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Abstract. In this paper, we prove that for any integer n ≥ 2, there are infinitely

many elliptic curves over Q with a rational point of order two (resp. three) whose

conductor is a square-free integer having n prime factors.

1. Introduction

For n = 1 or 2, there are many studies on elliptic curves over Q with con-

ductor having n prime factors. For an example (see [DJ] for more examples),

Setzer [Se] prove that there is an elliptic curve over Q of prime conductor

p with a rational point of order two if and only if p = 17 or p = u2 + 64

for some integer u. But we do not know that there are infinitely many such

curves.

In [DJ], Da̧browski and Jȩdrzejak classify elliptic curves over Q with a

rational point of order two whose conductor is a product of two odd prime

powers and conjecture that there are infinitely many elliptic curves over Q

with a rational point of order two whose conductor is a square-free integer

having two odd prime factors. (cf. [DJ, p. 258, Remark]).

In [BJK], using a variant of the binary Goldbach problem for polynomials,

we construct infinitely many elliptic curves over Q with a rational point of

order three whose conductor is a square-free integer having two odd prime

factors and whose root number is +1 (cf. [BJK, Section 5, Proof of Theorem

1.1).

In this paper, using a similar method, we prove that the conjecture of

Da̧browski and Jȩdrzejak is true by proving the following theorem.
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Theorem 1.1. For any integer n ≥ 2 (resp. n ≥ 3), there are infinitely

many elliptic curves over Q with a rational point of order two whose con-

ductor is a square-free integer having n odd prime factors and whose root

number is equal to −1 (resp. +1).

Further, we prove the following theorem.

Theorem 1.2. For any integer n ≥ 2, there are infinitely many elliptic

curves over Q with a rational point of order three whose conductor is a

square-free integer having n odd prime factors and whose root number is

equal to −1 (resp. +1).

Remark. There are no elliptic curves over Q with a rational point of order

≥ 6 whose conductor is a product of two odd prime powers except only two

elliptic curves over Q with a rational point of order 8 (cf. [Sa] and [DJ]).

2. Preliminaries

To prove Theorem 1.1 and Theorem 1.2, we need the following lemmas.

Lemma 2.1. ([BJ, Lemma 2.2]) Let f(x) ∈ Z[x] be a polynomial which has

a positive leading coefficient. Let A,B be relatively prime odd integers and

u, v positive integers with 0 < u, v < 9 and (u, 9) = (v, 9) = 1. Suppose

there is at least one integer m′ such that

2f(m′) ≡ Au + Bv (mod 9) and (AB, 2f(m′)) = 1.

Then there are infinitely many integers m such that

2f(m) = Ap + Bq

for some primes p ≡ u and q ≡ v (mod 9).

Lemma 2.2. Let f(x) ∈ Z[x] be a polynomial which has a positive leading

coefficient. Let A be an even integer and B an odd integer which is relatively

prime to A. Let u and v be positive integers with 0 < u, v < 8 and (u, 8) =

(v, 8) = 1. Suppose there is at least one integer m′ such that

2f(m′) + 1 ≡ Au + Bv (mod 8) and (AB, 2f(m′) + 1) = 1.
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Then there are infinitely many integers m such that

2f(m) + 1 = Ap + Bq

for some primes p ≡ u and q ≡ v (mod 8).

Proof. Proof of Lemma 2.2 is exactly same to [BJ, Proof of Lemma 2.2] if

2f(m) is changed by 2f(m) + 1 and 9 is changed by 8. �

3. Proof of Theorem 1.1

Let E be an elliptic curve over Q with a rational point of order two. As

a minimal model outside 2 for E, we can take

E : y2 = x3 + ax2 + bx (1)

with a, b ∈ Z such that neither p2 | a nor p4 | b for any prime p (cf. [Mu,

Section 2.1]). The discriminant of ∆ of E is

∆ = 24b2(a2 − 4b).

We note that if a ≡ 1 (mod 4) and 24 | b, then

y2 + xy = x3 + (
a− 1

4
)x2 + (

b

16
)x

is a minimal model for (1) at every prime p (cf. [Mu, Corollary 2.2]), so the

minimal discriminant ∆min for (1) is

∆min = 2−8b2(a2 − 4b).

To prove Theorem 1.1, we need the following lemma.

Lemma 3.1. Let E be an elliptic curve given by the equation (1). Suppose

that (a, b) = 1. Let p be an odd prime such that p |∆ = 24b2(a2 − 4b) and

wp the local root number of E at p. Then E has multiplicative reduction at

p and

(i) If p | b and (a
p ) = ±1, then wp = ∓1,

(ii) If p | a2 − 4b and (−2a
p ) = ±1, then wp = ∓1.
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Proof. For the definition of split or non-split multiplicative reduction at p,

see [Si] and for the corresponding value of wp, see [Ro].

Since c4 = 24(a2 − 3b), E has multiplicative reduction at p for every

odd prime factor p of ∆. For every odd prime factor p of b such that

(a
p ) = +1 (resp. −1), E has split (resp. non-split) multiplicative reduction

at p because the slopes of the tangent lines at the node (0, 0) ∈ E(Fp) are

±
√

a, so we have wp = −1 (resp. +1). For every odd prime factor p of

a2 − 4b such that (−2a
p ) = +1 (resp. −1), E has split (resp. non-split)

multiplicative reduction at p because the slopes of the tangent lines at the

node (−a
2 , 0) ∈ E(Fp) are ±

√
−a
2 , so we have wp = −1 (resp. +1). �

Now we can prove Theorem 1.1.

Proof of Theorem 1.1. First we assume that n = 2. Let f(x) = (2x+1)4−1
2 ,

A = 26, B = 1, u = 1, v = 1 and m′ = 0. By Lemma 2.2, there are infinitely

many integers m such that

(2m + 1)4 = 26p + q

for some odd primes p ≡ 1 and q ≡ 1 (mod 8). Let a = (2m + 1)2, b = 24p

and E be an elliptic curve over Q with a rational point of order two given

by the equation

y2 = x3 + ax2 + bx.

Then we have

∆ = 212p2(26p + q − 26p) = 212p2q.

Since a ≡ 1 (mod 4) and 24 | b, we have

∆min = p2q.

We note that (a, b) = 1. By Lemma 3.1, we have

N = pq

and wp = −1, wq = −1 because a is square and q ≡ 1 (mod 8), so the root

number w(E) of E is

w(E) = −wpwq = −1.
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Now we assume that n ≥ 3 and let pi (1 ≤ i ≤ n−2) be fixed distinct odd

primes such that p1 ≡ 1 (resp. p1 ≡ 5) (mod 8) and pi ≡ 1 (mod 8) (i ≥ 2).

Let f(x) = (2x+1)4−1
2 , A = 26, B = p1 · · · pn−2 (resp. B = p2

1 · · · pn−2),

u = 1, v = 1 and m′ = 0. By Lemma 2.2, there are infinitely many integers

m such that

(2m + 1)4 = 26p + p1 · · · pn−2q (resp. (2m + 1)4 = 26p + p2
1 · · · pn−2q)

for some odd primes p ≡ 1 and q ≡ 1 (mod 8).

Let a = (2m + 1)2, b = 24p and E be an elliptic curve over Q with a

rational point of order two given by the equation

y2 = x3 + ax2 + bx.

Then we have

∆ = 212p2p1 · · · pn−2q (resp. ∆ = 212p2p2
1 · · · pn−2q).

Since a ≡ 1 (mod 4) and 24 | b, we have

∆min = p2p1 · · · pn−2q (resp. ∆min = p2p2
1 · · · pn−2q).

We may assume that (a, b) = 1. By Lemma 3.1, we have

N = pp1 · · · pn−2q.

and wp = −1, wp1 = −1 (resp. wp1 = +1), wpi = −1 (i ≥ 2) and wq = −1,

so

w(E) = −wpwq

n−2∏
i=1

wpi = (−1)n+1 (resp. w(E) = (−1)n).

Therefore we proved the theorem. 2

Remark. The family of elliptic curves of conductor pq in the proof of

Theorem 1.1 is a subfamily of the family (iid) in [DJ, Theorem 2].
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4. Proof of Theorem 1.2

Let E be an elliptic curve over Q with a rational point of order three. As

a minimal model for E, we can take

E : y2 + axy + by = x3 (2)

with a, b ∈ Z, b > 0 such that neither p | a nor p3 | b for any prime p (cf.

[Ha, Section 1]). The discriminant of ∆(= ∆min) of E is

∆ = b3(a3 − 27b).

To prove Theorem 1.2, we need the following lemma.

Lemma 4.1. Let E be an elliptic curve given by the equation (2). Suppose

that (a, b) = 1. Let p 6= 3 be a prime such that p |∆ = b3(a3 − 27b) and wp

the local root number at p. Then E has multiplicative reduction at p and

(i) If p | b, then wp = −1,

(ii) If p | a3 − 27b and p ≡ ±1 (mod 3), then wp = ∓1.

Proof. Since c4 = a(a3 − 24b), E has multiplicative reduction at p for ev-

ery prime factor p 6= 3 of ∆. For every prime factor p of b, E has split

multiplicative reduction at p because the slopes of the tangent lines at the

node (0, 0) ∈ E(Fp) are 0 or −a, so we have wp = −1. For every odd prime

factor p ≡ −1 (resp. +1) (mod 3) of a3 − 27b, E has non-split (resp. split)

multiplicative reduction at p because the slopes of the tangent lines at the

node (−a2/9, a3/27) ∈ E(Fp) are (−3a ± a
√
−3)/6, so we have wp = +1

(resp. −1). Similarly we can show that w2 = +1 if 2 | a3 − 27b. �

Now we can prove Theorem 1.2.

Proof of Theorem 1.2. Let n ≥ 2 be an integer and pi (1 ≤ i ≤ n − 2)

be fixed distinct odd primes such that pi ≡ 1 (mod 9). Let f(x) = 22x3,

A = 27, B = p1 · · · pn−2, u = 1, v = 1 (resp. v = −1) and m′ = 2 (resp.

m′ = 1). By Lemma 2.1, there are infinitely many integers m such that

23m3 = 27p + p1 · · · pn−2q

for some odd primes p ≡ 1 and q ≡ 1 (resp. q ≡ −1) (mod 9).
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Let a = 2m, b = p and E be an elliptic curve over Q with a rational point

of order three given by the equation

y2 + axy + by = x3.

Then we have

∆min = p3(27p + p1 · · · pn−2q − 27p) = p3p1 · · · pn−2q.

We may assume that (a, b) = 1. By Lemma 4.1, we have

N = pp1 · · · pn−2q.

and wp = −1, wpi = −1 (i ≥ 1) and wq = −1 (resp. wq = +1), so

w(E) = −wpwq

n−2∏
i=1

wpi = (−1)n+1 (resp. w(E) = (−1)n).

Therefore we proved the theorem. 2
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