefore we represent (x(s) as an integral of a series in-

volving definite quadratic forms

B ['(s) log 4 S IO 5 2\—s
gK(s>_(§C) R /_ logsd(§)(Am + B+ Cn?)~tde. (2.0.1)

Also we have,

Cr(s) _ Z 2I°(s)

2
@) T 2 T6)
logeq _ logeq . . .
. / Avdg + / S (Am’ 4 Bmn+ Cn?)~de ).
—logeq —logeq (m,n)€ ZxN*

(m,n)=1

(2.0.2)

These two identities (2.0.1) and (2.0.2) will be used in Section 4, Proof of

Proposition 4, which is stated in Section 3, Proof of Theorem 2.

3. PROOF OF THEOREM 2

3.1. Associated L-function. Let E be an elliptic curve over QQ of conduc-
tor N such that the base change Hasse-Weil L-function L, 1 \/&)(3) has a
zero of order > g at s = 1.

We denote by S5(N) the set of normalized primitive holomorphic cusp
forms for the congruence subgroup I'o(N) of weight 2 with trivial nebenty-
pus 1y. From the Modularity Theorem, there exists f = > > a,q" (¢ =
e?™7) € SP(N) such that the associated L-function L(f, s) satisfies

o0

Lijo(s) = L(f.5) = 3

n=1

an,

(cf. [Theorem 8.8.3, DS]). If necessary, we denote a,, by a,(f). Thus Lgq(s)
has an analytic continuation to an entire function satisfying the functional

equation

A(f7 2 - 3) = W(f)A(f7 8),
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where A(f,s) = (\éﬂﬁ) I'(s)L(f,s) and W(f) = +£1 is the root number.

3.2. Twisting by a quadratic Dirichlet character. For a Dirichlet char-
acter xg4, there exists an integer Ny, > 1 and f ® xq € S5(N,,) such that
the p-th Fourier coefficient is given by

ap(f @ xa) = ap(f)xa(p)

for almost all primes p. This condition uniquely determines IV, , and f ® xg4.

Let

NN.
My=Y—_X (3.2.1)
|d|
and
M =2".3" . N, (3.2.2)
where
Ny = Ina,XXd {O Ordz(NXd) Ordg . 2}
N3 = max,, {0 Ordg(NXd) ords(N) 1}

For any conductor N’ of an elliptic curve E’/Q, it is well known that

ordy(N')
ords(N')
ord,(N') <

IN

IN

8
)
2 forp#2,3

(cf. [p. 385 and p. 388, Sil]). Thus we have upper bounds for ne and ng as
follows:

-2
-1

IN

2,
L5.

n2

IN
ut ‘OO

I
I

n3

We note that ord,(NN) = ord,(NNy,) for any prime p { d. Since 4 | d for even

d, we have

M > M.
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3.3. Symmetric square L-functions. The Hasse-Weil L-function Lg /Q(s)

can be expanded as an Euler product:

Lgjg(s) = H(l —app* +1n(p)p~ )"
P
= H(l - appfs)*l(l - ﬂppis)ia

where
for pt N, ap+ By =ap, |ap| =18l = /b, ap =5y,
for p || N, «a,==1, §,=0,
for p> | N, a,=3,=0.

If necessary, we denote o, and 3, by a,(E) and [(,(F), respectively.

The imprimitive symmetric square L-function L(Sym?E, s) associated to

E/Q is defined as follows: for Re(s) > 2

(N (25 —2) o= a2

L(Sym’E,s) = -n
(SymE, s) <N3_1)nzl :
= JI0=alp™) "1 = apBpp™®) 11 = Bop~*) !
p

= L(f7 %)L(f ® A, %)CN(S - 1)7

where A(n) = [, (=1)", L(f ® A\) = 32771 anA(n)n™* and the subscript
N of (v means that we have omitted the Euler factors at the primes dividing
N.

By [CS], there exist the symmetric square conductor B € Z, the primitive
symmetric square L-function L(Sym]%E, s) and the Euler product U(FE, s) =
[1,n Up(E, s) such that

A(Sym’E,s) := <27TB;/2> sF(s)F (%) L(Symf)E, s)

- (%L;/z)sr(s)r(g)usym?ﬂ s)-U(E,s)

satisfies the functional equation
A(Sym?E, s) = A(Sym?E, 3 — s). (3.3.1)

Let

My

m2 S
Fd(s): (R)SFZ(S) L(Sy 2E72)

(s —1)Cn(2s = 1)

(3.3.2)
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F\®)(s) its k-th derivative and F = {F; | d € D(g)}. We note that F is a

finite set.

3.4. The fundamental equality. As [Oe], let

U(s) = L(f,s)L(f @ A, s),

_ L(f®Xdas)
O L(feoAs)’

Gp(s) = the Euler factor of G(s) at a prime p,

G(U,s) = [] Gpls),

G(s)

p<U
G(U*,s) = G(s) — G(U, s) = G(U, s) <( I Go(s) - 1>,
p>U
My

1(5) = (o2,

/

p € {1,2} such that Wy = (—1)9*,

p=g—p —1, (3.4.1)
o+100 o1 o2 ds
J(U) = /a TG~ ) (3.4.2)
o410 S
J(U*) = /U TG 8) s - 1)—p—2;7m. (3.4.3)
Let
A(s) = d*!( Ma )°L(s)’L(f,8)L(f ® Xa,5) = d° ' y(s)¥(s)G(s).

42

Then we have the functional equation
A(s) = WaA(2 — s).
Since (—1)PWy = —1, we have

1400 5 ds 1+ico o ds
1) - _ _ 1)

/1ioo A(s)(s—1) 5ri Wa(—N) /1@'00 A2 —-s5)(s—1) ol
1+4i00 dz

= (=1)"W 1), 2

o [ A -

= 0.



10 DONGHO BYEON AND JIGU KIM

Since A(s) has a zero of order > g at s = 1, by the residue theorem, we have

for o > 1,
o+1i00 ds 1+ico ds
A —1)P 2 = A —1)7P 2 =
[ ame-nE = [ A= o
Therefore we have
JU)=—-JU"). (3.4.4)

3.5. To prove Theorem 2, we need the following propositions, which are

analogues of [Theorem 2, Section 3.5, Oe].

Proposition 4. Let E be an elliptic curve over Q of conductor N and D(g)
the set of fundamental discriminants d > 0 of real quadratic fields such that
the base change Hasse-Weil L-function LE/Q(\/E)(S) has a zero of order > g
at s = 1. Then there are effectively computable constants c3 and ¢4 > 0

depending on E and p such that for any d € D(g) with

dZC37

L(Sym?E,Q) leN ﬁ

we have either h(d)logey > RNy

(logd)? or else, for some

positive integer U,

o e2PM P g1 1
U] £ =4 H(Z'il)-h(d)loged I1 (1+-),

i=1 peP(d)

where q; is the i-th prime splitting in Q(v/d) (or the i-th prime), P(d) is
defined below (1.0.1), and Mgy, M, p, J(U*) are defined by (3.2.1), (3.2.2),
(3.4.1), (3.4.3), respectively.

Proposition 5. Let E be an elliptic curve over Q of conductor N and D(g)
the set of fundamental discriminants d > 0 of real quadratic fields such that
the base change Hasse-Weil L-function LE/Q(\/a)(S) has a zero of order > g
at s = 1. Then there is an effectively computable constant c5 > 1 depending

on E and p such that for any d € D(g) with

~ FP )
> p=1, 2 Fy
d> 121]?%(/) { exp (2 p N), exp (L(Sysz, 2)), exp (Qp Fa(l) )},



CLASS NUMBERS OF REAL QUADRATIC FIELDS 11

. L(Sym?E,2 i—1)(qi+1—2y/a
we have either h(d)logeq > ( L ) b ggﬂrlgggﬁHbgﬁ - (log d)P6(d)

or else, for the same U in Proposition 4,

Fy(1) Y i +1— (24 p+1—|2/p]

J(U)| > cd( ,) I1 i L2\\;J ~(logd)” [] —\f7
5P i qi peP(d) p

where q; is the i-th prime splitting in Q(v/d) (or the i-th prime), P(d) is

defined below (1.0.1), and Fy, p, J(U) are defined by (3.3.2), (3.4.1), (3.4.2),

respectively.

We will prove Proposition 4 in Section 4 and Proposition 5 in Section 5.

Proof of Theorem 2. Let ¢; be the i-th prime. Suppose for d € D(g) with

o : ()
d > max < c3, exp (2771 pIVN), exp (L(Sym?E, 2)), exp (2p—L—2) &,

FqaeF, ’Fd(1)|
1<k<p
L(Sym?FE, 2 b
h(d)logeq < ( Nliv s 1(logd)/’
20+ pl/ M
and
p
ym E Qz"'l |.2 %J)
hd10£< - (log d)P0(d).
(@) log = L i (o) - tesaro

By (3.4.4), Proposition 4 and Proposition 5, we have

3/2 p )
C42p]\24d H<Qz+1)_h(d)10g€d H (1+1)
=1

T q — 1

Fy(1) frai+1- 124 p+1— (205
csp! il;[lqiﬂﬂz\/@ S(logdy [ ==

MyL(Sym?E, 2) H p rai+l-[2ya)
p—1

c52m2p! oIV Pt 1t 12v/3i]
1—1|2
(logdy ] p+1-[2Vp]
peP(d) P
Therefore we have
h(d)logeq
L(Sym?E, 2 & g +1—[2/ai])

log d)?8(d

c1c521p urH 1};[1 q2+1+L2\/@J)(Og y6(d)

2E P 7 1—12 %
04052p+lp|2n2/23n3/2\/N p|N p— 1 2:1 qz +1+ LQ\/@J)
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Finally, if we take

. : 7470
¢ = max 1 c3, exp (2°71pIVN), exp (L(Sym?E, 2)), exp (2p—%—)

FreF, |[Fa(1)]
1<k<p
and
o= L(SymiE.2) P ﬁ (i = V(ai + 1~ [2v/a))
C4c5zp+1p12nz/23”3/2\/NP|N p—122(e+ (g +1+[2y@])
Theorem 2 follows. O

4. PROOF OF PROPOSITION 4

4.1. Choice of U. First we choose an appropriate U to prove Proposition
4. Let ((s) be the Riemann zeta function and (x(s) the Dedekind zeta
function of the real quadratic field K = Q(v/d). Let

k() )L xa) _ v
CK(S)— C(23) - 4(25) - — ns’

Then we have v, > 0 because the Euler product of ((s) is

C(s)L(s,xa) 1—p=
¢(2s) = 1l (1—p=*)(1 = xalp)p~)

— I a+r ]] (1if§:z>.

p ramifies in K p splits in K
(4.1.1)
Lemma 6. Ford > 4,
1
——L(1 d.
Z Up < 4log 2 ( 7Xd)\/>
n<%
Proof. See [Lemma 4, Go. O

Vd

1/m
We take for U the number (T) , where m is the smallest positive

integer such that

2 5,1 Md)logeq. (4.1.2)

The following lemma is an analogue of [Lemma 1, Section 3.5, Oe].

Lemma 7.

(a) For d > exp (6p°*1), the largest prime divisor of d is greater than
U.
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(b) There are at most p prime numbers ¢ < U which split in K/Q.

Proof. (a) For d > exp (6p°T1), we have

Vd—4+d
2

logey > log ( ) > tlogd > 2p" .

Let T be the number of prime divisors of d. Suppose T' > 2m + 1, where m
is defined in (4.1.2). Let h{t)(d) be the narrow class number of K. Then

we have
2h(d) if N(eq) =1,

) () =
) hd)  if N(eg) = —1,

where N is the field norm A : K — Q such that N'(z + Vdy) = 2% — dy>.
By the genus theory, 27! divides h(t)(d), so we have

41 (e 1o (D! o
me > 9p+1 () - pPt > 9p+1 pr 27,

which is contradiction. Therefore we have T < 2m. Since either d or % is

square-free, at least one of the prime divisors of d is greater than (1%)1/ T
and so than U.
(b) Suppose qi,q2, - ,qp+1 are primes less than U and split in K/Q. By
(4.1.1), we have

1+g® 1+q°  1+Ha8  Cx(s)

= - <
l—q® 1-g° 1-g,7  ¢@2s)

and for all pairs (I1,l, -+ ,l,41) € NP+ such that I; + 1o + - -+ + lpr1 <m,
we have

Lol ! Vd

By the Dirichlet class number formula and Lemma 6, we deduce the inequal-
ity
p+1
1\ ., 1
ST 2 (™) < s h(d) logea,
, 1 1 2log?2
=0
which contradicts the definition of m. Therefore there are at most p prime

numbers ¢ < U which split in K/Q. O
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4.2. Some integrals. Now we introduce some integrals needed to prove

Proposition 4.

Lemma 8. Let m > 1 be an integer. Let a < o be real numbers. As a

function of x > 0,

—a|logz[™ "

/U—I—ioo x_s(s B a)_mdisl T mCESyE O<z<l,
o—ico 2mi 0 z>1

is decreasing and convex if a > 0.
Proof. See [Lemma 1, Section 3.3, Oe] or [p. 95, PK]. O

Lemma 9. Let py,---, . be the positive measures on RY for which the
function t — t° is integrable.
(a) Let
o0
f1;(s) :/ ti%ng,  (1<j <7 Re(s) =0),
0
and

o-+100 s
J(z) = / fa(s) - fn(8)25(s — a) ™2

oo 2mi
Then J is the positive function on RY . Further J is convex and decreasing
ifa > 0.
(b) Let u} (1 < j <) be the positive measures on R satisfying the same
hypotheses with i and define J' analogously to J. Suppose we have

| o< [ iio.mar

forallz >0 anda>0. Then 0 < J < J'.

Proof. See [Lemma 2 and Lemma 3, Section 3.3, Oe]. O

The following example will be used in Section 4.3 to get the required

upper bound (4.3.9) of J(U*) from (4.3.8).

Example 10. Let the measures vi = Y 2,8, and v} = 61 + Leb[1,00),
where 0y, is the Dirac measure centered on n and Leb[l,00) is the standard
Lebesgue measure restricted to the interval [1,00). Let v and v} be images

of 11 and v} by applying t — t>. We have

v1([0,4]) < v1([0,t]) (for all t > 0)
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and

vo([0,¢]) < 4([0,¢])  (for all t > 0).

For Re(s) = 0 > 1, we have

X o . e 00 1
(o) = [ D ds ) = Y = ¢(2s)
n=1 n=1

and

A/() 1+/OO( )sdt 1+ 1 S

Uy(s) = = —

2 L 25— 1 s— :
Lemma 11. Let g(m,n) = am? + bmn + cn? be a positive definite re-
duced quadratic form with real coefficients and D = —(b* — 4ac) > 0 be

the discriminant of q(m,n). Let S(x) be the number of {(m,n) € Z x N* |

am? + bmn + en? < x}. Then
(a) S(x) < %x.
(b) S(x) =0 forx < @.

Proof. (a) S(z) is equal to the number of solutions of
(2am + bn)* + Dn? < 4dax,

which is equivalent to

—V4dax — Dn? — bn < 2am < Vdax — Dn? —

_ 4ax

Since n # 0, S(z) = 0 for z < £. Slncea<‘ﬁ for z > £,

s@ = Y (1P )

a
1<n<A

? > VA2—n24

1<n<A

< \Fw)\2+>\

IN

s 4a
= —T+1=VZ
VB DY

(=+3)
JD D"
2

< —=x.

VD
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(b) Since a < Q and n # 0,

(2am + bn)? + Dn? - 3vD VD
5

2 2
b = >
am” 4+ bomn + cn 1a ==

O

The following example will also be used in Section 4.3 to get the required

upper bound (4.3.9) of J(U*) from (4.3.8).

Example 12. Let the measures

e}
2
v= Z Og(mm) and V' = T /5 + %Leb[\/ﬁ/z 00),
(m,n)EZLXN* D
where Oq(m, n s the Dirac measure centered on q(m,n) and Leb[x, o) is the
standard Lebesgue measure restricted to the interval [x,00). From Lemma

11, we have

/x v([0,t])dt < /:v V' ([0,t])dt  for all x > 0.
0 0

For Re(s) = 0 > 1, we have

p(s)= Y. almmn)”

(m,n)EZxN*
and
VD\* 2m [
V(s) = 7T<> + — t°dt
(#) > ) YD s
B @ —s+ on 1 \/E —s+1
A J/Ds—1\ 2
s <\/5>_5
= 7 -— )
s—1

4.3. Upper bound of J(U*). By (3.4.3), Lemma 8 and 9, we have
otico 1 1 1, _4ds
*) < A5~ 3 - _oo\—4
o)< [ E s e -5
for all Dirichlet series ¢ which converges absolutely for Re(s) > 1 and sat-

isfies

U(s+ %)G(U*, s+ %) <L p(s). (4.3.1)

By (2.0.1) and (2.0.2), we have the following lemma.
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Lemma 13. We can take for ¢ satisfying (4.3.1), the integral of Dirichlet

series obtained by expanding

(5 e [ [ 5 cwomsor))

(a,b,c) —logeq —logeq (m,n)€ZxN*

and removing the terms of the form

21-\(8) 2. 2 logeq - logeq -
(F(S/2)2) C(QS) /—loged Al d¢/—logsd A2 d¢

if

min{A;(¢) | —logeq < ¢ < logeq}-min{Ay(¢) | —logeq < ¢ <logeq} < 4U.

Proof. Let
Cie(s) = C(s)?,
EK,p(S) = the Euler factor of EK(S) at a prime p,
EK(Uv S) = H EK,p(S)a
P<U
and
Ce(U*8) = Cie(s) = Ce (U, ).
Since
1 1 )
U(s+ §)G(s + 5) < Cr(s)?,
(s + %) < ((25)?,
and
1 Cr(s)\? =
Gls+3) < (C(2S)> = Cr (s),
we have
V(s + %)G(U*, 5+ %) < C(QS)QEK(U*, s).
If

min{A1(¢) | —logeq < ¢ <log ad}-min{Ag(gb) | —logeq < ¢ <logeq} < 4U,
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then
1. ;
U > 7 Ai(61) - Ax(¢2)

1

= 1 (mo0mt + Broymn + Cronnt)
: <A2(¢2)m§ + Ba(¢2)mansg + Cz(¢2)n§>

_ 1 vie?t + v/ e vge” 4 v'5e= 2
1T Ny N (62)

> [viv'1]  Jugv'y

N(b1) N (b2)
= N(a)N(az)

for some ¢1, P2 € [—logeg,logey], some rational integers my, ni, ma, ng,
some v, € by, v € by, and the corresponding ideals a; € [bl_l], as € [62_1].
Note that a; and as are products of prime ideals of norm less than U.

Since the Euler product of C:K(U, s) is

= 9 1 2
CK(U75):<H(1—Z7 *) H 1_/\/‘(@5>7

p<U N(p)<U

by (2.0.1) and (2.0.2), we have €(2S)2EK(U*,S) < the integral of Dirichlet

series obtained by expanding

(5 e [ [ 5 cwomsoir))

(a,b,c) —logeq —logeq (m,n)EZxN*

and removing the terms of the form

21_‘(8) )2' 2 logegq - logeq < g
<F(S/2)2 C(QS) ./;logsd Al d¢~[10g5d A2 d¢

if
min{A;(¢) | —logeq < ¢ <logeq}-min{Ay(¢) | —logeq < ¢ <logeq} < 4U.
U

Let u(t) be the unit step function
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We will use the following Mellin transform (see [Table 18.1, Po]).

F@):/‘e4f4ﬁ for Re(s) >0, (4.3.2)
0
m = /0 u(l —t)(1 —)> 157 dt for Re(s) > 0 and Re(b) > 0,
(4.3.3)
as+b o)
- = / u(t —a)t’t*~ldt for Re(s) < —Re(b) and a > 0.
s+b 0

(4.3.4)

Lemma 14. Let @(s) be the Dirichlet series obtained in Lemma 13. Then

we have

S NS VA s sy 1 1 ds
*) < s—5 [ 27a - ~ _ T\—p—222
sy [T () T A )

(4.3.5)
and we can apply Lemma 9 to the right side of (4.3.5).

Proof. Recall that v(s) = (Md)s I'(s)2. To check the conditions of Lemma

4n?

9, it suffices to show that the term I'(s)?/T'(£)* can be written by the form

in Lemma 9 (a). By the duplication formula of Gamma function,

1 (s + 1 s 1 5.9
I(s)? =22 =22 = 4.3.6
S U T VEI A VE e ) (4.3.6)
By (4.3.3), we have
s 1 1 00
Me+al) / w(l—t) g5 hat
T3 +1) 0 T—¢
o 1
= 2u(l —t tedt,
A RN

1 ©ou(l—t) o \P2*% 1 IR
o = () Vi) Seoae-p+p”
(43.7)

Expanding the term ((s — 1) + 3)? with respect to (s — 3), and applying
Lemma 8, the right side of (4.3.5) satisfies the conditions of Lemma 9. O
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Applying Lemma 8 and 9 to the right side of (4.3.5), we have

J(U")
o+ico ) $)2
< n@P@osed? [ ¢ E(s ) 2s - (40)
(5=

o+1i0c0 o1 1 4F logegq l—s
+2logsd/g d 2’y(s+§)r‘(s ( Z / dqb)

—300 (a,b,¢) logeq
o ds

( Z Z (m(gn{/lm2 + Bmn + C’n2})_5> (s — %)*p* e

(a,b,c) (m,n)EZXN*

o-tico 1 1, 4I'(s )
21 2 S—5
+( Oggd) /U_ioo d 27(8—’_ 2)F(S/2)4

. . - 2 1 ds
Z Z (min{Am? + Bmn + C’nQ})_8> (s — )P,

p) 2 2mi

(a,b,c) (m,n)€ZXN*

(4.3.8)

where min means min
—logeg<¢<log ed

In the view of Lemma 9, Example 10 and 12, we increase the right side

of (4.3.8) by replacing

((2s) by 8(8—%)_1,
= s VD\ ~*
> qmn)® by 7w <) :
(m,n)EZxN* s—1 2

with D = 4d. Therefore we obtain

JU*) < Jy + Jo + Js, (4.3.9)

where

i = “(logea) \/7 /:Zoo T2 2ljl(F (/ )>

Mdd s 2 —P—4 dS
'(16772U) s°(s 2) ori

: (4.3.10)
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logeg cr+zoo 1 4F(S)2
Jy = 2rh(d 1ogsd,/ / +o)2.
? logad o—100 ( 2) F(8/2)4

(ZA ) Mavdys %”“w,umn

472 s—1 2

(a,b,c)

and

o'+zoo AT (s 2
J3 = 4772h logad \/ / ZF(S(/2))4

(47rd) (sil) (s — 2) - 2;; (4.3.12)

4.4. Estimation of J;.

Lemma 15.

(a) Forxz >0 and o > 1, we have

o 3 f 3
o—100 2 2m1 0 0<z<l

(b) For x > e and o > 1, we have

otico 1., 40(s)? 1 ds 8
I —)? Sg2(s — =) TP < Zgp 3)Vz(l 4)PF3,
Proof. (a) By Lemma 8,
ofioo 1, 1 1 ds
(5= 5)+5) = 5 L
/Uioo 2 2 2 2mi
ofioo 1 4 1 6 1
= (s — )P+ —af(s — =) P Sat(s — o) PR
/Uioo 2 2 2 22 2
4 1 1 1 ds
= _ —\—p—3 o S(e . —\—p—4
Tt s m ) T s — ) s

\/5(|logx|/’*1 + 2| log x| + 3|log z|PT1 | log z|P+2 |log:c|”+3) x> 1,

(p—1)! p! 2:(p+1)! 2:(p+2)! 16-(p+3)!
0 O<z<l1

W‘/fg))!(logx +4)P+3 x> 1,

IN

0 O<zxz<l.
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(b) Let I be the integral

otico 1., 40(s)? 1 ds
/ F(S+§)2F( ( )4 ‘szQ(Sii)—p—éliﬂ
oo 5/2) 2 2mi

By (4.3.2), (4.3.7) and (
=T / g 20 )t 1
Vi-t 18 4r?

g+100 1 d
/ (4t1t2t3t437)884(8 — 5)7p7478,dT
o

—ico 271
_1 _1 — _
< //// et oty 2u(1 tg) 2u(1 t;) %
t1t2t3t42$ \/1 — t3 \/]_ - t4 47
\/4t1t2t3t4x

4-(p+3) (log (4t1tatstax) + 4)p+3dT,

where dT' = dt1dtadtsdts. Thus we have

_tlt—% _tQt—% 2u(1 — t3) 2u(l — ty)
1 1 € 1€ 2 2 2
<titaotstsa<k \/1 — 13 \/1 -1

1 \/4t1t2t3t4l'

T 4)P+34T
A2 4 (p+3)! (logx + 4)
titatgts> i Vi—-2 J/1-8
\/W 13
~ = (At tatst (] 1)) ar
47r 1 (p+3) (4t1tatsts(logx 4 4))
1 I(3) 4 I(2247)2
— (41— + T(p+4 22>
(p+3)!< ( )F4(i) (2p+17)2 (b+4) (22T
V(logz + 4)P*3.
By (4.3.6), we have I < 24°7(p + 3)!\/z(log z + 4)*3. 0
Proposition 16.
47+ (p + 3)! M, Myd Pt
< —C 7 n(d)3( 227d () ( ) 4 '
5 < T papogea - (1o () +

Proof. From (4.3.10) and Lemma 15,

o+100 4F(S)2

h (log<a) F/ e VT2
Mdd p 4 dS

(167T2U) s*(s - 2) omi

8-4°(p + 3)! ) 5 My Myd pt3
ST PTEOT gp(d)2( 2d () 1) .
iryier d)logea)” 77 0g(167r2U) +

O
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4.5. Estimation of Js.

Lemma 17. For x > 0 and o > 1, we have

o+1i00 4
@ [T e <o,
ag

—ico s—1 2 2w~

otieo 1., 4T(s)? 2 1 ds _ 213
) [ b O o Dy e P

o—ioco 27 T'(s/2)* s—1 2 270 T

Proof. (a) Applying the residue theorem to the vertical strip between % and
o and using (4.3.4), we have

+1 4
/a 100 1,5 S (S _ 1)_p_3d78.
00 s—1 2 2mi

244 4
T R
3

3 oo s—1 2 27
3 1ico 00 1 d
= 23 — /4 (/ u(t — x)t_lts_ldt> xst(s — f)_”_S—S,.
3_ioo 0 2 27

Since u(t — 2)t*~2 is a nonnegative function of ¢t on R* , by Lemma 9,
3 1ioco 0 4
4 N lys—1 ( _ 1 1) _ 1 —ﬂ_3§ >
/3_1-00 </O u(t —x)t 't dt)x (s 2)+2 (s 2) 57 >0,
4

and so we have

o+ioco 4
/ o (s — 1)_’)_3ﬁ <203y,
o 27

—ico s—1 2

(b) By (4.3.7) and (a), we have

o ico 1., 4@(s)? 52 1., 5ds
| s+ ) pap 51~ 9) " om
o—100

1.,41(1)?
< (14 =) 2Pty
2" T(3)*
2p+3
= —u.
m

O

From Lemma 7, we know that there are at most p primes ¢ < U which

split in K/Q.

Proposition 18. Let ¢; be the i-th prime q which splits in K. Then for
d > exp (6p°T1) we have

P
o < i—;h(d) tog 403/ (1 + h((]d)) I1(%* 1) I a+2)

el Rl
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Proof. We have for o > 1,

2F logeq i 2T (s) ©
223/ % < nwma%%/mA d

logeg

(

where b’s are the corresponding ideals to (a, b, ¢).
Therefore

logsd s Cr (s)
5/222/ d¢<ZN ©F < C2s)’

logeq (a,b,c)

and so by (4.1.1) and Lemma 7, for d > exp (6p°!) we have

%Z /logsd il < <1+h(Ud)>1£[<1+qi_i) H (1_’_1)'

(a,b,c) ’ ~108Ed = g peP(d) p

By (4.3.11), Lemma 17 and (4.5.1),

logeg a+zoo 1 4F(S)2
Jy = 2mh(d logsdw / T(s+ 2)?-
loged T—100 2 F(S/2)4

(50l by

(ohe) 211
M 3/2 9 logeq .
< 20P371n(d)logeq | —2 = > / A~tde
472 7r( by~ logea
2° 3/2 1+q; " 1
< 5h(d)log=aM; ( )H<1—q ) I1 (+2).
vt peP(d)

4.6. Estimation of Js.

Lemma 19. For z >0 and o > 1, we have

o+i0co 4
@ [ - s < St
o—ico (s —1)2 2 21 — 16

otico 1., 4T(s)? 52 1 ds 5
r =)? s — Z)P2 < 4z2
(b) /U_m ) et o T e S

Proof. (a) For o > 0, let pl, be the images of d; + Leb[1,00) by applying

t — t'/®. By the same way as in Example 10, we have

il (s) =1 +/ (Vo =sdt =1+
1

S

s/a—lzs—a'
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For 0 < e < 1, we have
st st 9 ( s )2 s s
J— 6 . . .
(s—1—¢e)(s—1+¢€) (s—1)2 s—1 s—1—€¢ s—1+ce€
= i (s)” - () - Bh_o(s),

and so by Lemma 9, we have the following inequality.

+i 4
/J R (s — 1)—/)—2@
g

—i0c0 (S — 1)2 2 271
o+i00 4 1
< [ = : (s—2)r2 L
o—ice  (s—1—¢€)(s—1+¢) 2 2mi

Translating the vertical line to the right such that ¢ > %, substituting

% for e, applying the residue theorem to the vertical strip between 1 and

o> 3, and using (4.3.4), we have

/a+ioo xs 84 (8 B })—p—Zﬁ

i (5—12V 7 2 2
/O'—i-ioo xs 84 (8 B 1)_p_2d78‘

T Jo—ico (s — %)(s - %) 2 2mi

3 1+ico 4 1 d
= QW P e
2 l-ico  (5—3)(5—35) 2 27

3 14400 oo 1 d
= (5)41‘% —/1 </0 u(t—:v)t_gts_ldt):ngs4(s—2)_’)_32;,.

—100
Since u(t — x)ts_% is a nonnegative function of ¢ on R% , by Lemma 9,
Lioo % 3 3 1. 1\ 1 ds
-y de T )ad (s - 5) 4 5) (s 5) P 20,
/1—ioo </0 u(t — )t >x2 (s 2) * 2 (s 2) 2w

and so we have

o-+ioco 4
/ 55 (s — 1)—9—2‘&. < (§)4m%_
o—ico  (8—1) 2 2mi 2

(b) By (4.3.7) and (a), we have

o-+ioo 1., 4T(s)? s2 1 ds
/a Pls+ 2)2F(8(/2))4 o (s —1)2 (=)™ 5

—100

4T(3)? 3
< TG+y) r<(f;2>)4 Qe

IN
W
8

Njw
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Proposition 20.

1
Jy < ﬁh(d)Z(logsd)QﬁMdQ.
Proof. By (4.3.12) and Lemma 19,
Md o+100 1 4F(S)2
Js = 4m?h(d)*(logeg)? 47r2d/ - D(s+ 5)2r(s/2)4
() 7)) o
1 Mg\
< 16772h(d)2(10g5d)2—(—)
- Vd N4m?
O
4.7. Now we can prove Proposition 4.
Proof of Proposition 4. Let
20 Lorai+1 1
Jo = 5h(d)logandy ] (%) IT @+
i N4 peP(d) p
L(Sym?E2) [1,n 35
Assume h(d)logeyg < 2P+1p!\/%N =L (log d)”. By (4.1.2), we have
2
22042/ M
and so we have
1 Vd 1(logd — log 16)
logU:ElogT > 2 . T
m? P 1
1+ i <(p+1)L(Sy \’/EM’Q)HNN p—1 > ot (log d)#
1
VM logd o
> 2 e . (4.7.1)
2(p+ 1) L(Sym7E, 2) [, n ;51

for sufficiently large d, which depends on N, p, and L(Sym?E, 2). By Propo-

sition 16, we have

lo ﬂ
g Jo
12(74%) L(Sym?E,2) [Ty 521 log M + log My

+ ploglogd
T 2

1

Md VM logd .

3)1 | —_— 4] —
#3108 108 (q537) +4) <2<p+1>L<Sym%E,2>Hp|N )

= . (4.7.2)

< log
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By Proposition 18, for d > exp (6p°T!) we have

Jo
| — -1
Og<Jo >

L(Syng, 2) leN 1% B log M

< log 5771 5 T ploglogd
_1
) VM logd i
2(p + 1) L(Sym7 B, 2) [T, v 551
= cC7.
By Proposition 20, we have
2 P
J3 L(Sym; FE,2) Hp|N p—1 log d
log <Jo> < log 2271 ] + ploglogd — 5

=: C8.

Since cg, c7, and cg are decreasing with respect to sufficiently large d with
d > exp (6p°T!), we can take their maximum values. Thus if we take a

constant c3 > exp (6p°"!) satisfying (4.7.1), and a constant
cqg > (1+ €% + €7 4 e%),

Proposition 4 follows from (4.3.9). O

5. PROOF OF PROPOSITION 5

5.1. Lower bound of |J(U)|. Applying the residue theorem to (3.4.2), that

is,

o+1i00 M ds
_ s—1 d 52 _1y—p—2 %
J(U) /a_ioo d (47T2) (s)¥(s)G(U,s)(s—1) 5
we have
) s—1,Mq\s o —p—2
J(U) = [the residue of d (ﬁ) I(s)¥(s)G(U,s)(s —1)7"7% at s =1]
T
+J_1(U),
where

My

J_1(U) = /Cdsl()sr2(8)\lf(s)G(U, 3)(8 B 1)fp—2ﬁ

472 27
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with the directed path C: 1 —ico — 1—in’ — 1—n—in’ — 1—n+in’ —
1+in — 1+ic0. n and ' are to be determined later. Also we have

5
[J1(U)] < sup |G(U, 8)| - > In(s)ds, (5.1.1)

seC —1

where

14i0c0 1—in’ 1+in’ 1—in’ 1—n+in’
11:/ 712:/ aI3:/ aI4:/ 715:/
1+in’ 1—ioco 1—n+in’ 1—n—in’ 1—n—in’

of which the integrands are

= () 2 ) (s - 1) 122
We note that Fy(s) = (224)°T%(s)¥(s)(s — 1)7! (cf. (3.3.2)). Since ¥(s)

has a zero at s = 1, Fy(s) is a holomorphic function. Then we have

J(U) = /UHOO d* 1 Fy(s)G(U, s)(s — 1)*P*1di_,

o—100 271
and
J(U) — JA(0)
— e Eeews)
_ AN (P pgy S e dYi—iG0)
= Sjllozd Fi(G(U.1)
P (p—1) i . ;
;{(i)“gd) TR & (j)“gd) e (-
Let
P (p—1) i
_ P\ (oe gy~ (0~ . Ld (1) o GU(U,1)
! §{< Jaoso0 S 37 () towar }
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Then we have
p—1

|H| > H,) = > He.
1=0

Let

g J_1(U)
T | L Gog dyr Fa(G(U 1) |

Then we have

(V)]

Y

[J(U) = JaU)] = [T (U)]

1 Pt
> ;(logd)ﬂFd(l)G(U,m-<H<p>—ZH<Z-)—H*1>. (5.1.2)
: i=0

5.2. Estimation of H, and Zf:ol H;y. By Lemma 7, we have

GU,s) = H Gp(s) H Gy(s)

peEP(d) q€{q1, 9}
p<U q<U
1 (1 s
- H (1+ O‘Pp_s)(l + /Bpp_s) H El i_ qu—sigl i_ gqq—s;'
p<U q<U

Therefore we have

G(U,s) H (1+ appis)(l + /gppiﬂ
G(U,1) (14 app~H)(1+ Bpp~h)

peP(d)
p<U

H (1+agq )1+ Byq°) (1 - aqq_l)(l - 5(1‘1_1)
(14 agg ) (14 Bg7) (1 — agqg=)(1 — Byq™5)

q€{q1, 9}
q<U

For k > 1, we have

% (—log p)ko‘pp_s + Bpp™° + Zf:o (I;) o Bpp™
Gp(U, ) (1+app=)(1+ Bpp~*)
1 . 2k 1-2s + (cv, + —S
= (—logp)k N(p) P —s ( £ ﬁp)ri—?s
1+ (ap + Bp)p~s +1n(p) - p
and
Gy (U, 1) pIn(p) 2" +ap + 5y

G R T In () (5.2.1)

Lemma 21.
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(a) For =2 <t <2, k>1 and any prime p, we have

2k 4t
J| < (%)k.
p+1+tp

(b) Forte {-1,0,1}, k > 1 and any prime p, we have

(log p)* - |

t
(logp)* - ’Zm\ < (2k)k.

k k
Proof. (a) We note that 2D 14 2=l attains its maximum value

pH1+t/p pHi+t\/p
and minimum value at ¢ = £2. For any k£ > 1 and any prime p,
2k 42 k
iV
(Wp+1)* = b
For any k£ > 2 and any prime p,
2,/p—2* &
2p-2 2
(WP—1 " b
and for k£ > 2 and any prime p > 11,
2k -9 k
LELY
(Wp—=1?2 " b
Let I(x) = (logz)* - \2/—2 Since 1) (z) = %(2k —log z), we have for
any r > 1,
4k Nk
I(z) < () = (7) < (2k)*,
e

If k=1 and t = —2, we have for any prime p

2—-2 2

p+1—2.p N/

Therefore it suffices to show that for k > 2 and p € {2,3,5, 7},

logp -

k_
(log p)* - (2\/5_2\1/)12 < (2k)*. (5.2.2)

For k> 5 and p € {2,3,5,7},
2k —2./p ok
logp)k - —Y < (log 7)F - ——— < (2k)F.
(ogp)* - (=40 < (logT)* - 2 < (2
By simple calculation, (5.2.2) holds for k € {2,3,4} and p € {2,3,5,7}.
(b) Let I(z) = 2(logz)* - 2. Since IV (z) = 200%#(/6 —log ), we have for

any x > 1,



CLASS NUMBERS OF REAL QUADRATIC FIELDS 31

Therefore we have for ¢t € {—1,0,1} and any prime p,

(logp)" - | =] < ) < (2h)"

O

Proposition 22. Recall that T is the number of prime divisors of d. Let

73" ()]
V = max p,er { 176l } Then we have
1<k<p

logd
(b) 2000 Hepy < 25 - exp (4EE22).

(a) H(p) > 2 —exp (M) .

Proof. (a) By (5.2.1) and Lemma 21, for j > 1,

. GU(U1
tos) Gy
< (logd)™ ZJ: (T -1+ 29) <J’ - 1>|G§%1)(U, 1)...a9 @, D,
B k=1 k k—=1) Gp(U,1) -Gy (U, 1)
J .
< (logd)™ Y (T —1+2p) @_1)(23')9
k=1
( 2(T +2p)j >
logd '

Thus we have

Hy = -3 (0) (e

Vv
[\
|
/N
—_
+

> 2—exp<

(b) For 0 <14 < p—1, we have

Zi: <;> (logd) ™ - |GG(j()((](’]’1)1)| < 1+ i: <;> (Q(Tk;;zp)j)j

j=0 j=1

IA
/N
—
_l_

Thus
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v = i
< . _
< Togd {() (1ogd+2(T+2p)(p 1))}

pV p=1
<
= logd)y (logd+2T+2p))

WV AT +20)py e
< : S T AP
— logd <1+ logd )

pV 4(T + 2p)

logd exp( logd )

5.3. Estimation of H_;.

Lemma 23. For % <o =Re(s) < %, we have

L(Symf,E,s)
((s—1)

where B is the symmetric conductor of F.

< 7B?
= 4m3/2 Is(

s+ 1],

Proof. We have the following functional equation.

(s — )_S/QF<S;2>C(S): rle= 1)/21“< 5 )C(l—s) (5.3.1)

By (3.3.1), (5.3.1) and the duplication formula for the Gamma function, we

have
(B)°T(5)” LSympE,s)  a(£) T (33)" L(SympE,3 - s) (532)
(s—2)  ((s—1) —(s—1) (2-s) 77

By the Euler product of L(Sym]%E, s)/¢(s — 1), we have

L(Sym’E, 5 — it)
<)<
¢(3 —it)
By (5.3.2), we have
LSym2E L +it)| B2 [T —ib)?| | -3 +it| |L(SymlE, 5 —it)
(it S veuiEi M e )
L P R R
473/2 |2 ! g Tt
Hence, the function
L(Sym?E,
(Sym, , 5) “Hs4+1)7!

(-1 °
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is bounded by
7B?
43/2
on the lines ¢ = 1 and o = 3. By Lindelsf theorem (cf. [p. 15, HR]), this
implies that
L(Sysz ,S)
(s =1)

7B?
— 471'3/2

s(s+1)] (3<0<

[\lfé3
~—

O

Let £’ be a quadratic twist of E by a square free integer D such that the
conductor N’ of E’ satisfies ord,(N’) < ord,(N") for all primes p and all

quadratic twists E” of E with conductor N”. Then we have
L(Sym%E, s) = L(Sym?,E/, s)

and the symmetric square conductor B’ of E’ is equal to B.
Let
St = {p, prime:p|D, ptN'},
S2 = {p, prime:p| D, p|[N'}.
Then we see that for odd prime p, if p € Sy or p € Sy, then ord,(N) = 2
and if p? | N, then ord,(N) = ord,(N’). Also we can write
N = MDjiD32*e,
N' = MDy2*#,
where M is odd, D; is the product of the odd primes in Sy, D5 is the product
of the odd primes in Sy, and A\g = ord2(N) > Mg = orde(N’). From the

definition of the imprimitive symmetric square L-functions,
L(Sym?E,s) = L(Sym?F',s)

x [T (0 =ap(ENp*)(1 = p'=*)(1 = BH(E")p™)
PESL

< [J(a=p7). (5.3.3)

pES?2

Let B=B'=1]], p®. Then we have

forpt N', 0, =0, Uy(E',s) =1,

forp | N', 0p, =1, Uy(E',s) =1,

for p? | N/, 0p > 1, there are three possibilities for
Up(E',s): 1, (1 £pt=*)~1

(5.3.4)
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(cf. [CS], [Del] and [Wal).

Lemma 24. For % <o =Re(s) < %,

7

[U(s)] < 5 B R(N)I2s(25 +1)]

where B is the symmetric conductor of E, N is the conductor of E and

Vi VP IN2 B+ 1
V=TS TG

Proof. By (5.3.3), we have

U(s) = L(f,s)L(f®\s)

L(Sym?FE, 2s)
CN(2S — 1)

_ L(Sym}FE',2s) Coev—

_ W H(l _pl 2 ) 1

p|N

x [T (= af(B)p>) (1= =) (1= g3 >) < [T (= p7)

pESL pESs

2 v

pIN PN’

x [] Q= ef(E)p )1 —p" ) (1= B2(E)p ) x [J(1-p*).

pESL pESs

By (5.3.4), we have for 20 > 3/2,

[Ja-p"2) " x| ] Un(E25)"

pIN PN’

| TT {2 )1 —p 2 - 82w )} x | [T (1 -p>)

pEST PESs
< Hl_,pl w TT 0+ )
p|N p2IN
< (1 1-2s)) 1+ [p! %
= H ‘ T _ |pl-2s( 2| H +Ip | 1— [pl=2s
HN p2|N

f VP +1\2/p+1
S ML) 55

Thus Lemma 24 follows from Lemma 23.
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Lemma 25.

Sup,ec|GU )| _ 2T (¢4 1)(a+ [2va) + 1)
oy 25w I ooe—zay

q€{aq1, a0}

Proof. Forogegiands:l—e—i—it, let

+5 1 A ‘
Dy(e) = 1+ ;ip_e-trft + i + (ap + Bp)pe—zt +p25_l2t
P 1+%‘%+% p+(ap+/8p)+1 )
and
AT R CTRN. N S i Tl TR DR
q a4+ (0g+fg) +1 q — (0g + Bg)g" + >

Since —2,/p < o + 3, < 2,/p and oy, + B, € Z for all primes p, we have
supyec |G (U, s)|

|G(U, 1)
= IJ - [ 1Dg(e)]
pEP(d) qe{a1,,qp}
p<U q<U

(VP+¥p)>* Va+ ¥a\* g+ 2y +1
< 1 p—2yp] +1 11 (f—%) ¢—2val+1

peP(d)
Since (/p+ ¢/p)? < 2(p + 1) for p > 29, we have

1 woe ot < [1 YV or T o

q€{q1, qp}

peP(d) 2<n<29 2(n+1) pep(d)
prime n
< 122" J] (+0).
pEP(d)
Since (%)2 < % for x > 2, we have

Ji+1Y’ (n = (7 +1)? g+1
0 (%) < Al seenm-pe ™

qg—1
e q€{q1, ,qp}

q€{a1, a0}

qg+1
< . P -
< 9-8 ] 1
q€{q1,,qp}
Therefore
Wace GU | g 21 pp @t Dlat 2val +1)
GU, 1)~ 0(d (a—1(g—12v4q] +1)

q€{q1, 90}



36 DONGHO BYEON AND JIGU KIM

1
Proposition 26. We put n = 1 and 1/ = 3(Myd)T#+2 into (5.1.1). Then

we have

3
0.08 - 4°*2. M 1R(N)B?

RSO | IICERMUERENIERY

H. < i 108 : ,
Ldi (log d)P Fy(1) 0d)  etam gy @~ Dla—[2va +1)
where
D p+1\2,/p+1
R<N):H\/ﬁf—1 11 (f\/]; ) g—l‘
pIN p’IN
Proof. We note that for o > 0,
| - if 2] > T
T < VEmexp (do)lsfo—2 { P IE= 5
exp (=3[t]) if [F[ <3

(cf. [(46), Go]) and the upper bound of |¥(s)| is given in Lemma 24.
Firstly, we consider the integral I;. For s =1+ 1y, 0/ <y < oo,

n o= /1 d*%ﬁ)sﬁ(s)m(s)(s_1)*%2 |2;9r’
+in’
TMyR(N)B? [ - . : L
= 46;51:3/2/2 O+ iyle™™ - |(2 4 i2y) (3 +i2y)| - Py
e - a7 2

IN

1\pt2
0.007 - (—,) - MyR(N)B2.
n
Similarly we have
1\prt2 9
I < 0.007 - (7) - MyR(N)B2.
n

Secondly, we consider the integral I3. For s = x + i)/, % <z <1,

1+in’ M |d5|
— s—1 d\S2 \—p-2
I = ﬁ . d (4772) I(s)¥(s)(s — 1) o
atm
TMyR(N)B? [1 T ' '
47r247'r3/2/3 2z +in'|le™™ - | (22 4 i20)(2x 4+ 1 +i21))|
4
/P2 dx
DLRNE [
A2 - Am3/2 Js

< 0.002- ( ! )’)+2 - MyR(N)B2.

"
Similarly we have

1\pt2 9
I4§0.002~( ) - MyR(N)B>.

"
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Finally, we estimate the integral I5. For s = 3 +iy, —n/ <y <1/,
%-i—in’ ‘dS’

— sl
§-i’

My
2T

47r2)sr2(5)‘1’(8)(5 —1)7r?

ds—l(

3 12
1 My e [ [D2()U(s)| |dy| 7 |T2(s)W(s)| |dy]
= 2 “(47#)4{/0 s —1pr2 27r+/23 s —1]p+2 ﬁ}

=: 2d7%{f5,1 + I572}.

Further we have

My 3TR(N)B? [3= e o . .
Ba < () TEEDES [¥ g g a7, | 4 i2g)(§ + i)

.4p+2dy

3
< 0.022-4°*%. M] R(N)B>.
and
My 37R(N)B? [ , . ‘ .

ho < (PRI [T iz iy G iz + i2y)

L iy TP dy

Mg\ 3 TR(N)B? [ -
(47r2)44(7r3/)2/3 62/9(%)1/2e v, % . g'4p+2dy
27

3
< 0.006-4°*%. M} R(N)B>.

Therefore we have

3
Iy < 0.056-4°T. MIR(N)B*d %

By (5.1.1), we have
L\ pt2 p+2 -1 -1 2
T (U)] < {0.018'(7) +0.056 - 4742 M 7d 4}-MdR(N)B

-sup |G(U, s)|
seC
3
< 0.08-47%2.47% . MAR(N)B?-sup|G(U, s)|.
seC

By Lemma 25, we have

J_1(U)
1 (log ) Fa(1)G(U, 1)

H 4
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3
0.08- 472 MR(N)B? | 27+
L1 (log d)rFy(1) 0(d)

1T (g+1)(g+2yq] +1)
(¢—1)(g—[2yq] +1)

q<{q1, .90}

5.4. Now we can prove Proposition 5.

Proof of Proposition 5. Suppose that for d € D(g) with

Jal
4> max {exp (277 p!V/'N), exp (L(Sym?E, 2)), exp (2p| |} ((11)|>}

1<k<p )
; £ i+ 1204
h(d)logstM H )i + L QJ)
12 i3 (6 + Dl + 1+ [2v/a@))

Since logey > log (%) > % and 2772 | h(d), where T is the number of
prime divisors of d, we have
27 log d

< 12h(d)logeq

P
QI +1-— LQ\/@J)
< SmEQlO d)o(d . (b4.1
= L6 ® g %+wa@>( )
Since d > exp (2°~'p!V/N) > exp (2°), we have
loglogd
. 4.2
log 2 (54.2)

Since d > exp (L(Sym;E,2)), by (5.4.1) and (5.4.2), we have

log L ’E,2 -1
T o< o8 (SymjE, 2) + P g logd
log 2 log 2
(log log d)2
log2 7~
By Proposition 22, we have
2(T + 2p)
H(p) Z 2 — exXp (W)

and

PV 4T +2p)
ZH( 7d ep( log d )
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By Proposition 26 and (5.4.1), we have

H 0.08-47¥2 J\éRUV)B2 f[ g +1)(gi + [2/@] +1)
o %d%(log d)PFy(1) (g =@ — [2v@] +1)
-L(Sym?E, 2)(log d)*~'6(d H ¢i +1—12v4])

1:1 g +1 qz+1+L2\/@J)
28072 - 2% - R(N)B? [, (% Ly

p

< : .
Mg di 1(log d)

Thus we have

p—1
Hiy—> He —
1=0

2(T + 2p) pV 4(T + 2p)
> 2 - : S 24
= exp ( log d ) logd % ( log d )
2807 - 2% - B2 R(N) [[,v(55) 1
v/ My d (log d)

Y

2 sloglogd 2
2— 1
xp <10gd( log 2 * ) >
pV 4 rloglogd 2
1
logd FOxP <logd( log 2 * )
2807 - 2% - B2R(N) [, v(55) 1

- a . (5.4.3)
v/ My d (log d)

Since d > max{exp (2°~'p!v/N), exp (L(Sym?E, 2)),exp (20V)}, by (5.4.3),

we can take ¢ > 1 such that

p—1 1
Hipy =D _Hay = Ho> —
=0

For d > max{exp (2°~!p!v/N), exp (L(Sym?FE, 2)),exp (2pV)}, by (5.1.2), we
have
1
— (log d)P Fy(1)G(U, 1)
csp!

Fa(1) ypai+l-12val oo d)? p+1-1[2p]
csp! Hqﬁ—l—i—@@j (logd) H D

v

[ J(U))]

peP(d)

as desired. O
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6. PROOF OF THEOREM 3

Consider the elliptic curve E : y>+y = 23 +22 —7224210 which has prime
conductor N = 501029. We remind that the Mordell-Weil group E(Q) has
rank 4. Suppose that the conjecture of Birch and Swinnerton-Dyer is true
for E, that is, the Hasse-Weil L-function L /q(s) associated to E has a zero
of order 4 at s = 1. Then the root number of E is equal to 1.

Let A be a square free integer such that A = n?+r with r € {£1, 44} and
d be the fundamental discriminant of the real quadratic Q(v/A) of narrow
Richaud-Degert type. If a prime p splits in Q(v/d), then we have

1 Vid—2
h > |
(d) 2 logp 8 2

(cf. [p. 86, Mo]). Thus if x4(—N) = xa(N) = 1, we have

(6.0.1)

Now we assume yq(—N) = x4(IN) = —1 and E(d) be the quadratic twist
of E. Then the root number of E(d) is equal to —1. Thus LE/Q(\/E)(S) has
a zero of order > 4 + 1 at s = 1. Since logeg < log (2v/d), by Theorem 1.2,
we have for d > ¢,

h(d) > ch(logd)f(d) > chlogd) [ (1— 240, (6.0.2)
pld, p£d

/o log c1
where ¢y = 2¢ Togcytlogd:

Proof of Theorem 3. Here we calculate the constants ¢ and ca. Let E(D) be
the quadratic twist of F' by a square free integer D and Ng(p) the conductor
of E(D). Then we have

E:y*=a3+a2? — 122 + 8, N = 501029
E@2):y?=a%+222 - 22 720423 . 8L Np) =25-501029
E@):y?=a%+322-3%. 720433 - 8L Npg =2-3%.501029
E(6) :y? =23 462> —6%- 720+ 6% - 3L, Npg =20-3%-501029
E(-1):y* =12 —2® — 722 — 8L, Np(—1) = 2*- 501029
E(=2):y? =2% 222 —22. 720 — 28 891 Np_y =26.501029
E(=3):y? =% - 322 — 3% .72z — 3% 81, Np_3 = 3% 501029
E(—6):y? = 2% — 62 — 62 7220 — 6% - 2L, Np_g =2 3%-501029
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Since any quadratic twits of E is a quadratic twist of one of the above
elliptic curves by an integer coprime to 6, we have ny = 0, ng = 0 and
M = My € {501029, 501029%/2}. Since (d,501029) = 1, we have M = My =
N = 501029 and

Fus) = L(Sym?E,25)( g T(5)?

1 1
(s—1)C(2s — 1)1 — N-2s+1°

Let ¢(FE) be the Manin’s constant of E, vol(E) the volume of a minimal
period lattice A with £ ~ C/A and deg(E) the modular degree of E. These
invariants can be calculated by Sage and we have

2me(E)%*vol(E) deg(E)
N

L(Sym?E,2) =

= 4.12289...

(cf. [p. 490, Wa]). The Laurent expansion of the Riemann zeta function

can be written in the form,

)= +3 El -y

s—1
n=0

where 7, are the so-called Stieltjes constants. Then we have

(s—1)C(25 — 1) = % Y (_271)!"%(5 oy,
n=0

2

It is well known that T (1) = —yg and T (1) =42 + %+ Thus we have

1
£ () LOEymiB,2) |\ Ny L0, - 2legN
Fy(1) L(Sym2E, 2) 472 r(1) 0T N-1
LW 2F.,2
L(Sym;FE,?2)
and
FEQ| |, L@ symiE 2) +(10g<N))2+2r(1)r<2>(1)+r<l>(1)2
Fy(1) L(Sym?E,?2) 472 I'(1)2

8(log N)2 4+ 4(N — 1)(log N)?2
18(12 1 ) + S00BN)2 + 4(N — 1)(log )

(N —1)
LW (Sym?E, 2) N () 2log N
4 2 (log (—5) +2 — 270 —
L (sym?E, 2) ( o8 () ¥ 2y 20 )

N)<2F(1)(1) ) _210gN>

2log (— -
F2log (15 2Ty ~ 20~ v 1



42 DONGHO BYEON AND JIGU KIM

(1) 2log N log N
— Qv —
T(1) ( 0 N—l) S0y -1

IL®)(Sym?E, 2)] IO (Sym?FE, 2)|

< +73-4 + 55.1.
L(Sym?E, 2) L(Sym?E, 2)
By numerical computations with Magma, we have the following rough upper
bounds
LW (Sym?E, 2)| < 20
and

|IL@)(Sym?E, 2)| < 1000.

We substitute N for both M and M, in (4.7.2) in the proof of Proposition

4. Since
1
a \/N p+1 1
2 1 (2p+3)log X — Xo
oX 2(p + DLSym?E, 2) [Ty 325
1
ey
_ 1 p+3)- vy P X
X p+1\2(p+1)L(SymIE,2) [T, n 521

and
2(p +1)P2(2p + 3)P T L(SymPE, 2) [ v 527

N :
its primitive function of X = logd attains the maximum value at logd =
5180. Also, d > exp (5180) satisfies (4.7.1). Note that exp (2°~1plV/N) =
2831.3.... So we have

X =logd > 5180 >

2|LM) (Sym?E, 2
c1 = max { exp (5180), exp (2L pIV/'N), exp (4( | (S4y1;nl 2l + 7.3)),

4
°Xp ( ( 11 + 11

= exp(5180).

4|12 2E 2 29.2| L) 2E 9
|L? (Sym; E, 2)| 9.2| L' (Sym; ,)|+55‘1))}

Further, we can take

Ce
12(73°) L(SymPE, 2) [ n 527
W\/N\/Md
1

VNlogd o
2(p+ 1L(Sym7 B, 2) [Tn 527

< log

+ (2p + 3)loglogd
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12("5%) L(Sym?E, 2) [~ 555
TN
_1
VN (5180) Pt
2(p + D) L(Sym; B, 2) Ty 525
= log(0.336...).

IN

log

+ (2p + 3) log (5180)

Similarly, we can calculate ¢; and cg and so we can take

ca=14+e%+e7 +e%® < 1.34.

2V < 1 from (5.4.3) we have

Since logd

cy < 2.82.

Thus we have
2n2/2 . 3ns/2 . ¢, . cs < 3.78.

By (6.0.1), we may assume that for 1 <i < p,

201/ N
4 > eXp( 12_[10|N P > > 890,
(Symi E? 2)
and so we can take
. 1 L(Sym?, H p ﬁ )ai +1 - [V24¢])
3.78 20+1pl\/N p|N -1 g + 1+ [V24qi])
1
10390
Thus we have ¢y = z5. Finally, we note that (6.0.2) holds for d <
exp (5180), because h(d) > 1 and 0(d) < 1. O
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