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Abstract. We investigate a two-dimensional dynamical system which
models continued fraction expansions with coefficients in the real qua-
dratic field of discriminant five. A Markov partition is exhibited, which
we use to analyze spectral properties of the transfer operator. As a
consequence, we show that it has a unique invariant probability mea-
sure whose density function is continuous with respect to the Lebesgue
measure.

1. Introduction

Gauss, in his letter to Laplace, introduced the probability measure

µG :=
dx

(log 2) (1 + x)
(1.1)

on the unit interval [0, 1]. He postulated that when a typical real number
x ∈ [0, 1] is expanded as a regular continued fraction, namely an iterated
fraction of the form

x =
1

a1 + 1
a2+···

, an ∈ Z>0, n = 1, 2, · · · ,(1.2)

the integral
∫ t
0 µG would be the likelihood for a truncation of (1.2) belonging

to the interval [0, t]. Kuzmin [8] made a decisive progress by confirming the
prediction of Gauss and we call µG the Gauss–Kuzmin distribution. See
Knuth [6, p.362-366] for more details and Baladi–Vallée [1] for a modern
refinement.

In this article, we take1 θ to be an algebraic number satisfying θ2 = θ+ 1
and investigate continued fractions of the form

z =
ε1

a1 + ε2
a2+···

an, εn ∈ Z[θ], n = 1, 2, · · · .(1.3)

Our main result, which we will be able to state precisely only after defining
necessary terms, establishes that there is an associated probability measure
playing the role of µG. We note that Hensley [5, § 5.7] treated the continued
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1Q(θ) is the unique real quadratic field of discriminant five.
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fractions of the form (1.2) where an’s are Gaussian integers, and proved the
existence of an invariant probability measure. We also note that Nakada
and his collaborators [3] gave a different proof.

The continued fraction (1.3) shall be regarded as an expansion of an
element z ∈ R2 in the following sense. Recall that θ satisfies θ2 = θ+1. The
polynomial equation t2 = t+ 1 has two real zeros α and β, which we order

so that α = 1+
√
5

2 and β = 1−
√
5

2 . Represent an element in Q(θ) in the form

m + nθ with m,n ∈ Q, and define the embedding Q(θ) ↪→ R2 by sending
m + nθ to (m + nα,m + nβ). The embedding extends to an isomorphism
Q(θ) ⊗Q R ' R2 between rings. Now we interpret (1.3) as a sequences of
elements in R2 converging to z.

Now we turn to arithmetic. As we will show later in Lem. 4.2, the expan-
sion we will define in this paper will terminate for all z ∈ Q(θ). The reason
for the termination lies in that the ring of integers of Q(θ) is Euclidean. Our
work suggests that the complexity of the associated the Euclidean algorithm
may be analyzed from the perspective of [1], although we do not claim any
results in this direction.

To motivate the statement of our main result, we recall that the dynamical
system underlying µG is the so-called Gauss map; x 7→ x−1 − bx−1c, where
brc for r ∈ R denotes the unique integer such that r − brc ∈ [0, 1). In this
paper, we will introduce a domain I ⊂ R2 which plays the role of [0, 1] and
a family of maps

Td : I → I

indexed by integers d ≥ 1. For each d, the pair (I, Td) is regarded as a two-
dimensional analogue of the interval [0, 1] equipped with the Gauss map. In
particular, for each d, the map Td determines an expansion of an element
z ∈ R2 as a continued fraction of the form (1.3). See § 2 for the definitions
of I and Td. Here is our main result.

Theorem 1.4. For d ≥ 3, the system (I, Td) has a unique invariant probabil-
ity measure whose density function is continuous with respect to the Lebesgue
measure.

Remark 1.5. When d ≤ 2, we are unable to produce such a measure, due to
the failure of Proposition 5.6.

We outline the main body of the paper. In § 2-3 we define (I, Td) and in-
troduce notations for local inverse branches of Td. The definition of (I, Td)
is combinatorially involved, whose complexity will be justified in the sub-
sequent sections. In § 4-5 we establish basic properties of local inverse
branches. The properties rely on the combinatorial structure of the sys-
tem (I, Td) and will play a crucial role in the proof of our main theorem. In
§ 6-7, we prove our main theorem, where key arguments are similar to those
of [5, § 5.7].
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For a general introduction to Euclidean quadratic fields, we refer the
reader to [4]. The authors of [9] revealed a characteristic property of Q(θ)
among norm Euclidean real quadratic fields.

2. Construction of I and Td

Recall the embedding Q(θ) ↪→ R2 from the introduction. The image of
Z[θ] is a lattice in R2. An important ingredient of our construction is the
choice of a particular fundamental domain I for Z[θ]. The interior of I has
three connected components. Its boundary is shown in Figure 1.

Remark 2.1. For an intuitive understanding of I, we relate it to the par-
allelogram R spanned by θ = (α, β) and 1 − θ = (β, α). Since Z[θ] as a
lattice is spanned by θ and 1 − θ, R is a fundamental domain for R2/Z[θ].
In order to obtain R from I, translate the part of I lying on the second
quadrant by θ and translate the part on the fourth quadrant by 1 − θ. By
our reconstruction of R from I, it is clear that I is another fundamental
domain. The authors do not know how to generalize this construction to
other real quadratic fields.

Figure 1. The curve surrounding the region I ⊂ R2

We write down explicit inequalities for I. The boundary of I is covered
by six algebraic curves. To list their equations, it is convenient to introduce

f1(x, y) := α2x+ y(2.2)

f2(x, y) :=
√

5xy − x+ y(2.3)

and put f3(x, y) := f2(x − α, y − β). Then, the equations are fi(x, y) = 0
and fi(y, x) = 0 for i = 1, 2, 3.

Let Io be the interior of I. We claim that the family

Io + a, a ∈ Z[θ](2.4)
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consists of disjoint open sets whose union is dense in R2. To see this, consider
four subsets

A1 = {(x, y) ∈ Io : x > y > 0}(2.5)

A2 = {(x, y) ∈ Io : y > x > 0}(2.6)

A3 = {(x, y) ∈ Io : x > 0 > y}(2.7)

A4 = {(x, y) ∈ Io : y > 0 > x}.(2.8)

They are shown in Figure 2.

Figure 2. Boundary of Ai

A1 A2 A3 A4

Then, as we mentioned in Remark 2.1, A1, A2, A3 − θ + 1, A4 + θ are
disjoint and their union is dense in the parallelogram spanned by θ and
1−θ. Since θ and 1−θ generate Z[θ] as an abelian group, the claim follows.

Throughout, we will fix a subset

F ⊂ I(2.9)

such that Io ⊂ F ⊂ I and that the family

F + a, a ∈ Z[θ](2.10)

is a set-theoretic partition of R2. If z ∈ R2, we define bzcF to be the unique
element a ∈ Z[θ] with z − a ∈ F .

3. The dynamical system (I, Td) and its inverse branches

Let u : I → Z[θ] be a function satisfying

u(z) =


1 if z ∈ A3 ∪A4,

θ if z ∈ A2, and

1− θ if z ∈ A1.

The above conditions do not determine u(z) when z 6∈ Ai for all i. To pin
down u(z), we extend u(z) so that it is constant on locally closed subsets.
Such an extension is not unique, but we may ignore this indeterminacy in
the sequel for two reasons. First, the ambiguity lies on a set of measure
zero, in which case it gives rise to a well-defined action on a measure that is
absolutely continuous with respect to Lebesgue measure. Second, the local
inverse branches we construct in § 3 will be independent from the choice.
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For each positive integer d, define ud by ud(z) := d · u(z). Finally, we
define

Td : z 7−→ ud(z)z
−1 −

⌊
ud(z)z

−1⌋
F

for z ∈ I − {0} and put T (0) := 0.
We analyze local inverse branches of Td. For each i ∈ {1, 2, 3, 4}, put

Ri := T−1d (Ai).

Remark 3.1. We give an intuitive interpretation ofRi. For each i ∈ {1, 2, 3, 4},
regard Ai as an ideal tile. Then, define an open subset B ⊂ I as a tile of
shape Ai if T maps B bi-analytically onto Ai.

The next proposition will be important for us.

Proposition 3.2. Fix i, j ∈ {1, 2, 3, 4}. If X ⊂ Ri ∩ Aj is a connected
component, then

Td : X → Ai(3.3)

is bi-analytic.

Proof. We factor Td|Ri∩Aj : Ri ∩Aj → Ai through

Bj :=
{
ud(z)z

−1 : z ∈ Aj
}

(3.4)

via the maps

ι : Ri ∩Aj −→ Bj

z 7−→ ud(z)z
−1

and

τ : Bj −→ Ai

w 7−→ w − bwc.
Since ι is a bi-analytic map from Aj onto Bj , the assertion of the proposition
would follow from the following lemma.

Lemma 3.5. Let b ∈ Z[θ]. If (b+Ai) ∩ Bj is non-empty, then (b+Ai) ⊂
Bj.

Indeed, assuming the lemma, if X ⊂ Ri ∩ Aj is a connected component,
then ι(X) will satisfy ι(X) = b + Ai for some b. That is, ι(X) → Ai is the
bi-analytic map induced by adding b. It follows that X → Ai is a bi-analytic
map, because both ι|X : X → ι(X) and τ |ι(X) : ι(X)→ Ai are bi-analytic.

proof of lemma. Each i and j can take four values, and there are sixteen
cases in total. All cases are similar and proved by inspection. We outline
the necessary computation. When d = 1, the regions Bi for i = 1, 2, 3, 4
is shown in Figure 3. There are two assertions. First, the boundary of Bi
is either a line segment or a half-line, all of whose endpoints lie in Z[θ].
Second, the tangential direction of each line segment or half-line is 1, θ, or
θ−1. In order to verify the assertions for a positive integer d, it suffices to



6 DOHYEONG KIM AND JUNYEONG PARK

verify them for d = 1 because the general case is obtained by multiplying d
to them, which preserve the two assertions. That is, by the multiplication-
by-d map, Z[θ] is preserved and the tangential direction of a line remain
equal. For d = 1, it is straightforward to verify the two assertions by direct
calculation. �

The proof of the proposition is complete. �

Figure 3. The regions Bi surrounded by dashed lines, when d = 1

B1 B2 B3 B4

In view of Proposition 3.2, define

X ji := {X ⊂ Ri ∩Aj : X is a connected component.}(3.6)

for i, j ∈ {1, 2, 3, 4}.
If X ∈ X ji , then there exist ε(X), a(X) ∈ Z[θ] such that

Td(z) =
ε(X)

z
− a(X)

for all z ∈ X. The inverse of Td|X is given by

z 7→ ε(X)

z + a(X)
.(3.7)

Since X ⊂ Aj , the above map takes values in Aj for all X ∈ X ji . It results
in the family of maps

hX : Ai −→ Aj(3.8)

z 7−→ ε(X)

z + a(X)
(3.9)

indexed by X ∈ X ji .

Definition 3.10. We call hX in (3.8) a local inverse branch.

We finish this section by recording a lemma for later purposes. For A ⊂
R2, let Ā be the closure of A.

Lemma 3.11. Any local inverse branch hX extends to a continuous map
from Āi to Āj.
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Proof. Each X is the image of the map (3.7), so the closure of X does not
meet axes. It follows that the Jacobian of Td|X : X → Ai has absolute
value greater than a fixed positive constant. Thus, the map Td|X : X → Ai
extend to a invertible continuous map from X̄ to Āi. Taking the inverse,
the assertion of the lemma follows. �

4. The backward orbit of the origin

In this section we analyze the backward orbit of 0 under the map Td. The
aim is to prove the next proposition, which will be used later.

Proposition 4.1. For any integer d ≥ 1, the set
⋃
n≥1 T

−n
d (0) is dense in

I.

Proof. An immediate consequence of the Lemma 4.2. �

Lemma 4.2. Let d ≥ 1 be any integer. For any a ∈ Q(θ)∩ I, there is some
N ≥ 0 such that TNd (a) = 0.

Proof. Recall that we chose a fundamental domain F in (2.9). Note that

Tnd (z) ∈ F for any z ∈ I and any n ≥ 1. Define the function Z[θ]
||·||−−→ Z≥0

by mapping z = (x, y) to ||z|| := |xy|. Note that z ∈ F implies ||z|| < 1.
Recall from the definition of Td that if a = u

v with u, v ∈ Z[θ], then we
have

Td(a) =
edv − uq

u
for some e ∈ {1, θ, 1− θ} and q ∈ Z[θ]. We claim that

max {||u||, ||v||} > max {||edv − uq||, ||u||} .(4.3)

Indeed, a ∈ I implies that max {||u||, ||v||} ≥ ||u|| while Td(a) ∈ F implies
that max {||edv − uq||, ||u||} = ||edv − uq|| and that ||u|| > ||edv − uq||.
Putting two inequalities together, we obtain (4.3).

Now consider a sequence (un, vn) ∈ Z[θ]2, beginning with (u0, v0) = (u, v)
such that vn+1 = un and that Tnd (a) = un

vn
for n ≥ 0. Then cn :=

max{||un||, ||vn||} is a decreasing sequence of nonnegative integers, which
implies that cN = 0 for some N . We conclude that TNd (a) = 0. �

5. Complex analytic extension of local inverse branches

In this section, we assume hX : Ai → Aj is a local inverse branch. We
will simply write hX = h. Then, h is given by

h(z) =
ε

z + a
(5.1)

for some ε, a ∈ Z[θ].
By Lemma 3.11, h extends to the closure of Ai. Here we are interested in

extending h to some domain in C2. For δ > 0, let Dδ ⊂ C be the open disc
of radius δ centered at the origin. For a subset A ⊂ R2, define

Aδ :=
{

(x+ x′, y + y′) ∈ C2 : (x, y) ∈ A and x′, y′ ∈ Dδ

}
.(5.2)
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Recall that h is of the form h(x, y) = (h1(x), h2(y)) for single variable func-

tions h1 and h2. Let f (r) be the r-th derivative of such a function. Put

Mr = sup
1≤i≤4

sup
(x,y)∈Ai

max
(∣∣∣h(r)1

∣∣∣ , ∣∣∣h(r)2

∣∣∣)(5.3)

for r = 1, 2.

Proposition 5.4. Suppose that M1 < 1. Then, for any δ > 0 satisfying
δ < (1−M1)M

−1
2 , the map h uniquely extends to a holomorphic function

h̃ : Aδi → Aδj(5.5)

whose image is relatively compact in Aδj .

Proof. Since h is a rational function, it extends to a function h̃ : Aδi → C2

if δ is not too large. So we need to verify that its image is contained in Aδj
when δ is small. By the intermediate value theorem, we have an estimate
for any x′ ∈ Dδ ∣∣∣h̃1(x+ x′)−

(
h1(x) + x′h

(1)
1 (x)

)∣∣∣ < δ2M2,

which yields ∣∣∣h̃1(x+ x′)− h1(x)
∣∣∣ < δ2M2 + δM1.

Our assumption, δ < (1−M1)M
−1
2 , implies that the right-hand-side of the

above inequality is less than δ. The argument for h2 is identical. This
finishes the proof of the proposition. �

The rest of the section regards the hypothesis of Proposition 5.4.

Proposition 5.6. For any local inverse branch h, we have M1 <
α2

d . In

particular, if d ≥ 3, then for any h we have M1 ≤ α2

3 ≈ 0.79.

Proof. Recall that h is the inverse of Td|X → Ai. Thus, it suffices to find a
lower bound for its partial derivatives with respect to x and y. Also recall
that Td|X is given by z 7→ ε

z − a for some ε and a which deped on X. Since
the arguments for the variables x and y are the same, we only treat the
derivative with respect to x. Write ε = (ε1, ε2) and a = (a1, a2). Then, the
derivative of x 7→ ε1

x − a1 is ε1x
−2. We will bound this by considering two

cases; j = 1, 2 and j = 3, 4. If j = 1, 2, then |ε1| ≥ dα−1 and |x| ≤ 1. If
j = 3, 4, then |ε1| = d and |x| ≤ α. Summing up, we have a uniform bound∣∣ε1x−2∣∣ ≥ dα−2.
The above implies the claim of the proposition. �
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6. Transfer operator

Throughout this section, we fix d ≥ 3. We also choose δ > 0 given by
Proposition 5.4.

For each Ai let C(Ai) be the space of continuous real-valued functions on
Ai which extend to bounded complex-analytic functions on Aδi . We regard
it as a Banach space with respect to the supremum norm. For 1 ≤ i, j ≤ 4,

we define the partial transfer operator Lji : C(Aj)→ C(Ai) by(
Ljifj

)
(z) =

∑
X∈X j

i

|JX(z)| · fj ◦ hX(z).

A key finiteness property regards the convergence of the series∑
X∈X j

i

|JX(z)|(6.1)

for z ∈ Ai.

Proposition 6.2. For each X ji , the series (6.1) converges uniformly on Ai.

Proof. Put RX = supz∈Ai
|JX(z)|. It suffices to show the convergence of∑

X∈X j
i
RX . In view of (3.8), we write hX in the form

hX(z) =
ε(X)

z + a(X)

for some ε(X), a(X) ∈ Z[θ]. Observe that ε(X) is determined by i and j but
does not depend on X. Define

Z[θ]ji :=
{
a(X) : X ∈ X ji

}
.

We enumerate elements of Z[θ]ji in the following way. If j = 3, putting

a = mθ − n for m,n ∈ Z, the elements of Z[θ]ji are given by

a ∈ Z[θ]31 ⇔ d+ 1 ≤ m, 1 ≤ n ≤ m
a ∈ Z[θ]32 ⇔ d ≤ m, 1 ≤ n ≤ m
a ∈ Z[θ]33 ⇔ d ≤ m, 0 ≤ n ≤ m
a ∈ Z[θ]34 ⇔ d+ 1 ≤ m, 1 ≤ n ≤ m− 1.

If j = 1, we also put a = mθ − n and obtain a similar description;

a ∈ Z[θ]11 ⇔ d+ 1 ≤ m, 1 ≤ n ≤ m− 1

a ∈ Z[θ]12 ⇔ d ≤ m, 1 ≤ n ≤ m
a ∈ Z[θ]13 ⇔ d ≤ m, 0 ≤ n ≤ m− 1

a ∈ Z[θ]14 ⇔ d+ 1 ≤ m, 1 ≤ n ≤ m− 2.
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If j = 2 or 4, then we put a = −mθ + n and obtain similar descriptions;

a ∈ Z[θ]41 ⇔ d ≤ m, 1 ≤ n ≤ m
a ∈ Z[θ]42 ⇔ d+ 1 ≤ m, 1 ≤ n ≤ m
a ∈ Z[θ]43 ⇔ d+ 1 ≤ m, 1 ≤ n ≤ m− 1

a ∈ Z[θ]44 ⇔ d ≤ m, 0 ≤ n ≤ m
and

a ∈ Z[θ]21 ⇔ d ≤ m, 1 ≤ n ≤ m− 1

a ∈ Z[θ]22 ⇔ d+ 1 ≤ m, 1 ≤ n ≤ m− 1

a ∈ Z[θ]23 ⇔ d+ 1 ≤ m, 0 ≤ n ≤ m− 2

a ∈ Z[θ]24 ⇔ d ≤ m, 0 ≤ n ≤ m− 1.

Write RX = Rm,n when a(X) = mθ − n or a(X) = −mθ + n. The conver-
gence of

∑
X∈X j

i
RX is reduced to estimating

u∑
n=l

Rm,n(6.3)

where m is sufficiently large and (l, u) is one of boundary conditions listed
above, namely (1,m), (0,m), (1,m− 1), (0,m− 1), (1,m− 2), or (0,m− 2).
In all cases, (6.3) is bounded by cm−3 for some constant c. The desired
convergence follows. �

Proposition 6.4. The operator Lji is compact.

Proof. Proposition 5.4 allows one to invoke Montel’s theorem to obtain the
compactness of the operator fj 7→ jj ◦hX . Also, Proposition 5.4 implies that

|JX(z)| is bounded. It follows that each summand of Lji is a compact oper-

ator. By Proposition 6.2, Lji converges. Since the set of compact operators

is closed, we conclude that Lji is compact. �

Summing over all partial operators, we define the transfer operator L as

L :

4∏
i=1

C(Ai) −→
4∏
i=1

C(Ai)

(fj)j 7−→

 4∑
j=1

Ljifj


i

and Proposition 6.4 implies that L is compact.
The involution ι : (x, y) 7→ (y, x) induces isomorphisms C(A1) ' C(A2)

and C(A3) ' C(A4) by sending f to f ◦ ι. If we put

B =

{
(fi) ∈

4∏
i=1

C(Ai) : f1 = f2 ◦ ι, f3 = f4 ◦ ι

}
,
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then B is a Banach space on which L acts compactly. Let r be the spectral
radius of L : B→ B.

Theorem 6.5. The operator L on B has r as a simple eigenvalue and the
spectral radius of L− r is strictly smaller than r.

Proof. We will use the criterion by Krasnoselskii [7]. Let P ⊂ B be the
subspace consisting of tuples (fi)i such that each fi takes non-negative val-
ues. Write f ≥ g if f − g ∈ P . Let v = (vi)i ∈ P be the tuple with
vi ≡ 1 for all i. To apply the criterion, it suffices to show that the quadruple
(B, P, L, v) satisfies the properties

(1) P is closed under addition and scaling by positive numbers,
(2) P is a closed subset of B whose interior is non-empty,
(3) every f ∈ B can be written as f = p1 − p2 with p1, p2 ∈ P ,
(4) L(P ) ⊂ P , and
(5) if f ∈ P is not zero, then there exist some positive integer n and

positive real numbers c1 and c2, such that c1v ≤ Lnf ≤ c2v.

Except for the last one, they are easy to verify. The first property follows
directly from the definition. The second follows from observing that the
interior of P contains tuples of functions with positive infima. To verify the
third property, note that any continuous function g on a compact set can
be rewritten as g = (g + 2M) − 2M where M is the maximum of g. The
fourth property follows from the positivity of |JX |.

We verify the last property, using a pair of lemmas. For f = (fi)i ∈ B,
put f(0) = f1(0) + f2(0) + f3(0) + f4(0). Here is our first lemma.

Lemma 6.6. If f ∈ P is nonzero, then (Lnf)(0) > 0 for some n ≥ 0.

Proof. Assume, on the contrary, (Lnf)(0) = 0 for all n. It implies that, by
the positivity of |JX(z)|, each fi vanishes on the set T−nd (0) ∩ Ai for all n.

By Proposition 4.1,
⋃
n≥1 T

−n
d (0) is dense in I. Since fi is continuous, this

forces fi to be the zero function. This is a contradiction. �

Here is our second lemma.

Lemma 6.7. If f ∈ P and f(0) > 0, then there exists some positive c1 with
c1v ≤ Lf .

Proof. If f(0) > 0, then fj(0) > 0 for some j. It suffices to show, for each

i = 1, 2, 3, 4, there is some positive δi such that (Ljifj)(z) ≥ δi for all z ∈ Ai.
Note that, for any Y ∈ X ji , we have

(Ljifj)(z) =
∑
X∈X j

i

|JX(z)| · fj ◦ hX(z) ≥ |JY (z)| · fj ◦ hY (z)

and the infimum of |JY (z)| over Ai is strictly positive. Thus it suffices to

find some Y ∈ X ji and some ε > 0 such that fj ◦ hY (z) > ε for all z ∈ Ai.
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To find such Y , choose a small positive ε so that f(z) > ε for all z ∈ Vs for
some s > 0, where

Vs := {z = (x, y) ∈ Aj : x2 + y2 < s}.

Then, Y ⊂ Vs for all but finitely many Y ∈ X ji . For any such Y , the desired
conclusion follows. �

Combining these two lemmas, any nonzero vector f ∈ P satisfies c1v ≤
Lnf for some n and positive c1. On the other hand, by the boundedness of
(Lnf)i for each i, the inequality Lnf ≤ c2v is met for some positive c2. �

7. Uniqueness of the invariant measure

In this section we prove Theorem 1.4. So we assume throughout d ≥ 3.
Theorem 1.4 claims that (I, T ) has a unique invariant probability measure
absolutely continuous with respect to the Lebesgue measure.

For the existence, we use Theorem 6.5. Indeed, let r be the spectral
radius of L. Then by Theorem 6.5 there is a unique ψ ∈ B satisfying both
Lψ = rψ and

∫
I ψdν = 1, where ν denotes the Lebesgue measure. The

desired invariant probability measure µ is constructed as dµ := ψdν, in view
of the following lemma:

Lemma 7.1. We have r = 1.

Proof. First we show r ≥ 1. Letting L∗ be the adjoint of L, it suffices to
show that the spectrum of L∗ contains 1. Indeed, L∗ preserves the Lebesgue
measure.

To show r ≤ 1, it suffices to show ||L|| ≤ 1, for some operator norm ||− ||.
Take || − || to be the sum of L1-norms;

||f || :=
4∑
i=1

∫
Ai

|fi|dν.

Then ||Lf || ≤ ||f || for any f ∈ B follows from a change-of-variable argu-
ment, using JX(z)dν(z) = dν(w) for hX(z) = w. �

To prove the uniqueness, we use a standard argument which can be
found, for example, in [2, Thm 7.5]. Suppose that µ̃ is another invariant
probability measure whose Radon-Nikodym derivative with respect to ν
is f . For any Borel set B we have

∫
T−1B fdν =

∫
B fdν. Then we have∫

B Lfdν = r
∫
T−1B fdν = r

∫
B fdν. It implies that Lf = rf holds ν-almost

everywhere. Since our space B is dense in the L1-space, r is a simple eigen-
value of L acting on the L1-space.2 It implies f = ψ which yields µ = µ̃.

2This argument appeared in Prop. 7.1 of [2].
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