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Abstract

We establish a weak form of Ennola’s conjecture. We achieve this by showing that two
main assumptions Louboutin made in his previous work hold true. These assumptions
are about Laurent polynomials over the rationals, and we prove them by using
polynomial relations reminiscent of Newton identities.
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1 Introduction
An algebraic number ε is called exceptional if both ε and ε − 1 are units. For example, let
l ≥ 3 be an integer, and consider a non-Galois totally real cubic number fieldQ(εl), where
the minimal polynomial of εl is

X3 + (l − 1)X2 − lX − 1 ∈ Z[X]. (1)

One can easily observe that εl and εl − 1 are both units. i.e., εl is an exceptional unit.
By Dirichlet’s unit theorem, the unit groupUl of the ring of integers ofQ(εl) has rank 2.

Hence, one can now naturally ask the following: is {εl , εl − 1} a pair of fundamental units?
That is, Ul = 〈−1, εl , εl − 1〉?
This is still an open problem. Ennola conjectured in [1] that {εl , εl − 1} above is a pair

of fundamental units for the ring of integers O of Q(εl). We call this Ennola’s conjecture.
He showed that his conjecture is true for 3 ≤ l ≤ 500 and that the unit index

jl := (Ul : 〈−1, εl , εl − 1〉)

of the group of units generated by −1, εl , and εl − 1 in the group of units Ul is always
coprime to 2, 3, and 5. He also showed that {εl , εl − 1} is a pair of fundamental units for
O if (O : Z[εl]) ≤ l/3 in [2].
To show that Ennola’s conjecture holds true is equivalent to prove jl = 1 for ∀l ≥ 3. S.

Louboutin obtained several results on this conjecture. For example, in [3], he showed that
for l ≥ 3, the unit index jl is coprime to 19!, and jl = 1 for 3 ≤ l ≤ 5 · 107. He also proved
in [4] that if we assume ABC conjecture is true, then Ennola’s conjecture is true except for
finitely many l. i.e., jl = 1 for any sufficiently large l. Another significant result in [4] is a
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conditional proof of a weak form of Ennola’s conjecture that for any given integer N ≥ 2,
we have gcd(jl , N !) = 1 for l ≥ lN effectively large enough.
Assuming Conjectures 1 and 2 below, S. Louboutin deduced a weak form of Ennola’s

conjecture. Even thoughLouboutin checked the validity of the conjectures by computation
for finitely many case in [4], the Conjectures 1 and 2 are still unsolved in [4].
We provide proofs of Conjectures 14 and 20 of [4] and consequently establish Theorem

1 below.

Theorem 1 (Weak form of Ennola’s conjecture, Theorem 2 and Proposition 15 of [4])
For any given prime p ≥ 3, there are only finitely many l ≥ 3 for which p divides the unit
index jl . Hence, for any given integer N ≥ 2 we have gcd(jl , N !) = 1 for l ≥ lN effectively
large enough.

To prove the above theorem,wewill formulate and verify Conjectures 1 and 2, which are
aforementioned conjectures in [4]. Both conjectures are about certain Laurent polynomi-
als.Our proof ofConjecture 1 is reminiscent ofNewton identities, and that ofConjecture 2
is based on the validity of Conjecture 1 combined with an argument involving elementary
manipulations of binomial coefficients.
Theorem 1 is a statement about divisors of a unit index jl . A similar work was done by

Louboutin and Lee for another family of cubic number fields. In [5], they showed that
the unit index (Ua : 〈−1, εa, ε′

a〉) of the group of units generated by −1, εa, and ε′
a in the

group of units Ua of the ring of integers of Q(α) is coprime to 3 for a ≥ 1 and coprime
to 6 for 1 ≤ a ≡ 2, 3 (mod 4), where α is a root of X3 − 4a2X + 2 ∈ Z[X], and εa, ε′

a are
two distinct units in the ring of integers ofQ(α). Our result is similar to that of Louboutin
and Lee, and we are concerned with a family of cubic polynomials (1) with l ≥ 3. On the
other hand, this family (1) attracts interests both of number theorists and of topologists.
For topological context, see [6].
This paper is organized as follows. In §2, we introduce Conjectures 1 and 2, which are

used in the proof of Theorem 1. In §3 and §4, we give proofs of conjectures.

2 Louboutin’s conjectures
Here, we introduce Louboutin’s conjectures. They are concerned with the family of fol-
lowing polynomials.

Definition 1 For d ≥ 1, we define the polynomial

Pd(X, Y ) = d
∑

k,l≥0
0≤2k+3l≤d

(−1)k−1
(
k + l
k

)(
d − k − 2l

k + l

)
XkY d−2k−3l

d − k − 2l
∈ Z[X, Y ].

Aprecursor of the polynomial Pd(X, Y ) first appeared in [7, Lemma 8] and it was defined
in this form in [4].

Example 1 For smalld’s,Pd(X, Y )’s are:P1(X, Y ) = −Y ,P2(X, Y ) = −Y 2+2X ,P3(X, Y ) =
−Y 3 + 3XY − 3, and P4(X, Y ) = −Y 4 + 4XY 2 − 2X2 − 4Y .
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Conjecture 1 (Conjecture 14 of [4]) Let a, b ∈ Z be nonzero such that c := a + b �= 0.
Set

Sa,b(T ) = 1
Ta + 1

Tb + Ta+b.

Then for d ∈ {
a, b, c

}
and Pd(X, Y ) as in the Definition 1, we have

P|d|(Sa,b(T ), Sa,b(1/T )) = −Sa,b(1/T |d|). (2)

Moreover, if a is even and b is odd, then with

Ra,b(T ) = 1
Ta + (−1)a+b

Tb + Ta+b,

we have

P|d|(−Ra,b(T ),−Ra,b(1/T )) =
⎧
⎨

⎩
−Sa,b(1/T |d|), if d = a

Ra,b(1/T |d|), if d ∈ {
b, c

}
.

(3)

Conjecture 1 is used to deduce the following theorem in [4].

Theorem 2 [4, Theorem18] Let p ≡ 5 (mod 6) be a given prime. Assume thatConjecture
1 holds true. Then p does not divide jl for l sufficiently large enough.

There is other conjecture we have to prove to establish Theorem 1. Conjecture 20 in [4]
was necessary to apply Proposition 19 of [4] in the proof of Theorem 1, which is stated
below.

Proposition 1 (Proposition 19 of [4]) Let a, b ∈ Z not both equal to 0 be given. Let m ≥ 3
be odd. Set Ga,b(T ) := Fa,b(Ra,b(T ), R−a,−b(T )), where 0 �= Fa,b(X, Y ) = ∑

u,v fu,vXuY v ∈
Z[X, Y ] is given as Table 1 below. We also define

s = max(a + b,−a,−b), t = max(−a − b, a, b),

Ma,b = max{us + vt : fu,v �= 0},

Ra,b,m(T ) = Ra,b(T ) + b − a
m

T−a−m + (−1)a+b(a − 2b)
m

T−b−m + b
m
Ta+b−m.

Assume that

Ga,b,m(T ) = Fa,b(Ra,b,m(T ), R−a,−b,m(T )) ∈ Q[T, T−1]

is of negative degree.
Set Na,b,m = − degGa,b,m(T ) ≥ 1 and Ba,b,m := (Ma,b +Na,b,m + 1)/2. If Ba,b,m ≤ m, then
the unit εa,b = (−1)a+bεal (εl − 1)b is not a m-th power in Q(εl) for l ≥ lm effectively large.

Table 1 Cases of Fa,b(X, Y )

Cases Fa,b(X, Y )

Case 1: a ≥ 1 odd and b ≥ 1 odd Fa,b(X, Y ) = −Pa(Y, X ) − Pb(Y, X ) + Pc (X, Y )

Case 2: a ≥ 1 odd and b ≥ 1 even Fa,b(X, Y ) = −Pa(−Y,−X ) − Pb(−Y,−X ) + Pc (−X,−Y )

Case 3: a ≥ 2 even and b ≥ 1 odd Fa,b(X, Y ) = −Pa(−Y,−X ) − Pb(−Y,−X ) − Pc (−X,−Y )
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Table 1 gives all cases that will be dealt with in this paper (c := a + b �= 0):

Conjecture 2 ( Conjecture 20 of [4]) With notations as in Proposition 1, let (a, b) ∈
Z�=0 × Z≥1 be such that ma,b = a2 + ab + b2 is odd and ma,b ≥ 5. Assume that the
pair (a, b) is not of the form (−2b, b) with b ≥ 1 odd, (b, b) with b ≥ 1 odd, (−b/2, b)
with b ≥ 2 even. Then the assumptions in Proposition 1 are satisfied for m = ma,b with
Ma,b = (a + b)max(a, b) and Na,b,ma,b = min(a, b)2. Namely, degGa,b,ma,b (T ) < 0, and
Ba,b,ma,b ≤ ma,b.

Conjectures 1 and 2 yield the following theorem in [4].

Theorem 3 [4, Theorem 21] Let p ≡ 1 (mod 6) be a given prime. Assume that Conjec-
tures 1 and 2 are true. Then p does not divide jl for l sufficiently large enough.

Clearly, Theorem 1 can be obtained by combining Theorem 2 with Theorem 3.
If Ma,b and Na,b,ma,b are as in the Conjecture 2, then Ba,b,ma,b ≤ ma,b, since Ba,b,ma,b =

(a2 + ab+ b2 + 1)/2 = (ma,b + 1)/2 ≤ ma,b as [4, p. 15]. That is, the assumption of Prop.
1 is satisfied.
In summary, to proveConjecture 2, we have to computeMa,b, Na,b,ma,b and verifyMa,b =

(a + b)max(a, b), Na,b,ma,b = min(a, b)2 in each case of Table 1.

3 Proof of Conjecture 1
As an intermediate step towards the proof of Conjecture 1, we show the following propo-
sition, which is reminiscent of Newton identities.

Proposition 2 For any d ≥ 4, we have

Pd(X, Y ) = YPd−1(X, Y ) − XPd−2(X, Y ) + Pd−3(X, Y ). (4)

Proof To prove (4), we show that the coefficients of XkY d−2k−3l in the LHS and RHS of
(4) coincide. Set

k = A, d − 2k − 3l = B, M = d + A − B
3

, N = d + A + 2B
3

.

Then l = (d − 2A − B)/3, k + l = M, and d − k − 2l = N . Now we determine the
coefficients of XAYB in both sides of (4). First, we assume A > 0 (if so, it is clear that
M,N > 0).
In Pd(X, Y ), the coefficient of XkY d−2k−3l = XAYB is

(−1)k−1
(
k + l
k

)(
d − k − 2l

k + l

)
d

d − k − 2l
= (−1)A−1

(
M
A

)(
N
M

)
d
N
. (5)

In YPd−1(X, Y ), the termXkY d−2k−3l = XAYB occurs whenA = k and B = d−2k−3l,
where the coefficient of the monomial is

(−1)k−1
(
k + l
k

)(
d − 1 − k − 2l

k + l

)
d − 1

d − 1 − k − 2l
= (−1)A−1

(
M
A

)(
N − 1
M

)
d − 1
N − 1

.

(6)
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In XPd−2(X, Y ), the term XkY d−2k−3l = XAYB occurs when A = k + 1 and B =
d − 2 − 2k − 3l, where the coefficient of the monomial is

(−1)k−1
(
k + l
k

)(
d − 2 − k − 2l

k + l

)
d − 2

d − 2 − k − 2l

= (−1)A
(
M − 1
A − 1

)(
N − 1
M − 1

)
d − 2
N − 1

. (7)

InPd−3(X, Y ), the termXkY d−2k−3l = XAYB occurswhenA = k andB = d−3−2k−3l,
where the coefficient of the monomial is

(−1)k−1
(
k + l
k

)(
d − 3 − k − 2l

k + l

)
d − 3

d − 3 − k − 2l

= (−1)A−1
(
M − 1

A

)(
N − 1
M − 1

)
d − 3
N − 1

. (8)

Now we verify that

(RHS of (5)) = (that of (6)) − (that of (7)) + (that of (8)). (9)

(9) is equivalent to

(
M
A

)(
N
M

)
d
N

=
(
M
A

)(
N − 1
M

)
d − 1
N − 1

+
(
M − 1
A − 1

)(
N − 1
M − 1

)
d − 2
N − 1

+
(
M − 1

A

)(
N − 1
M − 1

)
d − 3
N − 1

.

Note that
(
N − 1
M

)
= N − M

N

(
N
M

)
,
(
M − 1
A − 1

)
= A

M

(
M
A

)
, (10)

(
M − 1

A

)
= M − A

M

(
M
A

)
,
(
N − 1
M − 1

)
= M

N

(
N
M

)
. (11)

So, by using (10) and (11) to simplify (9), it suffices to check whether the equality

d
N

= N − M
N

d − 1
N − 1

+ A
M

M
N

d − 2
N − 1

+ M − A
M

M
N

d − 3
N − 1

(12)

holds. Multiplying N (N − 1) on both sides of (12), we know

(N − 1)d = (N − M)(d − 1) + A(d − 2) + (M − A)(d − 3) = Nd − N − 2M + A.

Since 2M + N = d + A by definition of A, B,M, and N , we are done.
Suppose A = 0. Then k = 0 = A, B = d − 3l, M = l, and N = d − 2l. If A = M = 0,

then XAYB = Y d , and since Y d solely comes from (6), there is nothing to show. So we
assume A = 0, andM > 0. In this case, (9) becomes

(RHS of (5)) = (that of (6)) + (that of (8)). (13)
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From (5), (6), and (8), it is easy to observe that (13) is equivalent to

(
N
M

)
d
N

=
(
N − 1
M

)
d − 1
N − 1

+
(
N − 1
M − 1

)
d − 3
N − 1

. (14)

Since 2M + N = d, the RHS of (14) is

1
N − 1

(
(d − 1)

(
N − 1
M − 1

)
N − M

M
+ (d − 3)

(
N − 1
M − 1

))

= 1
N − 1

(
N − 1
M − 1

)(
Nd − N − 2M

M

)
= d

M

(
N − 1
M − 1

)
= d

N

(
N
M

)

and the proof is complete. �


Now we are ready to prove Conjecture 1 by using Proposition 2. First, a corollary:

Corollary 1 For d ≥ 1, we have

Pd
(
1
X

+ 1
Y

+ XY, X + Y + 1
XY

)
= −

(
Xd + Y d + 1

XdY d

)
.

Proof We proceed by induction on d. From the expression of P1(X, Y ), P2(X, Y ), and
P3(X, Y ) in Example 1, it is easy to observe that the result holds for d = 1, 2, 3. Suppose
d ≥ 4. By Proposition 2 and the inductive hypothesis,

Pd
(
1
X

+ 1
Y

+ XY, X + Y + 1
XY

)

=
(
X + Y + 1

XY

)
Pd−1

(
1
X

+ 1
Y

+ XY, X + Y + 1
XY

)

−
(
1
X

+ 1
Y

+ XY
)
Pd−2

(
1
X

+ 1
Y

+ XY, X + Y + 1
XY

)

+ Pd−3

(
1
X

+ 1
Y

+ XY, X + Y + 1
XY

)

= −
(
X + Y + 1

XY

)(
Xd−1 + Y d−1 + 1

Xd−1Y d−1

)

+
(
1
X

+ 1
Y

+ XY
) (

Xd−2 + Y d−2 + 1
Xd−2Y d−2

)

−
(
Xd−3 + Y d−3 + 1

Xd−3Y d−3

)

= −
(
Xd + Y d + 1

XdY d

)
.

�


Conjecture 1 naturally follows from Corollary 1.

Proof of Conjecture 1 First, we verify (2). Put X = Ta, Y = Tb in Corollary 1. Then

Sa,b(T ) = 1
X

+ 1
Y

+ XY, Sa,b(1/T ) = X + Y + 1
XY

.
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Table 2 Ga,b(T ) in each case

Cases Ga,b(T )

Case 1 Ga,b(T ) = T−a2 + T−b2 − T−c2 + 2T−ab

Case 2 Ga,b(T ) = −T−a2 + T−b2 + T−c2 + 2T−ab

Case 3 Ga,b(T ) = T−a2 + T−b2 − T−c2

From Corollary 1,

−Sa,b(1/T |d|) = −
(
Ta|d| + Tb|d| + 1

T (a+b)|d|

)
= −

(
Xd + Y d + 1

XdY d

)

= Pd
(
1
X

+ 1
Y

+ XY, X + Y + 1
XY

)
= P|d|(Sa,b(T ), Sa,b(1/T )).

The proof of (3) directly follows from the same method, by replacing X → −X , Y → Y ,
and XY → −XY . �


4 Proof of Conjecture 2
We need the following lemma to prove Conjecture 2:

Lemma 1 Define, following [4, Conjecture 12],

Ga,b(T ) = Fa,b(Ra,b(T ), Ra,b(1/T ))

with Fa,b(X, Y ) as in Table 1. Then Ga,b(T )’s for each case in Table 1 are given as the
Table 2:

Proof This is a direct consequence of [4, Proposition 15] and [4, Conjecture 14] which
has just been proved in §3. �


Before we give a proof of the cases in Table 1, we set

Ea,b(T ) = b − a
Ta + (−1)a+b(a − 2b)

Tb + bTa+b.

For notational convenience, we letma,b = m from now on. Then

Ra,b,m(T ) = Ra,b(T ) + 1
mTmEa,b(T ),

R−a,−b,m(T ) = R−a,−b(T ) + 1
mTmE−a,−b(T ) = Ra,b

(
1
T

)
− 1

mTmEa,b
(
1
T

)
.

4.1 Case 1: a ≥ 1 odd and b ≥ 1 odd

In §4.1, we showMa,b = (a + b)max(a, b), Na,b,m = min(a, b)2 from direct computation.
By Table 1, Fa,b(X, Y ) = −Pa(Y, X) − Pb(Y, X) + Pc(X, Y ) for Case 1, and we get

Ga,b,m(T ) = Q1,a,b,m(T ) + Q2,a,b,m(T ) + Q3,a,b,m(T ),
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where

Q1,a,b,m(T ) = −Pa
(
Ra,b

(
1
T

)
− 1

mTmEa,b
(
1
T

)
, Ra,b(T ) + 1

mTmEa,b(T )
)
, (15)

Q2,a,b,m(T ) = −Pb
(
Ra,b

(
1
T

)
− 1

mTmEa,b
(
1
T

)
, Ra,b(T ) + 1

mTmEa,b(T )
)
, (16)

Q3,a,b,m(T ) = Pc
(
Ra,b(T ) + 1

mTmEa,b(T ), Ra,b

(
1
T

)
− 1

mTmEa,b
(
1
T

))
. (17)

Using Definition 1, (15) is

Q1,a,b,m(T ) = a
∑

k,l≥0
0≤2k+3l≤a

(−1)k
(
k + l
k

)(
a − k − 2l

k + l

)
1

a − k − 2l
∑

0≤i≤k
0≤j≤a−2k−3l

Ai,j,k,l ,

where

Ai,j,k,l =
(
k
i

)( −1
mTmEa,b

(
1
T

))i (
Ra,b

(
1
T

))k−i

·
(
a − 2k − 3l

j

) (
1

mTmEa,b(T )
)j

(Ra,b(T ))a−2k−3l−j .

Note that

A0,0,k,l =
(
Ra,b

(
1
T

))k
(Ra,b(T ))a−2k−3l .

Hence,

Q1,a,b,m(T ) = − Pa
(
Ra,b

(
1
T

)
, Ra,b(T )

)

+ a
∑

k,l≥0
0≤2k+3l≤a

(−1)k
(
k + l
k

)(
a − k − 2l

k + l

)
1

a − k − 2l
∑

0≤i≤k
0≤j≤a−2k−3l

(i,j) �=(0,0)

Ai,j,k,l

︸ ︷︷ ︸
=A1(T )

In the same way, we can modify (16) and (17) as

Q2,a,b,m(T ) = − Pb
(
Ra,b

(
1
T

)
, Ra,b(T )

)

+ b
∑

k,l≥0
0≤2k+3l≤b

(−1)k
(
k + l
k

)(
b − k − 2l

k + l

)
1

b − k − 2l
∑

0≤i≤k
0≤j≤b−2k−3l

(i,j) �=(0,0)

Bi,j,k,l

︸ ︷︷ ︸
=B1(T )

and

Q3,a,b,m(T ) =Pc
(
Ra,b(T ), Ra,b

(
1
T

))

+ c
∑

k,l≥0
0≤2k+3l≤c

(−1)k−1
(
k + l
k

)(
c − k − 2l

k + l

)
1

c − k − 2l
∑

0≤i≤k
0≤j≤c−2k−3l

(i,j) �=(0,0)

Ci,j,k,l

︸ ︷︷ ︸
=C1(T )
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where

Bi,j,k,l =
(
k
i

)( −1
mTmEa,b

(
1
T

))i (
Ra,b

(
1
T

))k−i

·
(
b − 2k − 3l

j

) (
1

mTmEa,b(T )
)j

(Ra,b(T ))b−2k−3l−j ,

and

Ci,j,k,l =
(
k
i

) (
1

mTmEa,b(T )
)i

(Ra,b(T ))k−i

·
(
c − 2k − 3l

j

) ( −1
mTmEa,b

(
1
T

))j (
Ra,b

(
1
T

))c−2k−3l−j
.

Finally, noticing that by Lemma 1 that we have

− Pa
(
Ra,b

(
1
T

)
, Ra,b(T )

)
− Pb

(
Ra,b

(
1
T

)
, Ra,b(T )

)
+ Pc

(
Ra,b(T ), Ra,b

(
1
T

))

= Fa,b(Ra,b(T ), Ra,b(1/T )) = Ga,b(T ),

we obtain:

Lemma 2 For a ≥ 1 odd and b ≥ 1 odd, m = ma,b and c = a + b, we have

Ga,b,m(T ) = 1
Ta2

+ 1
Tb2

− 1
Tc2

+ 2
Tab + A1(T ) + B1(T ) + C1(T ).

Hence for all possible pairs (i, j) (�= (0, 0)) and (k, l), we have

degAi,j,k,l = kmax(a, b) + (a − 2k − 3l)(a + b) − (i + j)(a2 + ab + b2), (18)

deg Bi,j,k,l = kmax(a, b) + (b − 2k − 3l)(a + b) − (i + j)(a2 + ab + b2), (19)

degCi,j,k,l = k(a + b) + (c − 2k − 3l)max(a, b) − (i + j)(a2 + ab + b2). (20)

By looking at the twopossibilities formax(a, b), we determine in the following two sections
the maxima of (18), (19), and (20).

4.1.1 max(a, b) = a

If max(a, b) = a, then (18), (19), and (20) are

The RHS of (18) = ka + (a − 2k − 3l)(a + b) − (i + j)(a2 + ab + b2)

= −k(a + 2b) − 3(a + b)l + a(a + b) − (i + j)(a2 + ab + b2),

that of (19) = ka + (b − 2k − 3l)(a + b) − (i + j)(a2 + ab + b2)

= −k(a + 2b) − 3(a + b)l + b(a + b) − (i + j)(a2 + ab + b2),

that of (20) = k(a + b) + (c − 2k − 3l)a − (i + j)(a2 + ab + b2)

= k(−a + b) − 3al + a(a + b) − (i + j)(a2 + ab + b2).
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Note that −a + b < 0 since max(a, b) = a with a �= b, and i + j ≥ 1. Now, for k, l ∈ Z≥0,
we check

max{degAi,j,k,l : 0 ≤ i ≤ k, 0 ≤ j ≤ a − 2k − 3l, (i, j) �= (0, 0), 0 ≤ 2k + 3l ≤ a}, (21)
max{deg Bi,j,k,l : 0 ≤ i ≤ k, 0 ≤ j ≤ b − 2k − 3l, (i, j) �= (0, 0), 0 ≤ 2k + 3l ≤ b}, (22)
max{degCi,j,k,l : 0 ≤ i ≤ k, 0 ≤ j ≤ c − 2k − 3l, (i, j) �= (0, 0), 0 ≤ 2k + 3l ≤ c}. (23)

For (18) to be maximum, we know k = l = i = 0, j = 1. In this case, (21) = −b2. (19)
and (20) also obtain maximum at k = l = i = 0, j = 1, and for such i, j, k, l, (22) = −a2,
and (23) = −b2. We do not have to consider other cases of i, j, k, l, because as k, l, i, and
j increase, the degree of Ai,j,k,l , Bi,j,k,l and Ci,j,k,l decreases, so they do not contribute to
degGa,b,m(T ).
From the expression of Ga,b,m(T ) in Lemma 2, we have degGa,b,m(T ) ≤ −b2 =

−min(a, b)2. To make = hold, it suffices to show that the coefficient of 1/Tb2 inGa,b,m(T )
is nonzero.
Let lc(Q) be the leading coefficient of a polynomial Q ∈ Q[T, T−1], and αk (Q) be the

coefficient of the monomial Tk in Q ∈ Q[T, T−1], k ∈ Z. Then α−b2 (Ga,b,m) comes from
lc(A0,1,0,0), lc(C0,1,0,0), and 1/Tb2 of Ga,b(T ). Namely,

α−b2 (Ga,b,m) = a
(
0 + 0
0

)(
a − 0 − 0

0

)
1

a − 0 − 0
· lc(A0,1,0,0)

+ c
(
0 + 0
0

)(
c − 0 − 0

0

) −1
c − 0 − 0

· lc(C0,1,0,0) + 1.

Carefully expanding A0,1,0,0 and C0,1,0,0, we know

a
(
0 + 0
0

)(
a − 0 − 0

0

)
1

a − 0 − 0
· lc(A0,1,0,0) = ab

a2 + ab + b2
,

c
(
0 + 0
0

)(
c − 0 − 0

0

) −1
c − 0 − 0

· lc(C0,1,0,0) = b2 − a2

a2 + ab + b2
.

Hence,

α−b2 (Ga,b,m) = ab
a2 + ab + b2

+ b2 − a2

a2 + ab + b2
+ 1

= 2b(a + b)
a2 + ab + b2

= 2cmin(a, b)
a2 + ab + b2

�= 0,

and we obtain α−b2 (Ga,b,m) = lc(Ga,b,m) �= 0.
The number Ma,b can be obtained in a similar way. First, we determine s and t. From

Case 1 to Case 3 in Table 1 it is easy to observe

s = max(a + b,−a,−b) = a + b,

t = max(−a − b, a, b) = max(a, b).
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By definitions of Ma,b in Proposition 1 and Fa,b in Table 1, Ma,b should be one of the
followings (c = a + b):

max{(a + b)(a − 2k − 3l) + kmax(a, b) : 0 ≤ k, l, 0 ≤ 2k + 3l ≤ a}, (24)

max{(a + b)(b − 2k − 3l) + kmax(a, b) : 0 ≤ k, l, 0 ≤ 2k + 3l ≤ b}, (25)

max{(a + b)k + (c − 2k − 3l)max(a, b) : 0 ≤ k, l, 0 ≤ 2k + 3l ≤ c}. (26)

Since we assumed max(a, b) = a,

(a + b)(a − 2k − 3l) + kmax(a, b) = a(a + b) − (a + 2b)k − 3(a + b)l, (27)

(a + b)(b − 2k − 3l) + kmax(a, b) = b(a + b) − (a + 2b)k − 3(a + b)l, (28)

(a + b)k + (c − 2k − 3l)max(a, b) = a(a + b) − (a − b)k − 3al. (29)

So, (24), (25), (26) can be obtainedwhen k = l = 0. That is, (24) = a(a+b), (25) = b(a+b),
(26) = a(a + b) and clearlyMa,b = a(a + b) = (a + b)max(a, b).

Remark 1 While the numerator of lc(Ga,b,m) and that of qn in Table 2 of [4] coincide, the
denominators are different. This happens in other cases below. But our result agrees with
Louboutin’s prediction on Na,b,m.

4.1.2 max(a, b) = b

We repeat what we did in 4.1.1. If max(a, b) = b, then (18), (19), and (20) are

The RHS of (18) = kb + (a − 2k − 3l)(a + b) − (i + j)(a2 + ab + b2)

= −k(2a + b) − 3(a + b)l + a(a + b) − (i + j)(a2 + ab + b2),

That of (19) = kb + (b − 2k − 3l)(a + b) − (i + j)(a2 + ab + b2)

= −k(2a + b) − 3(a + b)l + b(a + b) − (i + j)(a2 + ab + b2),

That of (20) = k(a + b) + (c − 2k − 3l)b − (i + j)(a2 + ab + b2)

= k(a − b) − 3bl + b(a + b) − (i + j)(a2 + ab + b2).

Wealso have themaxima of degAi,j,k,l , deg Bi,j,k,l , and degCi,j,k,l when k = l = i = 0, j = 1.
Then degA0,1,0,0 = −b2, deg B0,1,0,0 = −a2, and degC0,1,0,0 = −a2. So, degGa,b,m(T ) =
−a2 provided α−a2 (Ga,b,m) �= 0. By checking α−a2 (Ga,b,m) as

α−a2 (Ga,b,m) =b
(
0 + 0
0

)(
b − 0 − 0

0

)
1

b − 0 − 0
· lc(B0,1,0,0)

+ c
(
0 + 0
0

)(
c − 0 − 0

0

) −1
c − 0 − 0

· lc(C0,1,0,0) + 1

= b2

a2 + ab + b2
+ (b + a)(a − 2b)

a2 + ab + b2
+ 1

= 2a2

a2 + ab + b2
= 2min(a, b)a

a2 + ab + b2
�= 0,

we have α−a2 (Ga,b,m) = lc(Ga,b,m) �= 0 and conclude degGa,b,m(T ) = −a2 =
−min(a, b)2 = −Na,b,m.
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To determineMa,b, we investigate (24), (25), and (26) as in §4.1.1. Since

(a + b)(a − 2k − 3l) + kmax(a, b) = a(a + b) − (2a + b)k − 3(a + b)l, (30)

(a + b)(b − 2k − 3l) + kmax(a, b) = b(a + b) − (2a + b)k − 3(a + b)l, (31)

(a + b)k + (c − 2k − 3l)max(a, b) = b(a + b) − (b − a)k − 3bl, (32)

we know (24) = a(a + b), (25) = b(a + b), (26) = b(a + b) by the same argument. Hence
Ma,b = b(a + b) = (a + b)max(a, b).

Remark 2 One can completely verify Table 1 of [4] in the same way. Since (27), (28), (29)
are still valid in §4.2.1 and §4.3.1, and (30), (31), (32) valid in §4.2.2 and §4.3.2, we will not
repeat the proofMa,b = (a + b)max(a, b) for remaining cases in following sections.

Remark 3 In the remaining cases, one can easily observe that (21) = −b2, (22) = −a2,
and (23) = −min(a, b)2 as in §4.1 by the same argument. So, it suffices to observe whether
α−b2 (Ga,b,m) �= 0 in §4.2.1 and §4.3.1, and α−a2 (Ga,b,m) �= 0 in §4.2.2 and §4.3.2.

4.2 Case 2: a ≥ 1 odd and b ≥ 1 even

The argument in this subsection is similar to §4.1. For Case 2, Fa,b(X, Y ) and Ga,b(T )
are given by Fa,b(X, Y ) = −Pa(−Y,−X) − Pb(−Y,−X) + Pc(−X,−Y ), and Ga,b(T ) =
−T−a2 +T−b2 +T−c2 +2T−ab. As in Case 1, we putX = Ra,b,m(T ) and Y = R−a,−b,m(T ).
Then Ga,b,m(T ) is

Ga,b,m(T ) = − 1
Ta2

+ 1
Tb2

+ 1
Tc2

+ 2
Tab

+ a
∑

k,l≥0
0≤2k+3l≤a

(−1)k
(
k + l
k

)(
a − k − 2l

k + l

)
(−1)a−k−3l

a − k − 2l
∑

0≤i≤k
0≤j≤a−2k−3l

(i,j) �=(0,0)

Ai,j,k,l

︸ ︷︷ ︸
=A2(T )

+ b
∑

k,l≥0
0≤2k+3l≤b

(−1)k
(
k + l
k

)(
b − k − 2l

k + l

)
(−1)b−k−3l

b − k − 2l
∑

0≤i≤k
0≤j≤b−2k−3l

(i,j) �=(0,0)

Bi,j,k,l

︸ ︷︷ ︸
=B2(T )

+ c
∑

k,l≥0
0≤2k+3l≤c

(−1)k−1
(
k + l
k

)(
c − k − 2l

k + l

)
(−1)c−k−3l

c − k − 2l
∑

0≤i≤k
0≤j≤c−2k−3l

(i,j) �=(0,0)

Ci,j,k,l

︸ ︷︷ ︸
=C2(T )

.

We get

Lemma 3 For a ≥ 1 odd, b ≥ 1 even, m = ma,b, and c = a + b, we have

Ga,b,m(T ) = − 1
Ta2

+ 1
Tb2

+ 1
Tc2

+ 2
Tab + A2(T ) + B2(T ) + C2(T ).
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4.2.1 max(a, b) = a

By Remark 3, we check α−b2 (Ga,b,m) �= 0. It is

a
(
0 + 0
0

)(
a − 0 − 0

0

)
(−1)a

a − 0 − 0
· lc(A0,1,0,0)

+ c
(
0 + 0
0

)(
c − 0 − 0

0

)
(−1)c+1

c − 0 − 0
· lc(C0,1,0,0) + 1

= − ab
a2 + ab + b2

− b2 − a2

a2 + ab + b2
+ 1 = 2a2

a2 + ab + b2
�= 0,

we know α−b2 (Ga,b,m) = lc(Ga,b,m) �= 0 and degGa,b,m(T ) = −b2 = −min(a, b)2 =
−Na,b,m.

4.2.2 max(a, b) = b

Observing α−a2 (Ga,b,m) by (with Remark 3 kept in mind)

b
(
0 + 0
0

)(
b − 0 − 0

0

)
(−1)b

b − 0 − 0
· lc(B0,1,0,0)

+ c
(
0 + 0
0

)(
c − 0 − 0

0

)
(−1)c+1

c − 0 − 0
· lc(C0,1,0,0) − 1

= b2

a2 + ab + b2
+ (b + a)(a − 2b)

a2 + ab + b2
− 1 = −2b(a + b)

a2 + ab + b2
= −2bc

a2 + ab + b2
�= 0,

we conclude degGa,b,m(T ) = −a2 = −min(a, b)2 = −Na,b,m.

4.3 Case 3: a ≥ 2 even and b ≥ 1 odd

While explicitly describing Ga,b,m(T ) by putting X = Ra,b,m(T ) and Y = R−a,−b,m(T ) at
Fa,b(X, Y ) = −Pa(−Y,−X) − Pb(−Y,−X) − Pc(−X,−Y ), we only have to take extra care
of −Pc(−X,−Y ), with others same as in Case 2. From Lemma 1,

Ga,b,m(T ) = 1
Ta2

+ 1
Tb2

− 1
Tc2

+ a
∑

k,l≥0
0≤2k+3l≤a

(−1)k
(
k + l
k

)(
a − k − 2l

k + l

)
(−1)a−k−3l

a − k − 2l
∑

0≤i≤k
0≤j≤a−2k−3l

(i,j) �=(0,0)

Ai,j,k,l

︸ ︷︷ ︸
=A3(T )

+ b
∑

k,l≥0
0≤2k+3l≤b

(−1)k
(
k + l
k

)(
b − k − 2l

k + l

)
(−1)b−k−3l

b − k − 2l
∑

0≤i≤k
0≤j≤b−2k−3l

(i,j) �=(0,0)

Bi,j,k,l

︸ ︷︷ ︸
=B3(T )

+ c
∑

k,l≥0
0≤2k+3l≤c

(−1)k
(
k + l
k

)(
c − k − 2l

k + l

)
(−1)c−k−3l

c − k − 2l
∑

0≤i≤k
0≤j≤c−2k−3l

(i,j) �=(0,0)

Ci,j,k,l

︸ ︷︷ ︸
=C3(T )

.
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Lemma 4 For a ≥ 2 even, b ≥ 1 odd, m = ma,b, and c = a + b, we have

Ga,b,m(T ) = 1
Ta2

+ 1
Tb2

− 1
Tc2

+ A3(T ) + B3(T ) + C3(T ).

4.3.1 max(a, b) = a

α−b2 (Ga,b,m) can be described as

a
(
0 + 0
0

)(
a − 0 − 0

0

)
(−1)a

a − 0 − 0
· lc(A0,1,0,0)

+ c
(
0 + 0
0

)(
c − 0 − 0

0

)
(−1)c

c − 0 − 0
· lc(C0,1,0,0) + 1

= ab
a2 + ab + b2

+ b2 − a2

a2 + ab + b2
+ 1 = 2b(a + b)

a2 + ab + b2
= 2bc

a2 + ab + b2
�= 0.

So, we know α−b2 (Ga,b,m) = lc(Ga,b,m) �= 0 and degGa,b,m(T ) = −b2 = −min(a, b)2 =
−Na,b,m.

4.3.2 max(a, b) = b

Since α−a2 (Ga,b,m) is

b
(
0 + 0
0

)(
b − 0 − 0

0

)
(−1)b

b − 0 − 0
· lc(B0,1,0,0)

+ c
(
0 + 0
0

)(
c − 0 − 0

0

)
(−1)c

c − 0 − 0
· lc(C0,1,0,0) − 1

= − b2

a2 + ab + b2
− (b + a)(a − 2b)

a2 + ab + b2
+ 1 = 2b(a + b)

a2 + ab + b2
= 2bc

a2 + ab + b2
�= 0,

we conclude degGa,b,m(T ) = −a2 = −min(a, b)2 = −Na,b,m. Hence, the proof of Con-
jecture 2 is complete.
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