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Notations

1 |v〉 denotes unit vectors (pure states) in Cn.

2 |v〉〈v | denotes pure state density matrices, and Dn denotes the set
of n × n density matrices (pure or mixed).

3 x denotes an unnormalized complex vector, 1 = (1, . . . , 1)t the
all-ones vector.

4 A � 0 means that the matrix A is positive semidefinite.

5 |v〉 is k-incoherent if it has k or fewer non-zero entries, when
written in the standard computational basis {|1〉, . . . , |n〉} of Cn.

6 A density matrix is k-incoherent if it is in the set

Ik
def=
{∑

i
pi |vi〉〈vi | : pi ≥ 0,

∑
i

pi = 1, |vi〉 is k-incoherent ∀i
}
.

7 Write I = I1, the set of diagonal density matrices. Note that
I1 ( I2 ( · · · Ik ( Ik+1 ( · · · ( In = Dn.
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Robustness of k-coherence

1) The robustness of coherence of a given state ρ ∈ Dn

R(ρ) def= min
τ∈Dn

{
s ≥ 0

∣∣∣ ρ+ sτ
1 + s ∈ I

}
.

2) For k ∈ {2, 3, . . . , n}, one can define two different robustnesses of
k-coherence:

(standard) Rs
k(ρ) def= min

σ∈Ik

{
s ≥ 0 : ρ+sσ

1+s ∈ Ik

}
,

(generalized) Rg
k (ρ) def= min

τ∈Dn

{
s ≥ 0 : ρ+sτ

1+s ∈ Ik

}
.

Clearly, Rs
k(ρ) ≥ Rg

k (ρ). In general, Rs
k(ρ) 6= Rg

k (ρ) for ρ ∈ Dn.

3) Rg
1 (ρ) = R(ρ) but Rs

k(ρ) is not defined for k = 1 because I1 does not
span Mn.
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Robustness of k-coherence for pure states

Let |v〉 = (v1, . . . , vn)t be a pure state with v1 ≥ v2 ≥ · · · ≥ vn ≥ 0.

For
each j = 1, . . . , n, define sj :=

n∑
i=j

vi .

Theorem 1
Let |v〉 = (v1, . . . , vn)t be a pure state with v1 ≥ v2 ≥ · · · ≥ vn ≥ 0. Fix
k ∈ {2, 3, . . . , n} and let ` ∈ {2, 3, . . . , k} be the largest integer such that
v`−1 ≥ s`/(k − `+ 1) (set ` = 1 if no such integer exists). Then

Rs
k(|v〉〈v |) = Rg

k (|v〉〈v |)

= s2
`

k−`+1 −
∑n

i=` v2
i

:= S(k, `).
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Connection with k-support norm

The expression

S(k, `) = s2
`

k−`+1 −
∑n

i=` v2
i

is related to the k-support norm ‖|v〉‖(k), which can be defined via its
dual norm:

For x ∈ Cn,

‖x‖◦(k) = max
{∣∣x†|v〉∣∣ : |v〉 is k-incoherent

}
=
√∑k

i=1 |x
↓
i |2

where x↓i denotes the coefficients of x arranged so that |x↓1 | ≥ · · · ≥ |x↓n |.
By norm duality, we have

‖x‖(k) = max
{
|x†a| : ‖a‖◦(k) ≤ 1

}
and S(k, `) = ‖|v〉‖2

(k) − 1. We have ‖x‖(1) =
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Lower bound via semidefinite programming duality

Dual program formulation
Let I◦k be the dual cone of Ik defined by

I◦k
def= {W = W † : Tr(W ρ) ≥ 0 ∀ ρ ∈ Ik}

= {W = W † : all k × k principal submatrices
W [i1, . . . , ik ] of W are � 0},

where W [i1, . . . , ik ] denotes the principal submatrix of W containing
rows and columns i1, . . . , ik . Then

Rs
k(ρ) = max

W∈Io
k

{
Tr(ρW ) : I −W ∈ I◦k

}
− 1

Rg
k (ρ) = max

W�0

{
Tr(ρW ) : I −W ∈ I◦k

}
− 1,

Let α = s`
k − `+ 1 and β =

√
αs` +

∑`−1
j=1 v2

j . Define W := aat , where

a := 1
β

(
v1, v2, . . . , v`−1, α, α, . . . , α

)t ∈ Rn .

Then W � 0, I −W ∈ I◦k and Tr(|v〉〈v |W )− 1 = β2 − 1 = S(k, `).
Hence, Rg

k (ρ) ≥ S(k, `).
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Upper bound

To prove that Rs
k(ρ) ≤ S(k, `),

we show that there exists σ ∈ Ik such
that ρ+ sσ

1 + s ∈ Ik for s = S(k, `). The proof is divded into three cases:

1) ` = k, 2) ` = 1 and 3) 1 < ` < k.

We only have explicit form of σ for case 1). For cases 2) and 3), we
show that

σ = O`−1 ⊕ σ̂

where σ̂ ∈ Ik has non-negative diagonal entries, non-positive off-diagonal
entries, and row sums 0.

Also, instead of requiring |v〉〈v |+ sσ to be in (1 + s)Ik , we can require it
to be a convex combination of the (finitely many) matrices of the form
xxt , where each x is of the form x = (v1, v2, . . . , v`−1)⊕ x̃ for some x̃
with exactly k − `+ 1 non-zero entries, each equal to s`/(k − `+ 1).

This allows the search of σ using linear programming, instead of
semidefinite programming.
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Application to entanglement measures

Let SR(|v〉) denote the Schmidt rank of the pure state |v〉

and let SN(ρ)
denote the Schmidt number of a mixed state ρ ∈ Dmn, i.e. SN(ρ) is the
least integer k such that we can write

ρ =
∑

i pi |vi〉〈vi |

with pi ≥ 0 and SR(|vi〉) ≤ k for all i . The standard and generalized
k-robustnesses of entanglement are defined, respectively,

RE ,s
k (ρ) def= min

σ:SN(σ)≤k

{
s ≥ 0 : SN

(
ρ+sσ
1+s

)
≤ k

}
RE ,g

k (ρ) def= min
τ∈Dmn

{
s ≥ 0 : SN

(
ρ+sτ
1+s

)
≤ k

}
.

Define the k-projective tensor norm of X by∥∥X
∥∥
γ,k

def= inf {
∑

i |ci | : X =
∑

i ci |vi〉〈wi | with SR(|vi〉),SR(|wi〉) ≤ k ∀ i}

Johnston and Kribs had conjectured that for any pure state
|v〉 ∈ Cm⊗Cn and k = 1, . . . ,min{m, n}, RE ,s

k (|v〉〈v |) = ‖|v〉〈v |‖γ,k − 1.
Recently, Regula has shown that RE ,g

k (|v〉〈v |) = ‖|v〉〈v |‖γ,k − 1.
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Application to entanglement measures

Let |v〉 ∈ Cm ⊗ Cn and |λ〉 := (λ1, λ2, . . . , λr )t is the vector of Schmidt
coefficients of |v〉,

then we have
‖|v〉〈v |‖γ,1 =

(∑r
i=1 λi

)2 and

RE ,s
1 (|v〉〈v |) =

(∑r
i=1 λi

)2 − 1.

More generally, we have

‖|v〉〈v |‖γ,k = Rs
k(|λ〉〈λ|) + 1

where Rs
k(|λ〉〈λ|) is given by the formula of Theorem 1.

Theorem 2
Let |v〉 ∈ Cm ⊗ Cn be a pure state with non-zero Schmidt coefficients
λ1, λ2, . . . , λr and define |λ〉 := (λ1, λ2, . . . , λr )t . Then

RE ,s
k (|v〉〈v |) = Rs

k(|λ〉〈λ|) = ‖|v〉〈v |‖γ,k − 1 = RE ,g
k (|v〉〈v |).
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Conclusion

1) We derived a formula for the standard robustnesses of k-coherence
and k-entanglement on pure states that agrees with known formulas for
the corresponding generalized robustnesses, thus resolving conjectures
about both of these families of measures.

2) As our proof was non-constructive in nature, we also provided a
computational method based on linear programming that allows us to
quickly compute the closest k-incoherent state or closest Schmidt
number k state. (See reference)

3) (Open problems:) Formulas or bounds for Rs
k(ρ),Rg

k (ρ),RE ,s
k (ρ),

RE ,g
k (ρ). Connections between RE ,s

k (ρ) and Rs
k(ρ̂).

Yiu-Tung Poon Evaluating the robustness of k-coherence and k-entanglement



Conclusion

1) We derived a formula for the standard robustnesses of k-coherence
and k-entanglement on pure states that agrees with known formulas for
the corresponding generalized robustnesses, thus resolving conjectures
about both of these families of measures.

2) As our proof was non-constructive in nature, we also provided a
computational method based on linear programming that allows us to
quickly compute the closest k-incoherent state or closest Schmidt
number k state. (See reference)

3) (Open problems:) Formulas or bounds for Rs
k(ρ),Rg

k (ρ),RE ,s
k (ρ),

RE ,g
k (ρ). Connections between RE ,s

k (ρ) and Rs
k(ρ̂).

Yiu-Tung Poon Evaluating the robustness of k-coherence and k-entanglement



Conclusion

1) We derived a formula for the standard robustnesses of k-coherence
and k-entanglement on pure states that agrees with known formulas for
the corresponding generalized robustnesses, thus resolving conjectures
about both of these families of measures.

2) As our proof was non-constructive in nature, we also provided a
computational method based on linear programming that allows us to
quickly compute the closest k-incoherent state or closest Schmidt
number k state. (See reference)

3) (Open problems:) Formulas or bounds for Rs
k(ρ),Rg

k (ρ),RE ,s
k (ρ),

RE ,g
k (ρ).

Connections between RE ,s
k (ρ) and Rs

k(ρ̂).

Yiu-Tung Poon Evaluating the robustness of k-coherence and k-entanglement



Conclusion

1) We derived a formula for the standard robustnesses of k-coherence
and k-entanglement on pure states that agrees with known formulas for
the corresponding generalized robustnesses, thus resolving conjectures
about both of these families of measures.

2) As our proof was non-constructive in nature, we also provided a
computational method based on linear programming that allows us to
quickly compute the closest k-incoherent state or closest Schmidt
number k state. (See reference)

3) (Open problems:) Formulas or bounds for Rs
k(ρ),Rg

k (ρ),RE ,s
k (ρ),

RE ,g
k (ρ). Connections between RE ,s

k (ρ) and Rs
k(ρ̂).

Yiu-Tung Poon Evaluating the robustness of k-coherence and k-entanglement



Thank you for your attention!
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