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States

Mixed states
@ Hermitian, p = pf,
@ positive, p > 0,
© unit trace, trp =1

We will denote the set of density mixed states of size d by Q4
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Quantum channel

Definition

A quantum channel is a linear mapping ¢ : My, (C) — My, (C) that satisfies the
following restrictions:
Q & is trace-preserving, i.e. YA € My (C) tr(P(A)) = tr(A),
@ & is completely positive, that is for every finite s the product of ® and an
identity mapping on M;(C) is a non-negativity preserving operation, i.e.

VZ VA € My (C) ® My(C), A>0 (¢ ®1)(A) > 0. (1)

v
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Choi-Jamiotkowski isomorphism

Choi matrix

Given a linear ¢ : My, (C) — My, (C), we associate with it a Choi-Jamiotkowski,
Jo € My, ((C) ® Mdl((C):

Jo = Z ()1 @ i)l (2)
V.
e o



Choi-Jamiotkowski isomorphism

Choi matrix

Given a linear ¢ : My, (C) — My, (C), we associate with it a Choi-Jamiotkowski,
Jo € My, ((C) ® Mdl((C):

J¢—Z¢ YUl @ 1) (- ()

v

Equivalent definition

Jo = di (®®1)(|¢7)(¢7) (3)
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Choi-Jamiotkowski isomorphism

Choi matrix

Given a linear ¢ : My, (C) — My, (C), we associate with it a Choi-Jamiotkowski,
Jo € My, (C) ® Mdl((C):

J¢—Z¢ YUl @ 1) (- ()

v

Equivalent definition

Jo = di (®®1)(|¢7)(¢7) (3)

Properties
Q If ®is CP, then Jp >0
Q If ®is TP, then triJp =1

t. Pawela (IITiS PAN) Asymptotic* 20-05-2019 6/44



Table of contents

© Random states and channels

&. Pawela (IITiS PAN) Asymptotic*



Random states in €4

From pure states

@ Consider a random pure state |¢) € C* @ C%.
@ Trace out one of the systems p = tra|p)(¢|.
@ If di = dy, we get the Hilbert-Schmidt distribution of p.
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Random states in €4

From pure states

@ Consider a random pure state |¢) € C* @ C%.
@ Trace out one of the systems p = tra|p)(¢|.
Q If di = dy, we get the Hilbert-Schmidt distribution of p.

From Ginibre matrices

Let G € My, »s(C) be a Ginibre matrix (independent normal complex entries).
Then, the matrix :
GG
= — 4
trGGT’ (4)
is a random mixed state. If d; = s we recover the flat Hilbert-Schmidt
distribution.

P
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Random quantum channels

From Ginibre matrices

Let G € My,d,xs(C) Ginibre matrix (independent normal complex entries). Then,
the matrix

1
Mdz((C) ® Mdl((C) S Jp = <]1d2 ® m) GGJr <11d2 ®

—1 5
\ t}I‘1GG1L ( )

is a random Choi matrix for some channel ® : My, (C) — My, (C).
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Random quantum channels

From Ginibre matrices

Let G € My,d,xs(C) Ginibre matrix (independent normal complex entries). Then,
the matrix

1
Mdz((C) ® Mdl((C) S Jp = (ﬂdz X m) GGJr (ﬂdz ®

1
\ tI‘lGGT> (5)

is a random Choi matrix for some channel ® : My, (C) — My, (C).

Random state vs random channel

Consider a Choi-Jamiotkowski matrix of quantum channel and a quantum state p.
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Random quantum channels

From Ginibre matrices

Let G € My,d,xs(C) Ginibre matrix (independent normal complex entries). Then,
the matrix

1
Mdz((C) ® Mdl((C) S Jp = (ﬂdz X m) GGJr (ﬂdz ®

1
\ tI‘lGGT> (5)

is a random Choi matrix for some channel ® : My, (C) — My, (C).

Random state vs random channel

Consider a Choi-Jamiotkowski matrix of quantum channel and a quantum state p.

S
op:pT, 0J¢—J¢,
. ! e triey = di,
@ rp = 1.
p o trido = 1.

t. Pawela (IITiS PAN) Asymptotic* 20-05-2019 9/44



Probability distributions on a set of quantum channels

Definition
The image measure of the Gaussian standard measure through the map G +— ®¢
is called partially normalized Wishart measure and is denoted by 74, d, -
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Marcenko-Pastur distribution

Definition (Marcenko-Pastur distribution)

Distribution of parameter x > 0 has density given by

(u—1-x)
2mu

I — 2
dMP, = max(1 - x,0)5 + Y Lja,)(u) du,

where a = (v/x — 1) and b = (y/x + 1)2.
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Marcenko-Pastur distribution

Definition (Marenko-Pastur distribution)

Distribution of parameter x > 0 has density given by

(u—1-x)

2
o 1[a,b](u) du7

dMP, = max(1 — x,0)do + VA=

where a = (v/x — 1) and b = (y/x + 1)2.

Consider matrices G € Mgy () such that G; ~ N¢(0,1). We define Wishart
matrix W = GG' € My and its empirical eigenvalue distribution

1
pa(A) = —#(A(M/d) € A).
We have almost surely convergence with d — oo

fim_pia(A) = MPx(A).
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Subtracted Maréenko-Pastur distribution

Definition (Subtracted Mar&enko-Pastur distribution)

Let a, b be two free random variables having Maréenko-Pastur distributions with
respective parameters x and y. The distribution of the random variable a/x — b/y

is called the subtracted MarcCenko-Pastur distribution with parameters x, y and is
denoted by SMP,,.
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Subtracted Maréenko-Pastur distribution

Definition (Subtracted Mar&enko-Pastur distribution)

Let a, b be two free random variables having Maréenko-Pastur distributions with
respective parameters x and y. The distribution of the random variable a/x — b/y

is called the subtracted MarcCenko-Pastur distribution with parameters x, y and is
denoted by SMP,,.

Consider matrices Gy € My (xq) and Go € My (,q) We define Wishart matrices
W; = G;GT € My and its empirical eigenvalue distribution

1 _ _
Ha(A) = < # ()\((xd) W, — (yd) 1W2) e A) :
We have almost surely convergence with d — co

lim pg(A) = SMP,,(A).
d—oo
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Subtracted Maréenko-Pastur distribution

Proposition

Let W, (resp. W,) be two Wishart matrices of parameters (d, sy) (resp (d,s,)).
Assuming that s, /d — x and s, /d — y for some constants x, y > 0, then, almost

surely as d — co, we have

(xd?) W, — (yd?) "MW ||y = / |u] dSMPy () =: Alx,y).

lim ||
d—oo
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Subtracted Maréenko-Pastur distribution

Proposition

Let W, (resp. W,) be two Wishart matrices of parameters (d, sy) (resp (d,s,)).
Assuming that s, /d — x and s, /d — y for some constants x, y > 0, then, almost
surely as d — co, we have

(xd?) W, — (yd?) "MW ||y = / |u] dSMPy () =: Alx,y).

lim ||
d—oo

Free convolution

We obtain the subtracted Maréenko Pastur distribution using free additive
convolution SMP, ,,(u) = xMPy(ux) B yMP,(—uy).
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Subtracted Maréenko-Pastur distribution

Proposition
Let x,y > 0. Then,

1 If x+y < 1, then the probability measure SMP, , has exactly one atom,
located at 0, of mass 1 — (x + y). If x+y > 1, then SMP, , is absolutely
continuous with respect to the Lebesgue measure on R.

2 Define

axy = (x = y)(2x + y)(x + 2y)

bey =2 +2y3 + (x + y)2 + xy(x +y +2)

Gyt =l by bRy R)
Uny(U) = —tary + 3uPby, + 3uce,y +2(x + y — 1)° (6)
Tey(u) = (x+y —1—u(x—y))* +3u(y — x + uxy)

Yooy (8) = Usy (1) + /10y (0)]F = &[Ty (u).
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Proposition
The support of the absolutely continuous part of SMP, , is the set

{u 1 [Uey(u))? = 4[Tey ()’ > 0}. (7
3 On its support, the density of SMP, , is given by

dSMPyy | [Yiey(u)]F — 25Ty, (u)
du 25\3ru Yo, (W) |

(8)
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Subtracted Maréenko-Pastur distribution
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Average distances between 2 random states

Take p and o sampled from the flat (HS) measure, s = 1.

As d — o0, the trace distance tends to an integral over the symmetrized
Marchenko-Pastur distribution:

1 ~ 1
Du 5 [ SMPL()Ixldx =D = § + © ~ 05683 (9)

B
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Average distances between 2 random states

Take p and o sampled from the flat (HS) measure, s = 1.

As d — o0, the trace distance tends to an integral over the symmetrized
Marchenko-Pastur distribution:

1

1 ~
Du 5 [ SMPL()Ixldx =D = § + © ~ 05683 (9)

=

Average distances of random state p to

@ the maximally mixed state p.

3v3
D, (p, ps) = /\t— 1 MP(t)dt % ~ 0.4135

@ the closest pure state, D;.(p, [¢){¢]) — 1
@ the closest boundary state g, Dy (p,3) — 0
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Te set Q4 for large d

The HS measure is concentrated in an ¢ neighborhood of the unitary orbit, UpUT,
where U a Haar unitary and p is a random state with spectrum distributed
according to MP. Here, d is the diameter given by the distance between two
diagonal matrices with opposite order of the eigenvalues

d = Dy (p", p*) = f04xsign(x — MYMP1(x)dx ~ 0.7875, where M denotes the
median, fOM MP1(x)dx = 1/2.
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Helstrom theorem

Theorem

Given two states p and o, the probability p of discriminating between these two in
a single-shot experiment is bounded by p < % + %Dtr(p, o).

Distinguishing generic quantum states

Two random states p and o of dimension N >> 1 can be distinguished in a
single-shot experiment with probability bounded by

~ 1
D=g+5-=07882 (11)
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Asymptotic distances

Given two random states p, o of dimension d.
For large d (d > 1), we have:
o relative entropy S(p||o) = trplogp — plogo
S(pllo) — [dt [ds(tlogt — tlogs)MP(t)MP(s) = 3
@ quantum Sanov theorem: Performing n measurements on p, we obtain result
compatible with o with probability p ~ exp(_T3").

o Chernoff information Q(p, o) = ming¢o 1] trpol=%. We get the Chernoff
bound for generic quantum states:

Q(p,0) = (trprat) —» [VEMP(t)dt = (£)* = 0.72 = Q.
Performing n measurements on p and o we get the probability of error
p ~ exp(—Qxn).
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Even more distances
Some more asymptotic results:
Q root fidelity:

VF(p.0) = Y- VA(po) - / VEFC(x)dx = . (12)

where

e - VVAIV2 (7 43V D)~ 6u5] )

2 43 (274381 12x)°
is the Fuss-Catalan distribution, FC(x) = MP(x) ¥ MP(x)
@ Bures didstance

Ds = \/2(1 — /F(p,0) — V2

-, (14)

© Hellinger distance

[ 128
Dy = \/2 —2trp2or — (/2 — 9.3 ~ 0746 (15)
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Rate of convergence

08 T T T T I
] L R =
' - - I _'-L 1
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1 | | | |
4 8 12 16 20
N

Figure: Dependence of average distance between two generic states on the dimension N.
Dashed (red) line shows the Bures distance and solid (black) line shows the trace
distance. The horizontal lines mark the asymptotic values.
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Asymptotic entanglement
Consider |¢) € C? ® C¢ and p = tr1|$) (4.

For a partially transposed matrix, p', its eigenvalues have the shifted semicircle
as the limiting distribution (Aubrun 2012),

M) ~ 5-v/A— (x— TP (16)
We get:

@ the fraction of negative eigenvalues tends to

01 1 V3
=4 (x —1)2dx = Ve
/,1 27 4= 1)pdx 4’

= 17
3 (17)
@ the average negativity tends to
® x|
N — —+/4 — (x — 1)2dx = 0.080. (18)
—1 27T
The G-concurrence of a state G(|¢)) = d(det p)4, converges:
4
1
G(18)) — exp < / log tMP(t)dt) — * ~0368 (19)
0
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Diamond norm

Induced trace norm
Given a mapping ¢ : My, (C) — My, (C) the induced trace norm is defined as:

[]]1 = max{[|®(A)]|1 : A € Mq,(C), [|All. <1} (20)
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Diamond norm

Induced trace norm
Given a mapping ¢ : My, (C) — My, (C) the induced trace norm is defined as:

[]]1 = max{[|®(A)]|1 : A € Mq,(C), [|All. <1} (20)

v

Diamond norm
Given a superoperator ® : My (C) — Mg, (C) the diamond norm is defined as:

1®flo = [|®® 11 (21)
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Diamond norm

Induced trace norm
Given a mapping ¢ : My, (C) — My, (C) the induced trace norm is defined as:

[]]1 = max{[|®(A)]|1 : A € Mq,(C), [|All. <1} (20)

v

Diamond norm
Given a superoperator ® : My (C) — Mg, (C) the diamond norm is defined as:

1®flo = [|®® 11 (21)

V.

Theorem
Given a Hermiticity-preserving mapping ® : My, (C) — My, (C), it holds that

[®]lo = max{}|(® ® 1(|$)(g])l1, |¢) € C%} (22)

o’
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Bounds for the diamond norm

Lower bound for diamond norm

1
[Pl > d—1||J<|>||1- (23)
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Bounds for the diamond norm

Lower bound for diamond norm

1
0l > — [l Jols. (23)
1
Upper bound for Hermiticity preserving mappings
[@]ls < [[tr21/ Jo b || = Amax (tr2]Jo]) - (24)
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Bounds for the diamond norm

Lower bound for diamond norm

1
1®llo = —=[lJo[l2. (23)
1

Upper bound for Hermiticity preserving mappings

try m

1®lo < = Amax (tr2|Jol) - (24)

General upper bound

tray/ J¢J;r> +

tro4/ Jl Jo
2

J. Watrous Simpler semidefinite programs for completely bounded norms. Chicago
Journal of Theoretical Computer Science 8 1-19 (2013).

@]l < (25)
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Distinguishing quantum channels

Theorem
Given two quantum channels ®, W : My (C) — Mg, (C). The probability of
distinguishing these channels is upper bounded by:

1 1
<-4+ -[¢—-WV 26
p<5+glo—vl. (26)
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Asymptotic value of a diamond norm

Theorem

Let &, resp. V, be two independent random quantum channels from ©(di, d>)
having v" distribution with parameters (d1, da, sy, resp. (di, da,s,). Then, almost
surely as dy o — oo in such a way that s, /(di1d>) — x, s,/(didr) — y (for some
positive constants x, y), and d; < d?,

lim || — V|, =A(x,y) = / |u| dSMP, ,(u).

d1,2—>oo
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Asymptotic value of a diamond norm

Theorem

Let &, resp. V, be two independent random quantum channels from ©(di, d>)
having v" distribution with parameters (d1, da, sy, resp. (di, da,s,). Then, almost
surely as dy o — oo in such a way that s, /(di1d>) — x, s,/(didr) — y (for some
positive constants x, y), and d; < d?,

lim || — V|, =A(x,y) = / |u| dSMP, ,(u).

d1,2—>oo

In the case of flat Hilbert Schmidt distribution on quantum channels we obtain

. 2
lim ||[® —V|,==+—.
d—oo ™

N =
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The lower bound

Proposition

. 1
lim —||Jo — Jy|l1 = A(x,y) = / lu| dSMPy ,(u).
d1,2—>oo d]_

Proof

The result follows easily by approximating the partially normalized Wishart
matrices with scalar normalizations. By the triangle inequality, with D, := Je and
D, := Jy, we have

1

1 _ _
d_1||DX - Dy — d—1||(Xd1d22) YW — (ychd3) T W, ||y

1 _ 1 _
Sd—llle—(Xdldf) 1Wx||1+d—1||Dy—(yd1d22) "Wyl

< & Dy — (Xd1d22)_1WX||oo + d2||Dy - (yd1d22)_1 Wy”oo'
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The lower bound

Proposition

With the above assumptions almost surely as d; » — oo in such a way that
s ~ tdid, for a fixed parameter t > 0,

|D = (tdid3) " W|| = O(d;?).
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The lower bound

Proposition

With the above assumptions almost surely as d; » — oo in such a way that
s ~ tdid, for a fixed parameter t > 0,

|D = (tdid3) " W|| = O(d;?).

The case of Wishart matrices was derived earlier:

1 _ -
0GB W= ) W [0l dSMPy() = Bxy) |
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The upper bound

The core technical result of this work consists of deriving the asymptotic value of
the upper bound for diamond norm.

Theorem

Let &, resp. V, be two independent random quantum channels from ©(di, d>)
having W distribution with parameters (dy, d>, s.), resp. (di, d2,s,). Then,
almost surely as di » — 0o in such a way that s, /(did) — x, s, /(did2) — y
(for some positive constants x,y), and di/d3 — 0,

Jim (1 Te2 s = Joll| = [ Jul dSMPy,(6) = A(x.).
1,200
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The upper bound — proof

Using the triangle inequality we first show an approximation result (as before, we
write Dy 1= Jo and D, 1= Jy):

_ _ |0g d1d2
10210 =Dy = | tr2 (k) Vs () g1 | < B2 001)

LE.B. Davies, Lipschitz continuity of operators in the Schatten classes. J. London Math.
Soc., 37, pp. 148—157 (1988).
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The upper bound — proof

Using the triangle inequality we first show an approximation result (as before, we
write Dy 1= Jo and D, 1= Jy):

_ _ |Og d1d2
[ tr21Dx = Dy 11 ral(xch ) W= (k) g | < PER% 0(3) 0,

We have used the following lemma!
Lemma
For any matrices A, B of size d, the following holds:
| Al —=|B| || < Clogd ||A— B|,

for a universal constant C which does not depend on the dimension d.

LE.B. Davies, Lipschitz continuity of operators in the Schatten classes. J. London Math.
Soc., 37, pp. 148—157 (1988).
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Convergence

1.35

1.30 |

1.20

Diamond norm

105 I I I I I
0

Figure: The convergence of upper (green circles) and lower (blue triangles) bounds on
the distance between two random quantum channels sampled from the Hilbert-Schmidt
distribution (di = d> = d). The results were obtained via Monte Carlo simulation with
100 samples for each data point.
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Sketch of the set of quantum channels

Sketch of the set ©(d, d) of all channels acting on d-dimensional states. A
generic channel ® belongs to a sphere of radius r = 3\/§/27r, centered at the
maximally depolarizing channel, ®4e,, in the metric induced by the diamond norm.
The distance between generic channels, ®, W is A = 1/2 4+ 2/7, while the
distance to the nearest unitary channel reads as a = 2.
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Partial traces of unitarily invariant random matrices

Theorem

Consider a sequence of Hermitian random matrices Ay € Mg, (4y(C) ® Mg,(q)(C)
and assume that

© Both functions dy »(d) grow to infinity, in such a way that di/d3 — 0.
© The matrices Ay are unitarily invariant.

© The family (Aq) has almost surely limit distribution p, for some compactly
supported probability measure (.

Then, the normalized partial traces By := dy '[id ® Tr](A4) converge almost
surely to multiple of the identity matrix:

a.s.— lim [|By — aly(a)ll = O,

a:= /xd,u(x).
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Partial traces of unitarily invariant random matrices

We define

i=1

the average and the variance of the eigenvalues of B; these are real random
variables (actually, sequences of random variables indexed by d).

By Chebyshev's inequality, we have

Amax(B) < b+ /vy/dy.

We proved that b — a almost surely and later that d;v — 0 almost surely, which
is what we need to conclude.
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Partial traces of unitarily invariant random matrices

Average J

The a.s. convergence b — a is straightforward.
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Partial traces of unitarily invariant random matrices

Average

The a.s. convergence b — a is straightforward.

Variance

In order to show, that djv — 0 almost surely, we have calculated the mean and
the variance of v.
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Partial traces of unitarily invariant random matrices

Average

The a.s. convergence b — a is straightforward.

Variance

In order to show, that djv — 0 almost surely, we have calculated the mean and
the variance of v.

We are able to compute the variance of v with the usage of symmetry arguments
and obtain

Ev = (14 o(1)) dy?Var(u)
Var(v) = (1+o(1)) 2d;%dy * Var(u)?,

where Var(p) = [ x? du(x) — ([ x du(x))?.
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Partial traces of unitarily invariant random matrices

Var(v) Cd;2dy*

POy 2 ) = B2 &) < s o ~ BT (L () O

Using d; < d2,
P(v/div/v >e) < Cetdy ™

Since the series > d, * is summable, we obtain the announced almost sure
convergence.
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Set of all bipartite quantum states of dimension d?, Q.. (a) and its partial traces
(b) and (c) containing states of dimension d. A generic bipartite state oag,
distant r = 3v/3/41 from the maximally mixed state 1/d?, is mapped into

oa ~ o ~ 1/d, while a typical pure state |¢ag) is sent into a generic mixed state
pa = pg distant r from 1/d.

[6.4, 08)
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