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Abstract. Let d be a square-free positive integer and CL(−d) the ideal class group

of the imaginary quadratic field Q(
√
−d). In this paper, we show that given any

odd integer g ≥ 3 and any integers r ≥ 1, s with 0 ≤ s ≤ r, there are infinitely

many d such that CL(−d) contains an element of order g and CL(−d)/CL(−d)4 ∼=

(Z/2Z)r−s × (Z/4Z)s.

1. Introduction

Let d be a square-free positive integer and CL(−d) the ideal class group

of the imaginary quadratic field Q(
√
−d). Ankeny and Chowla [AC] proved

that given any positive integer g, there are infinitely many d such that

CL(−d) contains an element of order g. For real quadratic fields, Weinberger

[We] obtained a similar result.

Let e2n be the 2n-rank of CL(−d), which is the maximal integer t ≥ 0

such that there is an injection from (Z/2nZ)t to CL(−d). Gauss’ genus

theory shows that e2 + 1 is the number of prime factors of d (resp. 4d) if

d ≡ 3 (mod 4) (resp. otherwise). Morton [Mo] showed that if d satisfies

some conditions, e4 can be calculated from the Legendre symbols of the

prime factors of d and e8 can be determined from a conjugacy class in the

Galois group of a suitable normal extension of Q and proved that there are

infinitely many d such that e2, e4 and e8 have arbitrarily assigned values.

For real quadratic fields, Rédei [Ré] obtained a similar result.

In this paper, we prove that given any odd integer g ≥ 3, there are

infinitely many d such that CL(−d) has an element of order g and e2 ≥ 1,

e4 have arbitrarily assigned values.
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Theorem 1.1. Let d be a square-free positive integer and CL(−d) the ideal

class group of the imaginary quadratic field Q(
√
−d). For given any odd

integer g ≥ 3 and any integers r ≥ 1, s with 0 ≤ s ≤ r, there are infinitely

many d such that CL(−d) contains an element of order g and

CL(−d)/CL(−d)4 ∼= (Z/2Z)r−s × (Z/4Z)s.

We remark that Theorem 1.1 does not include the case where both expo-

nents are 0, that is, the class number of Q(
√
−d) is odd.

Our proof of Theorem 1.1 depends on the calculation of the Legendre

symbols. So we can not obtain a similar result for general e8. But we can

prove the following theorem for special e8 which can be calculated from the

quartic residue symbol.

Theorem 1.2. Let d be a square-free positive integer and CL(−d) the ideal

class group of the imaginary quadratic field Q(
√
−d). For given any odd

integer g ≥ 3 and any integers r ≥ 1, ρ = {0, 1}, there are infinitely many

d such that CL(−d) contains an element of order g and

CL(−d)/CL(−d)8 ∼= (Z/2Z)r−1 × (Z/4Z)ρ × (Z/8Z)1−ρ.

It seems to difficult to prove that for a fixed integer g ≥ 3, there are

infinitely many d such that CL(−d) has an element of order g and e2 = 0,

that is, there are infinitely many primes p ≡ 3 (mod 4) such that CL(−p)

has an element of order g. Using the idea of Balog and Ono [BO], Byeon

and Lee [BL] (resp. Lapkova [La]) proved that there are infinitely many

imaginary quadratic fields whose discriminant has only two (resp. three)

prime factors and whose ideal class group has an element of arbitrary order g.

For real quadratic fields, Chattopadhyay [Ch] proved that given any positive

integer l, there are infinitely many real quadratic fields whose discriminant

has l or more prime factors and whose ideal class group has an element of

order 3.
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2. Preliminaries

To prove Theorem 1.1 and Theorem 1.2, we need the following lemmas.

Lemma 2.1. Let g ≥ 2 be an integer. Suppose that d = 4m2g−n2 is square-

free, where m and n are positive integers with (n, 2) = 1 and 2mg − n > 1.

Then CL(−d) contains an element of order 2g.

Proof. See [BL, Proof of Theorem 1.2]. �

Lemma 2.2. Let f(x) ∈ Z[x] be a polynomial which has a positive leading

coefficient with degree ≥ 1. Let A,B be relatively prime odd integers and u,

v, C positive integers with 0 < u, v < C and (u, C) = (v, C) = 1. Suppose

there is at least one integer m′ such that

2f(m′) ≡ Au + Bv (mod C) and (AB, f(m′)) = 1.

Then there are infinitely many integers m such that

2f(m) = Ap + Bq

for some primes p ≡ u and q ≡ v (mod C).

Proof. Proof of Lemma 2.2 is exactly same to [BJ, Proof of Lemma 2.2] if 9

is changed by C. �

3. Proof of Theorem 1.1

To prove Theorem 1.1, we need the following lemma.

Lemma 3.1. Let d = Dq be a positive integer such that D = p1 · · · pr is a

product of r primes with

pi ≡ 1 (mod 4) and (
pi

pj
) = 1 for i 6= j,

and q is a prime with

q ≡ 3 (mod 4), (
q

pi
) = 1 for 1 ≤ i ≤ s and (

q

pi
) = −1 for s + 1 ≤ i ≤ r.

Then

CL(−d)/CL(−d)4 ∼= (Z/2Z)r−s × (Z/4Z)s.

Proof. See [Mo, p. 160]. �
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Now we can prove Theorem 1.1.

Proof of Theorem 1.1. First we consider the case s ≥ 1. Let pi (1 ≤ i ≤ r−1)

be fixed primes such that

pi ≡ 1 (mod 4) for 1 ≤ i ≤ r − 1,( pi

pj

)
= 1 for i 6= j,( 3

pi

)
= 1 for 1 ≤ i ≤ s− 1,( 3

pi

)
= −1 for s ≤ i ≤ r − 1.

If r ≥ 2, Let A = 1, B = p1 · · · pr−1, C = 4p1 · · · pr−1, u = 4 − 3p1 · · · pr−1,

v = 3 and if r = 1, let A = 1, B = 1, C = 4, u = 1, v = 3. Let f(x) = 2x2g.

By Lemma 2.2, there are infinitely many integers m such that

4m2g = Ap + Bq

for some primes p ≡ u and q ≡ v (mod C). We note that

p ≡ 1 (mod 4),
( p

pi

)
=

(pi

p

)
= 1 for 1 ≤ i ≤ r − 1

and

q ≡ 3 (mod 4),
( q

pi

)
=

(q

p

)
= 1 for 1 ≤ i ≤ s−1,

( q

pi

)
= −1 for s ≤ i ≤ r−1.

Let n = 2m2g −min{Ap, Bq} > 0. Then we have

d := 4m4g − n2 =
(Ap + Bq

2

)2

−
(
±Ap−Bq

2

)2

= ABpq.

By Lemma 2.1 and Lemma 3.1, CL(−d) contains an element of order 4g and

CL(−d)/CL(−d)4 ∼= (Z/2Z)r−s × (Z/4Z)s.
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Now we consider the case s = 0. Assume that g is odd. Let pi (1 ≤ i ≤

r − 1) be fixed primes such that

pi ≡ 1 (mod 4) for 1 ≤ i ≤ r − 1,( pi

pj

)
= 1 for i 6= j,( 3

pi

)
= −1 for 1 ≤ i ≤ r − 1,( 5

pi

)
= 1 for 1 ≤ i ≤ r − 1.

If r ≥ 2, let A = p1 · · · pr−1, B = 1, C = 12p1 · · · pr−1, u = 5, v = 4 · 3g −

5p1 · · · pr−1 and if r = 1, let let A = 1, B = 1, C = 12, u = 5, v = 4 · 3g − 5.

Let f(x) = 2(3x2)g. By Lemma 2.2, there are infinitely many integers m

such that

4(3m2)g = Ap + Bq

for some primes p ≡ u and q ≡ v (mod C). We note that

p ≡ 1 (mod 4),
( p

pi

)
=

(pi

p

)
= 1 for 1 ≤ i ≤ r − 1

and

q ≡ 3 (mod 4),
( q

pi

)
=

(q

p

)
= −1 for 1 ≤ i ≤ r − 1.

Let n = 2(3m2)g −min{Ap, Bq} > 0. Then we have

d := 4(3m2)2g − n2 = ABpq.

By Lemma 2.1 and Lemma 3.1, CL(−d) contains an element of order 2g and

CL(−d)/CL(−d)4 ∼= (Z/2Z)r.

2

Remark. The condition that g is odd in Theorem 1.1 is only required for

the case s = 0.
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4. Proof of Theorem 1.2

Before we prove Theorem 1.2, we briefly explain how to compute e8. For

details, see [Mo]. Let d be the square-free positive integer in Lemma 3.1 and

pi the prime ideals of Q(
√
−d) lying above pi. Then there are ideals zj of

Q(
√
−d) such that

z2j ∼ pi for 1 ≤ i ≤ s.

Let ξ be the group homomorphism

ξ : {±1} → F2 defined by ξ(1) = 0, ξ(−1) = 1

and

χi(zj) =
(Nzj ,−d

pi

)
for (1 ≤ i, j ≤ s),

where N is the norm from Q(
√
−d) to Q and

(
a,b
p

)
is the Hilbert symbol.

Then we have the following Lemma.

Lemma 4.1. Let d be the square-free positive integer in Lemma 3.1 and let

ρ be the rank over F2 of the s× s matrix

M ′ = (ξχi(zj)) (1 ≤ i, j ≤ s).

Then

CL(−d)/CL(−d)8 ∼= (Z/2Z)r−s × (Z/4Z)ρ × (Z/8Z)s−ρ.

Proof. See [Mo, p. 161]. �

The values χi(zj) can be determined from the Frobenius symbol
(

ΣD/Q
q

)
for some normal extension ΣD of Q and the quartic residue symbols

(
pi

pj

)
4
,

where the quartic residue symbol
(

a
p

)
4

is defined for primes p ≡ 1 (mod 4)

and quadratic residues a of p by the formula

±1 =
(a

p

)
4
≡ a

p−1
4 (mod p).

But the diagonal terms χi(zi) can be calculated using only the quartic residue

symbols.

Lemma 4.2. [Mo, Lemma 7] For 1 ≤ i ≤ s, we have

χi(zi) =
(D/pi

pi

)
4

(−q

pi

)
4
.
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Now we can prove Theorem 1.2.

Proof of Theorem 1.2. First we consider the case ρ = 0. Let pi (1 ≤ i ≤ r−1)

be fixed primes such that

pi ≡ 1 (mod 4) for 1 ≤ i ≤ r − 1,( pi

pj

)
= 1 for i 6= j,( 3

pi

)
= −1 for 1 ≤ i ≤ r − 1.

If r ≥ 2, let A = 1, B = p1 · · · pr−1, C = 4p1 · · · pr−1, u = 4 − 3p1 · · · pr−1,

v = 3 and if r = 1, let A = 1, B = 1, C = 4, u = 1, v = 3. Let f(x) = 2x4g.

By Lemma 2.2, there are infinitely many integers m such that

4m4g = Ap + Bq

for some primes p ≡ u and q ≡ v (mod C). We note that

p ≡ 1 (mod 4),
( p

pi

)
=

(pi

p

)
= 1 for 1 ≤ i ≤ r − 1

and

q ≡ 3 (mod 4),
(q

p

)
= 1,

( q

pi

)
= −1 for 1 ≤ i ≤ r − 1.

Let n = 2m4g −min{Ap, Bq} > 0. Then we have

d := 4m8g − n2 = ABpq.

By Lemma 4.2, we have

χ1(z1) =
(ABp/p

p

)
4

(−q

p

)
4

=
(−p1 · · · pr−1q

p

)
4

=
(−4

p

)
4

= 1,

so

ρ = 0.

By Lemma 2.1 and Lemma 4.1, CL(−d) contains an element of order 8g and

CL(−d)/CL(−d)8 ∼= (Z/2Z)r−1 × (Z/8Z).
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Now we consider the case ρ = 1. Assume that g is odd. Let pi (1 ≤ i ≤

r − 1) be fixed primes such that

pi ≡ 1 (mod 4) for 1 ≤ i ≤ r − 1,( pi

pj

)
= 1 for i 6= j,( 3

pi

)
= −1 for 1 ≤ i ≤ r − 1,

pi ≡ 1 (mod 5) for 1 ≤ i ≤ r − 1.

If r ≥ 2, let A = 1, B = p1 · · · pr−1, C = 20p1 · · · pr−1, u = 4 · 52g −

3p1 · · · pr−1, v = 3 and if r = 1, let A = 1, B = 1, C = 20, u = 4 · 52g − 3,

v = 3. Let f(x) = 2(5x2)2g. By Lemma 2.2, there are infinitely many

integers m such that

4(5m2)2g = Ap + Bq

for some primes p ≡ u and q ≡ v (mod C). We note that

p ≡ 1 (mod 4),
( p

pi

)
=

(pi

p

)
= 1 for 1 ≤ i ≤ r − 1

and

q ≡ 3 (mod 4),
(q

p

)
= 1,

( q

pi

)
= −1 for 1 ≤ i ≤ r − 1.

Let n = 2(5m2)2g −min{Ap, Bq} > 0. Then we have

d := 4(5m2)4g − n2 = ABpq.

By Lemma 4.2, we have

χ1(z1) =
(ABp/p

p

)
4

(−q

p

)
4

=
(−p1 · · · pr−1q

p

)
4

=
(−4 · 52

p

)
4

= −1,

so

ρ = 1.

By Lemma 2.1 and Lemma 4.1, CL(−d) contains an element of order 4g and

CL(−d)/CL(−d)8 ∼= (Z/2Z)r−1 × (Z/4Z).

2

Remark. The condition that g is odd in Theorem 1.2 is only required for

the case ρ = 1.
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