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Ergodic, Mixing, and Asymptotic 

Decoupling conditions for TP-CP
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Equivalence relations
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Primitive
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Ergodic, Mixing, and Asymptotic 

Decoupling conditions for general CP
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Irreducible (general case) 
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Primitive (general case)

(equivalence relations)
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• is mixing and                       .

• is ergodic and                        .        

•

•

•



2
( ) 0.     

42 (dim ) -1( ) ( ) 0. +  H

0 0
0, 0A  

2
exp( ( )) 0.t  

2 0 0
0, 0A  





Theorem
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Markovian process and 

Hidden Markovian process
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Quantum Markovian process
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Quantum Sequential Measurement

=Quantum Hidden Markovian process
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(Finite-length) analysis for classical 

Markovian process
Various analyses were done with cumulant 

generating function.
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(Finite-length) analysis for classical 

Markovian process

Markov version of central limit theorem

Finite-length analysis for tail probability

Large deviation analysis

Moderate deviation analysis
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Large deviation

Central limit theorem
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(Finite-length) analysis for quantum 

hidden Markovian process
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Markov version of central limit theorem

Finite-length analysis for tail probability

Large deviation analysis

Moderate deviation analysis
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(Finite-length) analysis for quantum 

hidden Markovian process



Large deviation

Central limit theorem
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Conclusion
• We have discussed properties (ergodicity, 

mixing, irreducible, primitive, and asymptotic 

decoupling) for a dynamical map on 

quantum system.

• We have derived several equivalence 

relations. 



Conclusion
• We have overseen the analogy between 

classical Markovian process and quantum 

hidden Markovian process.

• Using this analogy, we have derived the 

following for quantum hidden Markovian 

process. 

– Markov version of central limit theorem

– Finite-length analysis for tail probability

– Large deviation analysis

– Moderate deviation analysis



Important information

• All the obtained results can be extended to 

general probabilistic theory.
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