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Introduction (Schmidt rank)

Let H denote the bipartite Hilbert space Cm ⊗ Cn. By Schmidt
decomposition theorem, any pure state |ψ⟩ ∈ H can be written as

|ψ⟩ =
k∑

j=1

αj |uj⟩ ⊗ |vj⟩ (1)

for some k ≤ min{m, n}, where {|uj⟩ : 1 ≤ j ≤ k} and
{|vj⟩ : 1 ≤ j ≤ k} are orthonormal sets in Cm and Cn respectively,
and αj ’s are nonnegative real numbers satisfying

∑
j α

2
j = 1.

Definition

In the Schmidt decomposition (1) of a pure bipartite state |ψ⟩ the
minimum number of terms required in the summation is known as
the Schmidt rank of |ψ⟩, and it is denoted by SR(|ψ⟩).
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In [T. Cubitt-A. Montanaro-A. Winter, 2008]
it was proved that for a bipartite system Cm ⊗ Cn, the dimension
of any subspace of Schmidt rank greater than or equal to k is
bounded above by (m − k + 1)(n − k + 1).

We construct subspaces T of dimension (m − k + 1)(n − k + 1) of
bipartite finite dimensional Hilbert space Cm ⊗ Cn such that any
vector in T has Schmidt rank greater than or equal to k where
k = 2, 3 and 4.
Unlike [T. Cubitt-A. Montanaro-A.Winter, 2008], the subspaces T
of Cm ⊗ Cn that we construct also have bases consisting of
elements of Schmidt rank k .

Note that For the case when a subspace of Cm ⊗ Cn is of Schmidt
rank greater than or equal to 2 (that is, the subspace does not
contain any product vector), the maximum dimension of that
subspace is (m − 1)(n − 1), and this was first proved in [K. R.
Parthasarathy, 2004], and [N. R. Wallach, 2002] (cf. [B. V. R.
Bhat, 2006]).
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Introduction (Schmidt number)

In the bipartite Hilbert space Cm ⊗Cn, for any 1 ≤ r ≤ min{m, n},
there is at least some state |ψ⟩ with SR(|ψ⟩) = r . Any state ρ on a
finite dimensional Hilbert space H can be written as

ρ =
∑
j

pj |ψj⟩ ⟨ψj | , (2)

where |ψj⟩’s are pure states in H and {pj} forms a probability
distribution. The following notion was introduced in [B. M. Terhal
and P. Horodecki, 2000].

Definition

The Schmidt number of a state ρ on a bipartite finite dimensional
Hilbert space H is defined to be the least natural number k such
that ρ has a decomposition of the form given in (2) with
SR(|ψj⟩) ≤ k for all j . The Schmidt number of ρ is denoted by
SN(ρ).
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Schmidt number of a state on a bipartite Hilbert space is a measure
of entanglement. Entanglement is the key property of quantum
systems which is responsible for the higher efficiency of quantum
computation and tasks like teleportation, super-dense coding, etc
(cf. [R., P., M., K., Horodecki, 2009]). The following proposition
establishes an important relation between Schmidt number of a
state and the lower bound of Schmidt rank of any vector in the
supporting subspace of the state. It should be well known.

Proposition

Let S be a subspace of H = Cm ⊗ Cn which does not contain any
vector of Schmidt rank lesser or equal to k . Then any state ρ
supported on S has Schmidt number at least k + 1.
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Idea

Let ϕ : Cm ⊗ Cn → Mm×n(C) be defined by for each
Cm ⊗ Cn ∋ |η⟩ =

∑
i ,j cij |ei ⟩ ⊗ |fj⟩, ϕ(|η⟩) = [cij ]. Then |η⟩ has

Schmidt rank at least r if and only if the corresponding matrix [cij ]
is of rank at least r .
Usiing this correspondence, we find a basis of {|ηi ⟩}di=1 such that
all non-zero linear combination C of {ϕ(|ηi ⟩)}di=1 has at least rank
4.

[Example]

|e0⟩ ⊗ |f3⟩ − a|e1⟩ ⊗ |f2⟩+ a|e2⟩ ⊗ |f1⟩ − |e3⟩ ⊗ |f0⟩
ϕ−→

· · · 1 ·
· · −a · ·
· a · · ·
−1 · · · ·
· · · · ·
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The order-n minors of (n + k)× n matrixes

For any n ∈ N and positive numbers a and b in R, set (n + 1)× n
matrix

En(a, b) =



−a b 0 0 0 · · · 0
a −a b 0 0 · · · 0
−b a −a b 0 · · · 0

0 −b a −a b
. . .

...
...

. . .
. . .

. . .
. . .

. . . 0
...

. . .
. . .

. . .
. . . b

0 · · · · · · 0 −b a −a
0 · · · · · · · · · 0 −b a


. (3)

For 1 ≤ k ≤ n + 1 let E k
n (a, b) be a matrix which is obtained by

deleting the k-th row of En(a, b).
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We would like to determine when E k
n (a, b) is invertible for any

1 ≤ k ≤ n + 1.

For any n ∈ N and positive numbers a and b in R set the n × n
matrix

Dn(a, b) =



−a b 0 0 0 · · · 0
a −a b 0 0 · · · 0
−b a −a b 0 · · · 0

0 −b a −a b
. . .

...
...

. . .
. . .

. . .
. . .

. . . 0
...

. . .
. . .

. . .
. . . b

0 · · · · · · 0 −b a −a


.
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We also define the n × n matrix Fn(a, b) as follows:

Fn(a, b) =



a −a b 0 0 0 · · · 0
−b a −a b 0 0 · · · 0
0 −b a −a b 0 · · · 0

0 0 −b a −a b
. . .

...
...

. . .
. . .

. . .
. . .

. . .
. . . 0

...
. . .

. . .
. . .

. . .
. . . b

0 · · · · · · · · · 0 −b a −a
0 · · · · · · · · · · · · 0 −b a


= Dn(−a,−b)t .

Proposition

For 1 ≤ k ≤ n + 1 we have

|E k
n (a, b)| = |Dk−1(a, b)||Fn−(k−1)(a, b)|+ |Dk−2(a, b)||Fn−k(a, b)|b2

= (−1)n−k+1(|Dk−1(a, b)||Dn−k+1(a, b)|
− |Dk−2(a, b)||Dn−k(a, b)|b2).
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If b = 0 and 1 ≤ k ≤ n + 1,

|E k
n (a, b)| = (−1)n−k+1|Dk−1(a, 0)||Dn−k+1(a, 0)| = (−1)k−1an.

If b ̸= 0, since |E k
n (a, b)| = bk

∣∣∣E k
n

(a
b
, 1
)∣∣∣, we may assume that

b = 1.

Theorem

For n ∈ N ∪ {−1, 0} and a positive number a ∈ R, let d−1 = 0,
d0 = 1 and dn = |Dn(a, 1)|. Then for 1 ≤ k ≤ n + 1 we have

|E k
n (a, 1)| = (−1)n−k+1(dk−1dn−k+1 − dk−2dn−k)

dk =
1

k!

dk

dxk

(
1

1 + ax + ax2 + x3

)∣∣∣∣
x=0

.

Moreover, if x3 + ax2 + ax + 1 = 0 has 3 different solutions
α, β, γ, then we have for 1 ≤ k

dk =
1

αk+1(α− β)(γ − α)
+

1

βk+1(α− β)(β − γ)
+

1

γk+1(γ − α)(β − γ)
.
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Examples

Example

Set a = 3 and b = 1. Then we have

dn = |Dn(3, 1)| =
1

n!

dn

dxn
(1 + x)−3|x=0 =

(−1)n

2
(n + 1)(n + 2)

and

|E k
n (3, 1)| =

(−1)k−1

2
k(n + 2)(n − k + 2).

Note that if |E k
n (3, 1)| = 0, then k = n + 2. Therefore, for any

1 ≤ k ≤ n+ 1 we have |E k
n (3, 1)| ̸= 0, that is, all order-n minors of

En(3, 1) are non-zero.
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Example

Set n = 10 and a = 2. Then |E 5
10(2, 1)| = 0.

Indeed, the equation x3 + 2x2 + 2x + 1 = (x + 1)(x2 + x + 1) = 0

has solutions −1, ω, ω2, where ω =
−1 +

√
3ι

2
. Then we have

dk =
1

(−1)k+1(−1− ω)(ω2 + 1)
+

1

ωk+1(−1− ω)(ω − ω2)

+
1

ω2(k+1)(ω2 + 1)(ω − ω2)

= (−1)k − ωk+2(1− ωk)

1− ω
.

Since d4 = d5 = 0, we have |E 5
10(2, 1)| = d4d6 − d3d5 = 0.
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Theorem

For a ∈ R with a > 5 and 1 ≤ k ≤ n + 1 the matrix E k
n (a, 1) is

invertible, that is, all order-n minors of En(a, 1) are non-zero.

Idea is as follows: Suppose that E k
n x = 0 for some x ∈ Cn. If

x1 = 0 or xn = 0, it is easy to show that x = 0. Hence we may
assume that x ̸= 0.
Let a(i), b(i), c(i), d(i) ∈ C with |a(i)| = |d(i)| = 1 and
|b(i)| = |c(i)| = α > 5 (i = 1, 2, . . . , k − 1). Since x1 ≠ 0 and

c(1)x1 + d(1)x2 = 0

b(2)x1 + c(2)x2 + d(2)x3 = 0

a(3)x1 + b(3)x2 + c(3)x3 + d(3)x4 = 0

a(4)x2 + b(4)x3 + c(4)x4 + d(4)x5 = 0

· · · · · ·
a(k − 1)xk−3 + b(k − 1)xk−2 + c(k − 1)xk−1 + d(k − 1)xk = 0,

then |xl+1| ≥ (α− 2)|xl | (l = 1, 2, . . . , k − 1), and |xk | > |xk−1|.
Conversely, since xn ̸= 0, we have |xk−1| ≥ (α− 2)|xk | > |xk |.
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Subspaces of maximal dimension with bounded Schmidt
rank

For n ∈ N and a number a ∈ R, we consider the (n+3)× n matrix
Bn(a, 1) as follows:

Bn(a, 1) =

 b1
En(a, 1)
bn+3


where b1 = (1, 0, . . . , 0), bn+3 = (0, . . . , 0,−1).

Proposition

For 1 ≤ i < j < k ≤ n+3 and a = 3 or a > 5, let Bn(a, 1)
i ,j ,k be a

matrix which is obtained by deleting the i , j , k-th rows of Bn(a, 1).
Then |Bn(a, 1)

i ,j ,k | ̸= 0.
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The following obsrvation is used to get our main results.

Corollary

For a = 3 or a > 5, the columns of Bn(a, 1) are linearly
independent such that any linear combination of these columns has
at least 4 non-zero entries.

Theorem

Let m and n be natural numbers such that 4 ≤ min{m, n}. Let
N = n +m − 2, and {|ei ⟩}m−1

i=0 (resp. {|fj⟩}n−1
j=0 ) be the canonical

basis for Cm (resp. Cn). For 3 ≤ d ≤ N − 3 define

S(d) = span{|ei−2⟩ ⊗ |fj+1⟩ − a|ei−1⟩ ⊗ |fj⟩+ a|ei ⟩ ⊗ |fj−1⟩ − |ei+1⟩ ⊗ |fj−2⟩ :
2 ≤ i ≤ m − 2, 2 ≤ j ≤ n − 2, i + j = d + 1},

S(0) = S(1) = S(2) = S(N−2) = S(N−1) = S(N) = {0}

and S =
N⊕

d=0

S(d). If a = 3 or a > 5, then S does not contain any

vector of Schmidt rank ≤ 3 and dimS = (m − 3)(n − 3).

Hiroyuki Osaka



The following obsrvation is used to get our main results.

Corollary

For a = 3 or a > 5, the columns of Bn(a, 1) are linearly
independent such that any linear combination of these columns has
at least 4 non-zero entries.

Theorem

Let m and n be natural numbers such that 4 ≤ min{m, n}. Let
N = n +m − 2, and {|ei ⟩}m−1

i=0 (resp. {|fj⟩}n−1
j=0 ) be the canonical

basis for Cm (resp. Cn). For 3 ≤ d ≤ N − 3 define

S(d) = span{|ei−2⟩ ⊗ |fj+1⟩ − a|ei−1⟩ ⊗ |fj⟩+ a|ei ⟩ ⊗ |fj−1⟩ − |ei+1⟩ ⊗ |fj−2⟩ :
2 ≤ i ≤ m − 2, 2 ≤ j ≤ n − 2, i + j = d + 1},

S(0) = S(1) = S(2) = S(N−2) = S(N−1) = S(N) = {0}

and S =
N⊕

d=0

S(d). If a = 3 or a > 5, then S does not contain any

vector of Schmidt rank ≤ 3 and dimS = (m − 3)(n − 3).
Hiroyuki Osaka



Scketch of the proof:
Let ϕ : Cm ⊗ Cn → Mm×n(C) be defined by for each
Cm ⊗ Cn ∋ |η⟩ =

∑
i ,j cij |ei ⟩ ⊗ |fj⟩, ϕ(|η⟩) = [cij ]. Then |η⟩ has

Schmidt rank at least r if and only if the corresponding matrix [cij ]
is of rank at least r .

Then we have the conclusion from the observation in Bn(a, 1) and
the following calculation:

|e0⟩ ⊗ |f3⟩ − a|e1⟩ ⊗ |f2⟩+ a|e2⟩ ⊗ |f1⟩ − |e3⟩ ⊗ |f0⟩
ϕ−→

· · · 1 ·
· · −a · ·
· a · · ·
−1 · · · ·
· · · · ·
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Schmidt rank at least r if and only if the corresponding matrix [cij ]
is of rank at least r .

Then we have the conclusion from the observation in Bn(a, 1) and
the following calculation:

|e0⟩ ⊗ |f3⟩ − a|e1⟩ ⊗ |f2⟩+ a|e2⟩ ⊗ |f1⟩ − |e3⟩ ⊗ |f0⟩
ϕ−→

· · · 1 ·
· · −a · ·
· a · · ·
−1 · · · ·
· · · · ·
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Remark

From the above theorem it follows that for a = 3 or a > 5, all the
elements of the basis

B =
N−3∪
d=3

{|ei−2⟩ ⊗ |fj+1⟩ − a|ei−1⟩ ⊗ |fj⟩+ a|ei ⟩ ⊗ |fj−1⟩ − |ei+1⟩ ⊗ |fj−2⟩ :

2 ≤ i ≤ m − 2, 2 ≤ j ≤ n − 2, i + j = d + 1},

of S have Schmidt rank 4.
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Remark: Let m and n be natural numbers such that
4 ≤ min{m, n}. Let N = n +m − 2, and {|ei ⟩}m−1

i=0 (resp.

{|fj⟩}n−1
j=0 ) be the canonical basis for Cm (resp. Cn) and set

g(i , j) = |ei ⟩ ⊗ |fj⟩+ a|ei−1⟩ ⊗ |fj+1⟩. Consider

S = span{g(i , j) : 1 ≤ i ≤ m − 1, 0 ≤ j ≤ n − 2},

T = span{g(i , j) + 1

a
g(i − 1, j + 1): 2 ≤ i ≤ m − 1, 0 ≤ j ≤ n − 3},

U = span{(g(i , j) + 1

a
g(i − 1, j + 1)) + (g(i − 1, j + 1) +

1

a
g(i − 2, j + 2)) :

3 ≤ i ≤ m − 1, 0 ≤ j ≤ n − 4}.

When a > 0 and a+
1

a
> 4, we have

1 U ⊂ T ⊂ S,
2 Any element in S has Schmidt rank ≥ 2, any generator in S has

Schmidt rank 2, and dimS = (m − 1)(n − 1),

3 Any element in T has Schmidt rank ≥ 3, any generator in T has
Schmidt rank 3, and dim T = (m − 2)(n − 2),

4 Any element in U has Schmidt rank ≥ 4, any generator in U has
Schmidt rank 4, and dimU = (m − 3)(n − 3).
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Concluding remark

Question

Are there k-positive maps ϕ : Mm(C) → Mn(C) with 1 < k < m
which are not decomposable ?

Theorem (Terhal 2001)

Let S be a product basis {|αi ⟩ ⊗ |βi ⟩}
|S|
i=1 in Cm ⊗ Cn and suppose

that the complementary subspace H⊥
S of a proper subspace HS

generated by S in Cm ⊗ Cn, contains no product states. Then
ρ = 1

nm−|S|(id −
∑

i |αi ⟩⟨αi | ⊗ |βi ⟩⟨βi |) is entangled.

Using this observation Terhal constructed a family of
indecomposable maps. We hope that after modifying our
subspaces we could construct 2-positive map : Mm(C) → Mn(C)
with max{n,m} < 10 which is not decomposable. Note that when
min{n,m} ≥ 10 there are such examples by [Huber, Lami, Lancien,
and Müller-Hermes, 2018].
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