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Abstract. We introduce and investigate a kind of arithmetic Chern–Simons action
which we call the Massey type. We evaluate certain values of the Massey type action
in terms of triple symbol. This relation is reminescent of the evaluation of the abelian
type action in terms of Legendre symbols. Using the evaluation in terms of triple
symbols, we also deduce from the genus theory that the Massey type action vanishes
identically for an infinite family of quadratic fields.

1. Introduction

In 2015 [11], Minhyong Kim introduced the arithmetic Chern–Simons theory. Its
key object is the arithmetic Chern–Simons action, whose definition – to be recalled
soon – which is interpreted as the arithmetic analogue of its counterpart in differential
topology. The subject evolved to include the arithmetic BF-theory [3, 2, 16] and an
overview is given in [10]. A treatment focusing on the arithemtic Chern–Simons theory
and how it incarnates a topological quantum field theory is given in [15].

Our goal in this article is to introduce a kind of the arithmetic Chern–Simons action
which we call the Massey type and investigate it in terms of triple symbols [9]. To
proceed, we need to recall the general definition of arithmetic Chern–Simons action.
The description we give below is due to [7, 13], where the definition of the arithmetic
Chern–Simons action as stated in [11] was extended to allow number fields with real
places. This extension is relevant for us since we allow such real places throughout.

Let n ≥ 2 be an integer, F a number field with a fixed primitive n-th root of unity
ζ ∈ F . We further choose an algebraic closure F̄ /F and denote F̃ /F by the maximal
unramified subextension – we adopt the convention that a real place is required to
remain real in an unramified extension. Putting π1 = Gal(F̃ /F ), π1 is identified with
the fundamental group of XF , by which we denote the Artin–Verdier site associated to
F . The choice of ζ determines an embedding Z/nZ ↪→ F× which sends 1 ∈ Z/nZ to ζ
which uniquely extends to a map Z/nZ → Gm between sheaves. It gives rise to a map

j : H3(π1,Z/nZ) → H3(XF ,Gm)

from the continuous group cohomology into the Artin–Verdier cohomology group with
coefficients in the multiplicative group Gm. The Artin–Verdier duality yields a canonical
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2 MASSEY AND TRIPLE SYMBOLS

isomorphism

inv : H3(XF ,Gm)
∼−→ Q/Z.

Composition yields a map inv ◦j : H3(π1,Z/nZ) → Q/Z. Based on the above cohomo-
logical construction, we proceed as follows. Let A be an arbitrary finite group and

c ∈ Z3(A,Z/nZ)

be a cocycle. For each pair A and c, we define

CSc : Hom(π1, A) → Q/Z,

called the arithmetic Chern–Simons action, by

CSc(ρ) = inv ◦j ◦ ρ∗(c)(1)

for every ρ ∈ Hom(π1, A). Of course, CSc only depends on the cohomology class repre-
sented by c, but we prefer the decoration by the cocycle c because much of the forth-
coming analysis will depend on it.

A great amount of flexibility is available since CSc makes sense for an arbitrary choice
of the pair (A, c). It is a feature of the theory which allows us to access the information
of π1 that is not easily made available in terms of the class field theory describing its
abelian quotient. However, the same flexibility makes implausible that a neat formula
exists for CSc(ρ) in the full generality.

For the sake of an explicit formula, a relatively accessible family arises when A =
Z/nZ and c is chosen to be c = IA ∪ δIA, where IA : Z/nZ → Z/nZ is the identity
map and δ is the Bockstein map associated to the short exact sequence 0 → Z/nZ →
Z/n2Z → Z/nZ → 0. This case is often referred to as the abelian case because of its
analogy with U(1), the only abelian member in the family of unitary groups U(m) with
m ≥ 1. The abelian case has been investigated in [1, 4, 13, 7] and the resulting partition
function in [5, 6]. Here, we recall without proof the case treated in [4].

Proposition 1 (Prop. 5.14 of [4]). Take n = 2 and c = IA ∪ δIA. Let F = Q(
√
−pt)

where p ≡ 1 modulo 4 and t is a positive squarefree integer relatively priem to p. Con-
sider ρ : π1 → A corresponding to the extension F (

√
p)/F . Then,

exp
(
2π

√
−1CSc(ρ)

)
=

(
t

p

)
.(2)

It is natural to ask if the arithmetic Chern–Simons action admits a similar interpreta-
tion apart from the abelian case. In this paper, we address this question by investigating
what we call the Massey type by which we refer to the following choice of (A, c). Let
A = (Z/nZ)3. For each i = 1, 2, 3, denote by pri : A → Z/nZ the projection onto the
i-th component. Then, we take c = pr1 ∪ pr2 ∪ pr3.

Remark 2. We call it the Massey type because in some cases it can be identified with
Massey product in Galois cohomology. See [9] and [14] for details.

In the Massey case, a homomorphism ρ : π1 → A is necessarily of the form ρ =
(χ1, χ2, χ3) where χi : π1 → Z/nZ is an unramified character for each i. Such a triple
(χ1, χ2, χ3) of characters determint their symbol [χ1, χ2, χ3]n, as introduced in [9]. Our
first result is the relation between the trple symbols and the Massey type arithmetic
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Chern–Simons action. It is convenient to interpret triple symbols as complex numbers
and for this purpose we identify ζ = exp(2π

√
−1/n).

Theorem 3. Suppose ρ = (χ1, χ2, χ3) where χi is an unramified character for each
i = 1, 2, 3. The Massey type arithmetic Chern–Simons action satisfies

exp
(
2π

√
−1CSc(ρ)

)
= [χ1, χ2, χ3]n.(3)

Proof. See § 4. □

Remark 4. In [12], generalized Rédei symbols were introduced based on certain axioms
for Galois modules. The triple symbol introduced [9] generalized Rédeis symbols and
satisfies the axiomatic conditions in [12].

Comparing the formula (2) in the abelian case and its counterpart (8) in the Massey
case, we see that the role played by Legendre symbols is taken by triple symbols. From
the point of view from the arithmetic topology, the Legendre symbols are interpreted
as a double linking invariant while the Rédei symbols – a special kind of triple symbols
– are intrepreted as a triple linking invariant. From this perspective, the Massey type
arithmetic Chern–Simons action is a natural object to investigate after the abelian case
was handled in [2, 1].

In the abelian case, (2) and its variants allow one to analyze the function CSc in
terms of the Legendre symbols [7, 6]. It is natural to ask if (8) has consequences on the
behaviour of the Massey type action. This question motivates our second result. To

state it, we need some notation; for an odd prime p, let p∗ = (−1)
p−1
2 p.

Theorem 5. Let F be a quadratic field and n = 2. Assume that the discriminant of F

is odd and that
(
p∗

q

)
= 1 for every odd distinct primes p and q ramified in F . Then, the

Massey type arithmetic Chern–Simons action is identically zero; CSc(ρ) = 0 for every
ρ : π1 → A.

Proof. See § 7. □

Remark 6. Applying the Kunneth theorem, it is easy to see that the cocycle c in the
Massey case is not a coboundary. Thm. 5 seems to be the first non-abelian case where
one can show that the CSc vanishes identically for a class c which is not a coboundary.

Remark 7. It remains to describe the Massey type action for quadratic fields when we
relax the assumption on Legendre symbols in Thm. 5.

2. the gluing formula

While the functional ρ 7→ CSc(ρ) is succintly defined in (1), an alternative description,
which we call the gluing formula, will play a major role in the sequel. The formula
expresses CSc(ρ) in Galois-theoretic data which will depend on certain choices. Of
course, the choices to be made will not affect CSc(ρ). This indepndence is a consequence
of the global reciprocity. One might regard the necessity to make such choices as
unwanted complications, but it is precisely those choices which will allow us an access
to CSc(ρ).
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The gluing formula will be based on several cochain complexes so we begin by setting
up the notation for them. For a profinite group G acting continuously on a finite abelian
group M , denote by

C•(G,M)

the bar complex. We denote the differential by d, the subgroup of cocycles by Z•(G,M)
and that of coboundaries by B•(G,M). For a place v of F , we put

πv = Gal(F v/Fv)

where F v is an algebraic closure of Fv. The complex C•(πv,M) is equipped with a
subgroup consisting of unramified cochains, which we define to be those lying in the
image of

C•(πv/Iv,M
Iv) → C•(πv,M)

where Iv ⊂ πv denotes the inertia subgroup. The subgroup of unramified cochains will
be denoted by

C•
ur(πv,M) ⊂ C•(πv,M).

For a finite set S of finite places of F , put

πS = Gal(FS/F )

where FS denotes the maximal subextension of F/F unramified outside of S.
We are ready to formulate the gluing formula [4, 13, 8], also known as the decom-

position formula. Suppose that we are given c ∈ Z3(A,Z/nZ) and ρ ∈ Hom(π,A). It
determines a 3-cocycle

ρ∗c ∈ Z3(π1,Z/nZ).
For each v ∈ S, let

(ρ∗c)v ∈ Z3(πv,Z/nZ)
be the image of ρ∗c under the map

C3(π1,Z/nZ) → C3(πv,Z/nZ).

We further denote by

xv(ρ
∗c) ∈ C2

ur(πv,Z/nZ)
any unramified cochain satisfying dxv(ρ

∗c) = (ρ∗c)v. On the other hand, consider the
image (ρ∗c)S of ρ∗c under the map

C•(π1,Z/nZ) → C•(πS ,Z/nZ)

which is induced by the natural surjection πS → π1. We denote by

βρ ∈ C2(πS ,Z/nZ)

any cochain satisfying dβρ = (ρ∗c)S . Note that we suppress c from the notation although
βρ depends on c.

For each v ∈ S, let locv : πv → πS be the natural map induced by restriction. Denote
by loc∗v the associated map on cochain complexes. In particular,

loc∗v(βρ) = C2(πv,Z/nZ)

for each v ∈ S and it satisfies d loc∗v(βρ) = (ρ∗c)v.
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Theorem 8 ( [4, 13, 8] ). Suppose that S contains all places of F dividing n. Then,

CSc(ρ) =
∑
v∈S

invv (loc
∗
v(βρ)− xv(ρ

∗c))(4)

holds for any choices of βρ and xv(ρ
∗c)’s. Here, invv : H

2(Fv,Z/nZ)
∼−→ 1

nZ/Z denotes
the canonical isomorphism from the local class field theory determined by our choice of
ζ ∈ F .

Proof. See Thm. 2.2.14 of [8]. □

The implicit in the above theorem is that βρ and xv(ρ
∗c)’s exist. Once they are found,

the computation of CSc(ρ) is reduced to the calculation of local invariant maps.

3. Triple symbols

We recall the notion of triple symbols following [9]. For i = 1, 2, 3, consider a character

χi : Gal(F/F ) → Z/nZ.

In order to define the triple symbol associated to (χ1, χ2, χ3) we impose some conditions.

Definition 9. A triple (χ1, χ2, χ3) is called admissible if the following conditions are
satisfied.

(1) For every i = 1, 2, 3, χi is tamely ramified.
(2) Denote by Si the set of ramified places for χi. The sets S1, S2, S3 are pairwise

disjoint.
(3) For every v ∈ S1 ∪ S2 ∪ S3 and every i, j = 1, 2, 3, loc∗v (χi ∪ χj) = 0 in

H2(πv,Z/nZ).

According to [9, Thm. 1], for an admissible (χ1, χ2, χ3) one can define its triple symbol

[χ1, χ2, χ3]n ∈ µn(5)

where µn detotes the subgroup of F consisting of all n-th roots of unity. Since every
element of µn is a power of exp(2π

√
−1/n), we have

[χ1, χ2, χ3]n = exp
(
2π

√
−1d(χ1, χ2, χ3)

)
(6)

for a unique exponent d(χ1, χ2, χ3) ∈ 1
nZ/Z.

We recall the definition of d(χ1, χ2, χ3) which is reminiscent of the gluing formula.
Choose any finite set S of places of F which contains all of Si’s. Then, for the Galois
group πS one has a cocycle

χ1 ∪ χ2 ∪ χ3 ∈ Z3(πS ,Z/nZ).

We may assume, by enlarging S if necessary in order to ensure H2(πS ,Z/nZ) = 0, that
there exists η ∈ C2(πS ,Z/nZ) such that

dη = χ1 ∪ χ2 ∪ χ3.

On the other hand, it is shown in [9] that the admissibility of (χ1, χ2, χ3) implies the
existence of an unramified cochain ηv ∈ C2

ur(πv,Z/nZ) such that

dηv = loc∗v (χ1 ∪ χ2 ∪ χ3) .
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Now we combine them to form the expression

d(χ1, χ2, χ3) :=
∑
v∈S

invv (loc
∗
v η − ηv)(7)

which is well-defined independently of the choices we made for η and ηv’s, as shown in
[9].

4. Proof of Thm. 3

For readers’ convenience, we repeat the statement.

Theorem (Thm. 3). Suppose ρ = (χ1, χ2, χ3) where χi is an unramified character for
each i = 1, 2, 3. The Massey type arithmetic Chern–Simons action satisfies

exp
(
2π

√
−1CSc(ρ)

)
= [χ1, χ2, χ3]n.(8)

Proof. The similarity between (7) and (4) is manifest. It will indeed motivate our proof,
which will equate the gluing formula and the right-hand-side of (7) term-by-term.

We review the choice of A and c we made in the introduction for the Massey case.
Put A = (Z/nZ)3. For each i = 1, 2, 3, let pri : A → Z/nZ be the projection onto the
i-th component. Then, we take c = pr1 ∪ pr2 ∪ pr3 which is an element of Z3(A,Z/nZ).

Consider homomorphisms

χi : Gal(F/F ) → Z/nZ

for each i = 1, 2, 3. We will assume throughout that each χi is unramified. Note that
this implies that the triple is admissible in the sense of Def. 9. On the other hand, the
assumption implies that

Gal(F/F ) → A

g 7→ (χ1(g), χ2(g), χ3(g))

factors through Gal(F/F ) ↠ π1. Denote the result by ρ : π1 → A.
Recall the relation (6) between [χ1, χ2, χ3]n and d(χ1, χ2, χ3). The proof of Thm. 3

reduces to

CSc(ρ) = d(χ1, χ2, χ3)

by comparing the exponents.
By (7), choose a sufficiently large S and express

d(χ1, χ2, χ3) =
∑
v∈S

invv (loc
∗
v η − ηv) .

Then, taking βρ = η and xv(ρ
∗c) = ηv, which satisfy the requirements for the gluing

formula, we obtain from (4) that

CSc(ρ) = d(χ1, χ2, χ3).

This completes the proof. □
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5. triple symbols for relative genus characters

Here we state and prove a proposition to be used in the sequel. Let K/F be a finite
extension.

Definition 10. An unramified character ψ : Gal(F/K) → Z/nZ is called a rela-
tive genus character with respect to K/F if there is a possibly ramified character
χ : Gal(F/F ) → Z/nZ such that ψ = χ ◦ r where r : Gal(F/K) → Gal(F/F ) denotes
the natural inclusion.

Proposition 11. Let ψi be a relative genus character of the form ψi = χi ◦ r. Put
τ = (ψ1, ψ2, ψ3). Suppose that (χ1, χ2, χ3) is admissible in the sense of Def. 9. Then,
CSc(τ) = [K : F ][χ1, χ2, χ3]n. Equivalently, we have [ψ1, ψ2, ψ3]n = [K : F ][χ1, χ2, χ3]n.

Proof. Using (4), express d(χ1, χ2, χ3) as

d(χ1, χ2, χ3) =
∑
v∈S

invv (loc
∗
v η − ηv) .

Here, η ∈ C2(πS ,Z/nZ) and ηv ∈ C2
ur(πv,Z/nZ). Let T be the set of places of K

whose elements lie over a place in S. Then, KT ⊃ FS and the restriction induces a
homomorphism πT → πS . In turn, it induces a cochain map

C2(πS ,Z/nZ) → C2(πT ,Z/nZ).
Denote by ηK the image of η under the above map. Similarly, for each w ∈ T lying over
v ∈ F , we have a map

C2
ur(πv,Z/nZ) → C2

ur(πw,Z/nZ).
Denote by ηw the image of ηv under the above map. Then, (4) implies

CSc(τ) =
∑
v∈S

∑
w|v

invw (loc∗w ηK − ηw) .(9)

We claim that ∑
w|v

invw (loc∗w ηK − ηw) = [K : F ] invv (loc
∗
v η − ηv) .(10)

Indeed, we first note the numerical identity [K : F ] =
∑

w|v[Kw : Fv]. The as-

serted equality follows from the commutation relation [Kw : Fv] invv = invw ◦rv,w from
the local class field theory, where we temporarily denoty by rv,w the restriction map
H2(Fv,Z/nZ) → H2(Kw,Z/nZ) between the Galois cohomology groups.

Applying (10) to each inner summation of (9), we obtain the assertion of the propo-
sition. □

6. Basis properties

We record three lemmas which will be used later. All of the arithmetic Chern–Simons
actions are of the Massey type.

Lemma 12. Suppose that ρ = (χ1, χ2, χ3) is a homomorphism ρ : π1 → A and that
u : {1, 2, 3} → {1, 2, 3} is a permutation with sign |u|. Put u∗ρ =

(
χu(1), χu(2), χu(3)

)
.

Then,
CSc(ρ) = |u|CSc(u∗ρ).
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Proof. It follows from the fact that the cup product is graded-commutative. □

Lemma 13. Suppose that ρ = (χ1, χ2, χ3) is as above and that χ1 = χ′
1 + χ′′

1 for some
χ′
1, χ

′′
1 : π1 → Z/nZ. Put ρ′ = (χ′

1, χ2, χ3) and ρ
′′ = (χ′′

1, χ2, χ3). Then,

CSc(ρ) = CSc(ρ
′) + CSc(ρ

′′).

Proof. First observe
ρ∗c = χ1 ∪ χ2 ∪ χ3

and similarly

(ρ′)∗c = χ′
1 ∪ χ2 ∪ χ3

(ρ′′)∗c = χ′′
1 ∪ χ2 ∪ χ3.

The assertion of the lemma follows from the fact that cup product defines an associative
ring structure on cohomology. □

Lemma 14. Suppose that ρ = (χ1, χ2, 0). Then, CSc(ρ) = 0

Proof. An immediate consequence of Lem. 12 and Lem. 13. □

7. Proof of Thm5

For readers’ convenience, we repeat the statement.

Theorem (Thm. 5). Let F be a quadratic field and n = 2. Assume that the discriminant

of F is odd and that
(
p∗

q

)
= 1 for every odd distinct primes p and q ramified in F .

Then, the Massey type arithmetic Chern–Simons action is identically zero; CSc(ρ) = 0
for every ρ : π1 → A.

Proof. First, we recall set up some notation and recall the genus theory. By the as-
sumption, F is a quadratic field and its discriminant D is necessarily of the form

D = (−1)
D−1
2 p1 · · · pm where p1, · · · , pm are distinct odd primes. In fact, Q(

√
D) is

the unique such extension. Recall p∗i = (−1)
pi−1

2 pi and denote by Ei := Q(
√
p∗i ) the

unique quadratic extension of discriminant p∗i . Then, an elementary consideration shows
that FEi/F is an unramified quadratic extension. Moreover, by the genus theory, if
we denote by σi : π1 → A the character corresponding to FEi/F , then Hom(π1, A) is a
vector space over Z/2Z with a basis σ1, · · · , σm. For a subset I ⊂ {1, 2, · · · ,m}, put

σ(I) :=
∏
i∈I

σi.

The assertion that σi’s form a basis is equivalent to: an element of Hom(π1, A) can be
uniquely written as σ(I) for some I.

Put ρ(I1, I2, I3) := (σ(I1), σ(I2), σ(I3)). Now the goal of the Thm. 5 can be rephrased
as action’s vanishing

CSc (ρ(I1, I2, I3)) = 0

for all subsets I1, I2, I3 ⊂ {1, 2, · · · ,m}. To prove the vanishing, by Lem. 14, it suffices
to consider the case when none of I1, I2, I3 are empty. For the cases when non of the
I1, I2, I3 are empty, Lem. 12 and Lem. 13 imply that it suffices to consider the case
|I1| = |I2| = |I3| = 1.
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Assume |I1| = |I2| = |I3| = 1 for the rest of the proof. There are two cases consider.
In the first case, I1, I2, and I3 are disjoint. Reordering the prime divisors of D if
necessary, we may assume that Ii = {i}. By Thm. 3, we have CSc(ρ) = [σ1, σ2, σ3]2.
Each σi is a relative genus character for F/Q. Precisely, σi = χi ◦ r and where χi is the
Kummer character associated to p∗i . By Prop. 5, [σ1, σ2, σ3]2 = 2 · [χ1, χ2, χ3]2. Since
[χ1, χ2, χ3]2 ∈ 1

2Z/Z, we conclude that [σ1, σ2, σ3]2 = 0.
We proceed to the second case when two of I1, I2, I3 are equal. We claim that ρ∗c = 0

in H3(π1,Z/nZ), from which it formally follows that CSc(ρ) = 0. By Lem12, we may
assume without loss of generality that I1 = I2 = {1}. Letting I3 = {j}, ρ = (σ1, σ1, σj)

is a homomorphism π1
ρ−→ A. Recalling A = (Z/2Z)3, put B = (Z/2Z)2. Define a

homomorphism θ : B → A by

θ(b1, b2) = (b1, b1, b2).

Then, by construction, we have a commutative diagram

π1
ρ //

ρB   

A

B
θ

?? .

It follows that
ρ∗c = ρ∗Bθ

∗c

from which we conclude that to show ρ∗c = 0 it suffices to show θ∗c = 0 in H3(B,Z/2Z).
To see θ∗c is null-homologous, begin by observing that θ∗c = τ1∪τ1∪τ where τ1 = σ1◦θ
and τ = σ ◦ θ. It remains to show that the product τ1∪ τ1∪ τ = 0. In fact, we will show
τ1 ∪ τ1 = 0. Observe that τ1 is in the image

pr1
∗ : H1(Z/2Z,Z/2Z) → H1(B,Z/2Z)

where pr1 : B → Z/2Z denotes the projection onto the first component. For any prime
p the cohomology ring H•(Z/pZ,Z/pZ) is well understood and in particular the cup
product

∪ : H1(Z/pZ,Z/pZ)⊗H1(Z/pZ,Z/pZ) → H2(Z/pZ,Z/pZ)
is identically zero. From this we conclude τ1 ∪ τ1 = 0. This completes the proof. □
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