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Entangled mixed states

e Pure states are nonzero vectors x € C" up to constant. Geo-
metrically, pure states form projective space P" = C"t! —{0}/C*.
Pure states of two particle system are ) ;x;®y; € C* @ C™ —{0}.

e Separable pure states are vectors of the form x®@y e Ct @ C™
in the quantum system of two particles. If we think of vectors
in C'"® C™ as m x n matrices after choosing bases, the set of
separable pure states is the set of rank 1 matrices. A non-
separable nonzero vector in C*® C™ is called an entangled pure
states.

o In P(C" CM) = Pm—1  the locus of separable states is the
image of the Segre map

Pl Pl P (X)) = [x @yl



e Mixed states for the Hilbert space C™ are n x n positive (Her-
mitian and eigenvalues> 0) matrix of trace 1;

k
o= poxixd e Mf,  p; >0, x € CN

i=1
e Mixed states for two particle system are positive operators

k
p=Y pwvivi € Mz = (Ma®@Mm)*,  p; >0, v e Ct@C™

i=1

e A mixed state p is separable if we can choose v; to be separable
vectors x; ® y; with x; € C™ and y; € C™.



PPT criterion [Choi 1982, Peres 1996]

If p = Z]f:1 pi(xi@)yi)(xi@yiﬁ € Mimn = Mn ® M with p; > 0, then
its partial transpose pr IS also positive.

Separable = PPT

Here the partial transpose of } ; A;®B; € Mn® M is ) ; AT ® B;.
The partial transpose of (x;®u;)(xi®y;)T is (X;®y;)(X;®y;)T € M.
In particular, if p: C"® CMm — C" @ C™ is separable, there are
nonzero separable vectors

xi ®y; € Im(p) such that X;®y; € Im(pr).
The converse of the PPT criterion is not true in general.

e \Which entangled PPT states violate the PPT criterion most?



A PPT entangled edge state of corank (k,{) is p € Mmn S.t.

1. p >0, corank(p) =k;

2. o' >0, corank(p") = ¢;

3. ifx®y eIm(p) and x®y cIm(p"), then x =0 or y=0.

Problem. Find PPT entangled edge states.




Numerical constraints

[IK-Kye-Lee, JMP 2011] If a PPT entangled edge state of corank
(k,£) exists, then either k+{>m+n—2 or (*)

ky /L
k+1{= — 2, —1N' = 0.
mn > =()(,) =0
r+s=m—1
The first nontrivial series of solutionsism=n, k=1, { =2n— 3.

[IK-Kye-Na, CMP 2015] Extended to multipartite systems.

[Heo-K, LAA 2019] For many solutions (m,n,k,{) to (*),
(Range criterion) 3 D,E < CM® C" of codim k, £ resp. such that

x®yeD, x®yek=x®y=0.

T he proofs require basic algebraic geometry and topology.



n®n PPT edge states of corank (1,2n — 3)

[Kye-Osaka, JMP 2012] Constructed an explicit 3® 3 PPT edge
state of corank (1,3).

[Choi-K-Kye, 2019] Constructed n ® n PPT states for n > 3,
which are PPT edge states of corank (1,2n —3) for 3 <n < 1000.

We conjecture that our construction gives us n @ n PPT edge
states of corank (1,2n — 3) for all n > 3.



Ingredients

e \We need positive matrices, easy to control: kernel, image,
rank, many zeros, etc.

e \We need bilinear equations.
n : n n
XQY = {j=1XYjei®e if x =3 iZ1xie;, Yy =2 i_juiei.

If Ker(p) is generated by Zi,)- aij e; ® ¢j, then

L = Z aijxiyj =0
1))

x®y € Im(p) = (Ker(p))
which is a single bilinear equation in x;, Yj-

Likewise, Xx®y € Im(p") is equivalent to (2n—3) bilinear equations
in 7_(i and y]



Positive matrices of corank 1

For z € C with |z| =1, we will use

1 z

Pz(l) — (Z] 1) - Mz

which is positive of corank one with kernel spanned by (1,—z "t

For d > 4 even and complex numbers z),---,z4 Wwith Iz)-l — 1,
consider
(2 ) 0 0 Zd\
02 zzz 0 0
0 2z, 'z 2 z4z5 ) 0
Pd(ZZ> T )Zd) — 3 2 1 473 S Md‘




Note that P4(zy,---,zq) is unitarily conjugate to

which is the Cartan matrix (Zéij—aij) of the graph with d vertices

(2 =1 0 0 - —T)
-1 2 -1 0 - 0
o -1 2 -1 ... 0
10 0 -1 2 -
\—'1 0 0 .- 1 i)

and d edges that form a cycle

2—3— o —d—1

T

where (ay;) is the adjacency matrix defined by aj; = 1 if the vertices

1 and j are connected by an edge and ajj = O if not.




Bilinear equations

Let x = (Xh' e )Xﬂ)r Y = (Uh' T )yﬂ) c C".
For o« = (7, 9, ...,0n) € (C*)M, let (twisted Plucker coordinates)

.. 1
il = xy5 — o x4Yy,

When o«; = 1 for all i, (2n — 3) general linear combinations of

[i,j] are zero if and only if x and y are parallel. (For algebraic
geometers: dimGr(2,n) =2n—4 <2n—3.)

If we further insist the orthogonality equation x -y =} :Xjy; =0,
the only solution is x =0 or y = 0.

The same hold true if we keep «; sufficiently close to 1.

In our construction of PPT states, we cannot keep all of the
above equations and will have to give up the orthogonality equa-
tion.



Explicit bilinear equations

For o, 3 € (C*)™ with oci_]aj =+ [3;1Bj, we can solve the system

1, Ko — 2,k — Tl + [B,k—ZJa—---+(—1)L%J_1[L]§j,k+1 _ L'gmzo,

m—{n]g—Mm—l+1,n-T]g+---+(-1) 7 n—0+ L%J,n— L%J]B =0

of 2n — 3 equations for k=2,3,...,nand {=1,2,...,n—2, to find
that the solutions (xi,y;) have many zeros and nonzero entries

are parallel after twists.



3®3 PPT edge state of corank 1

Let (a1, 00,03) = (1,,a?) with o] = 1 and (B1, B2 B3) = (1,1,1).
We write o ; = oci_1ocj and i = B;]Bj. We also assume oy j # By
for 1 <i<j<3.

Let o' be the 9 x 9 matrix defined as follows:

(i) The (612, e21)-principal submatrix is Pz(oc]’z).

(if) The (ey3,e31)-principal submatrix is 2P;(«q 3).

(iii) The (ep3,e32)-principal submatrix is P,(B;3).

(iv) The (ey1,e92,e33)-principal submatrix is rI3 for r > 1 to be
determined later.

(v) All the other entries are zero.



x®y € Imp" if and only if

_ _ _ - _ _
X1Y2 = XX2Y1,  X1Yy3z = @ X3y1,  X2Y3 = X3Y2.



( T 1 OC]_); ZOC]_); \
21 -
1T . .
P = 1.2 T : ﬁz_é
1.
2 .

p is positive of corank 1 & r is the largest root 7 of detp = 0.
x®y € Imp if and only if

(—20 +?_]oc)x1y1 + (2067 — 1)xoys + (F—7] )x3y3 = 0.
It is easy to see that p is a PPT edge state.



4 x4 edge states of corank one

Let o, B; € C with |og| = ;] =1 for 1 <i < 4.
et pr be the 16 x 16 matrix defined as follows:

(i) The (e, ez1)-principal submatrix is Py(a 7).

(ii) The (ejy3,e37)-principal submatrix is 2P;(a 3).

(iii) The (614, €23, €32, e41)-principal submatrix is P4(1,O€2’3,OC]’4).
(iv) The (ep4,e42)-principal submatrix is 2P,(,4).

(V) The (e34,e43)-principal submatrix is P2(f334).

(vi) The (ey1, €29, €33, €aq)-principal submatrix is rly for r > 1 to be
determined later.

(vii) All the other entries are zero.
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K 01 4 2B324 :
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This is a PPT edge state of corank 1 for suitable «j, f3;.



It is straightforward to generalize the above to n®@n PPT states
for n > 3. The condition (*)

x®yelmp), x@yelm(p') = x®y=0

can be checked by Mathematica.

Theorem. For 3 < n < 1000, the above construction gives us
n®n PPT edge states of corank 1.

It took 8 hours with an ordinary laptop computer to check the
condition (*) for n < 1000. If we run longer, we will get more
PPT edge states.

Conjecture. The above construction gives us n ® n PPT edge
states of corank 1 for all n > 3.




Thank you for your attention.
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