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@ |v) denotes unit vectors (pure states) in C".

@ |v)(v| denotes pure state density matrices, and D, denotes the set
of n x n density matrices (pure or mixed).

© x denotes an unnormalized complex vector, 1 = (1,...,1)" the
all-ones vector.

@ A > 0 means that the matrix A is positive semidefinite.

@ |v) is k-incoherent if it has k or fewer non-zero entries, when
written in the standard computational basis {|1),...,|n)} of C".

@ A density matrix is k-incoherent if it is in the set
T &f { Zp;|v;>(v,-| Dopi > O,Zp; =1, |v;) is k-incoherent Vi }

@ Write Z = 73, the set of diagonal density matrices.
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@ |v) denotes unit vectors (pure states) in C".

@ |v)(v| denotes pure state density matrices, and D, denotes the set
of n x n density matrices (pure or mixed).

© x denotes an unnormalized complex vector, 1 = (1,...,1)" the
all-ones vector.

@ A > 0 means that the matrix A is positive semidefinite.

@ |v) is k-incoherent if it has k or fewer non-zero entries, when
written in the standard computational basis {|1),...,|n)} of C".

@ A density matrix is k-incoherent if it is in the set
T &f { Zp;|v;>(v,-| Dopi > O,Zp; =1, |v;) is k-incoherent Vi }

@ Write Z = 7;, the set of diagonal density matrices. Note that
LehC Tk Chhk1 S-S I, =Dy
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Robustness of k-coherence

1) The robustness of coherence of a given state p € D,

e + ST
R(p) ™ min 45> 0] T},
(p) Tnégn{s_ 1+s <
2) For k € {2,3,..., n}, one can define two different robustnesses of
k-coherence:
(standard)  Ri(p) ) OI:TéIInk {5 >0: 422 ¢ Ik} ,
(generalized) RZ(p) ) TrgiDnn {5 >0: 4T ¢ Ik} :

Clearly, Ri(p) > RZ(p). In general,

Ri(p) # R¢(p) for p € Dh.

3) RE(p) = R(p) but Ri(p) is not defined for k = 1 because Z; does not

span M,.
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Robustness of k-coherence for pure states

Let |v) = (v1,...,vy)" be a pure state with vi > v, > -+ > v, > 0.
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Robustness of k-coherence for pure states

Let |v) = (v1,...,vy)" be a pure state with vi > v, > -+ > v, > 0. For
n

each j=1,...,n, define s; := > v;.
=

Theorem 1

Let |v) = (v1,...,v,)" be a pure state with v; > v, > --- > v, > 0. Fix
ke {2,3,...,n} and let £ € {2,3, ..., k} be the largest integer such that
ve—1 > sp/(k — £+ 1) (set £ =1 if no such integer exists).
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Robustness of k-coherence for pure states

Let |v) = (v1,...,vn)" be a pure state with vi > v, > .- > v, > 0. For

each j=1,...,n, define 5; := Ev,

Theorem 1

Let |v) = (v1,...,v,)" be a pure state with v; > v, > --- > v, > 0. Fix
ke {2,3,...,n} and let £ € {2,3, ..., k} be the largest integer such that
ve—1 > s¢/(k — €+ 1) (set £ =1 if no such integer exists). Then

| g

Re(lv)(v) = RE(Iv){vI)

= k—(+1 e+1 Z = :
= S(k,0).
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Connection with k-support norm

The expression

_ s no o
S(k,0) = k=1 D Vi

is related to the k-support norm [[|v)||(x), which can be defined via its
dual norm:
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X[y = max {|xt|v}| : |v) is k-incoherent }
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= Z/:1 |X;i|2
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The expression
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dual norm: For x € C”,

X[y = max {|xt|v}| : |v) is k-incoherent }
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Connection with k-support norm

The expression

_ s no o
S(k,0) = k=1 D Vi

is related to the k-support norm [[|v)||(x), which can be defined via its
dual norm: For x € C”,

X[y = max {|xt|v}| : |v) is k-incoherent }

[ —k
= Z/‘:l |Xii|2

where x7 denotes the coefficients of x arranged so that |x}| > --- > |x}].
By norm duality, we have

[1X[[(k) = max {IxTa\ allgy < 1}

_ 2
and S(k,0) = H|V>H(k) -1
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Connection with k-support norm

The expression

_ s no o
S(k,0) = k=1 D Vi

is related to the k-support norm [[|v)||(x), which can be defined via its
dual norm: For x € C”,

X[y = max {|xt|v}| : |v) is k-incoherent }

[ —k
= Z/‘:l |Xii|2

where x7 denotes the coefficients of x arranged so that |x}| > --- > |x}].
By norm duality, we have

[1X[[(k) = max {IxTa\ allgy < 1}

and S(k. ) = [[|V)[,) — 1. We have [ix]jq) = 3, x| and

[X||(ny = VxTx. Hence, the k-support norm can be seen as a natural way
to interpolate between the ¢; and /> norms.
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Lower bound via semidefinite programming duality

Dual program formulation

Let Z; be the dual cone of Z, defined by
p E{W=w':Te(Wp)>0 VpeI}
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Lower bound via semidefinite programming duality

Dual program formulation

Let Z; be the dual cone of Z, defined by
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={W = W : all k x k principal submatrices
Wli,...,ik] of W are = 0},
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Lower bound via semidefinite programming duality

Dual program formulation

Let Z; be the dual cone of Z, defined by
p E{W=w':Te(Wp)>0 VpeI}
={W = W : all k x k principal submatrices
Wli,...,ik] of W are = 0},

where W(iy, ..., ix] denotes the principal submatrix of W containing
rows and columns i, ..., i.
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Lower bound via semidefinite programming duality

Dual program formulation

Let Z; be the dual cone of Z, defined by
p E{W=w':Te(Wp)>0 VpeI}
={W = W : all k x k principal submatrices
Wli,...,ik] of W are = 0},

where W(iy, ..., ix] denotes the principal submatrix of W containing
rows and columns i1, ..., ix. Then
R = Te(pW) : - W eIyl —1
i (p) vrpea%(;{ r(pW) €I}}
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Lower bound via semidefinite programming duality

Dual program formulation

Let Z; be the dual cone of Z, defined by
p E{W=w':Te(Wp)>0 VpeI}
={W = W : all k x k principal submatrices
Wli,...,ik] of W are = 0},

where W(iy, ..., ix] denotes the principal submatrix of W containing
rows and columns i1, ..., ix. Then
Rilo) = max{Te(ow) - 1= We Tz} -1
g — S ol
RE() = max{Te(pW) : 1= WeTp} -1,
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Lower bound via semidefinite programming duality

Dual program formulation

Let Z; be the dual cone of Z, defined by
p E{W=w':Te(Wp)>0 VpeI}
={W = W : all k x k principal submatrices
Wli,...,ik] of W are = 0},

where W(iy, ..., ix] denotes the principal submatrix of W containing
rows and columns i1, ..., ix. Then
Rilo) = max{Te(ow) - 1= We Tz} -1
g — S ol
RE() = max{Te(pW) : 1= WeTp} -1,

¢ / -1
Leta:m andﬁ: (15@"‘2_,-:1 V_/2
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Lower bound via semidefinite programming duality

Dual program formulation

Let Z; be the dual cone of Z, defined by
p E{W=w':Te(Wp)>0 VpeI}
={W = W : all k x k principal submatrices
Wli,...,ik] of W are = 0},

where W(iy, ..., ix] denotes the principal submatrix of W containing
rows and columns i1, ..., ix. Then
Rilo) = max{Te(ow) - 1= We Tz} -1
RE() = max{Te(pW) : 1= WeTp} -1,
Let a = e and 8= /as; + Zlf_l v2. Define W := aat, where
k—0+1 j=17
a:.= %(vl,vz,...,vf,l,a,a,...,a)t e R".
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Lower bound via semidefinite programming duality

Dual program formulation

Let Z; be the dual cone of Z, defined by
p E{W=w':Te(Wp)>0 VpeI}
={W = W : all k x k principal submatrices
Wli,...,ik] of W are = 0},

where W(iy, ..., ix] denotes the principal submatrix of W containing
rows and columns i1, ..., ix. Then
Rilo) = max{Te(ow) - 1= We Tz} -1
g _ S ol
RE() = max{Te(pW) : 1= WeTp} -1,
Let a = e and 8= /as; + Zlf_l v2. Define W := aat, where
k—0+1 j=17
a:.= %(vl,vz,...,vf,l,a,a,...,a)t e R".

Then W =0, -WeZI}
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Lower bound via semidefinite programming duality

Dual program formulation

Let Z; be the dual cone of Z, defined by
p E{W=w':Te(Wp)>0 VpeI}
={W = W : all k x k principal submatrices
Wli,...,ik] of W are = 0},

where W(iy, ..., ix] denotes the principal submatrix of W containing
rows and columns i1, ..., ix. Then
Rilo) = max{Te(ow) - 1= We Tz} -1
g _ S ol
RE() = max{Te(pW) : 1= WeTp} -1,
Let a = e and 8= /as; + Zlf_l v2. Define W := aat, where
k—0+1 j=17
a:.= %(vl,vz,...,vf,l,a,a,...,a)t e R".

Then W =0, I — W € Z7 and Tr(|v){v|W) — 1 =32 — 1 = S(k, ?).
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Lower bound via semidefinite programming duality

Dual program formulation

Let Z; be the dual cone of Z, defined by
p E{W=w':Te(Wp)>0 VpeI}
={W = W : all k x k principal submatrices
Wli,...,ik] of W are = 0},

where W(iy, ..., ix] denotes the principal submatrix of W containing
rows and columns i1, ..., ix. Then
Rilo) = max{Te(ow) - 1= We Tz} -1
g _ S ol
RE() = max{Te(pW) : 1= WeTp} -1,
Let a = e and 8= /as; + Zlf_l v2. Define W := aat, where
k—0+1 j=17
a:.= %(vl,vz,...,vf,l,a,a,...,a)t e R".

Then W =0, I — W € Z7 and Tr(|v){v|W) — 1 =32 — 1 = S(k, ?).
Hence, R¢(p) > S(k,?).
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To prove that Ri(p) < S(k,£),
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To prove that Ri(p) < S(k,£), we show that there exists o € Z such

PHST o T for s = S(k, 0).

that
2 1+s
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To prove that Ri(p) < S(k,£), we show that there exists o € Z such
p+so

1+s
1)¢=k 2)¢=1and3) 1< < k.

that

€ Iy for s = S(k, £). The proof is divded into three cases:
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To prove that Ri(p) < S(k,£), we show that there exists o € Z such
p+so

1+s
1)¢=k 2)¢=1and3) 1< < k.

that

€ Iy for s = S(k, £). The proof is divded into three cases:

We only have explicit form of o for case 1).

Yiu-Tung Poon Evaluating the robustness of k-coherence and k-entanglement



To prove that Ri(p) < S(k,£), we show that there exists o € Z such
p+so

1+s
1)¢=k 2)¢=1and3) 1< < k.

that

€ Iy for s = S(k, £). The proof is divded into three cases:

We only have explicit form of ¢ for case 1). For cases 2) and 3), we
show that

c=01_1D6

where 6 € T, has non-negative diagonal entries, non-positive off-diagonal
entries, and row sums 0.
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To prove that Ri(p) < S(k,£), we show that there exists o € Z such
p+so

1+s
1)¢=k 2)¢=1and3) 1< < k.

that

€ Iy for s = S(k, £). The proof is divded into three cases:

We only have explicit form of ¢ for case 1). For cases 2) and 3), we
show that

c=01_1D6

where 6 € T, has non-negative diagonal entries, non-positive off-diagonal
entries, and row sums 0.

Also, instead of requiring |v)(v|+ so to be in (1 + s)Z,
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To prove that Ri(p) < S(k,£), we show that there exists o € Z such
p+so

1+s
1)¢=k 2)¢=1and3) 1< < k.

that

€ Iy for s = S(k, £). The proof is divded into three cases:

We only have explicit form of ¢ for case 1). For cases 2) and 3), we
show that

c=01_1D6

where 6 € T, has non-negative diagonal entries, non-positive off-diagonal
entries, and row sums 0.

Also, instead of requiring |v)(v|+ so to be in (1 + s)Zy, we can require it
to be a convex combination of the (finitely many) matrices of the form

xxt,
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To prove that Ri(p) < S(k,£), we show that there exists o € Z such
p+so

1+s
1)¢=k 2)¢=1and3) 1< < k.

that

€ Iy for s = S(k, £). The proof is divded into three cases:

We only have explicit form of ¢ for case 1). For cases 2) and 3), we
show that

c=01_1D6

where 6 € T, has non-negative diagonal entries, non-positive off-diagonal
entries, and row sums 0.

Also, instead of requiring |v)(v|+ so to be in (1 + s)Zy, we can require it
to be a convex combination of the (finitely many) matrices of the form
xx!, where each x is of the form x = (v, va,...,vp_1) & X for some X
with exactly k — ¢ + 1 non-zero entries, each equal to s;/(k — ¢+ 1).
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To prove that Ri(p) < S(k,£), we show that there exists o € Z such
p+so

1+s
1)¢=k 2)¢=1and3) 1< < k.

that

€ Iy for s = S(k, £). The proof is divded into three cases:

We only have explicit form of ¢ for case 1). For cases 2) and 3), we
show that

c=01_1D6

where 6 € T, has non-negative diagonal entries, non-positive off-diagonal
entries, and row sums 0.

Also, instead of requiring |v)(v|+ so to be in (1 + s)Zy, we can require it
to be a convex combination of the (finitely many) matrices of the form
xx!, where each x is of the form x = (v, va,...,vp_1) & X for some X
with exactly k — ¢ + 1 non-zero entries, each equal to s;/(k — ¢+ 1).

This allows the search of ¢ using linear programming, instead of
semidefinite programming.
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Application to entanglement measures

Let SR(]v)) denote the Schmidt rank of the pure state |v)
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Application to entanglement measures

Let SR(]v)) denote the Schmidt rank of the pure state |v) and let SN(p)
denote the Schmidt number of a mixed state p € Dy, i.e. SN(p) is the
least integer k such that we can write

p =2 pilvi){vil
with p; > 0 and SR(]v;)) < k for all /.
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Application to entanglement measures

Let SR(]v)) denote the Schmidt rank of the pure state |v) and let SN(p)
denote the Schmidt number of a mixed state p € Dy, i.e. SN(p) is the
least integer k such that we can write

p = pilvi){vil

with p; > 0 and SR(|v;)) < k for all i. The standard and generalized
k-robustnesses of entanglement are defined, respectively,

E, def . . +so
Rk S(p) o a:SAn?(IcJI:])gk {5 = 0: SN (ﬁ) = k}
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Application to entanglement measures

Let SR(]v)) denote the Schmidt rank of the pure state |v) and let SN(p)
denote the Schmidt number of a mixed state p € Dy, i.e. SN(p) is the
least integer k such that we can write

p = pilvi){vil

with p; > 0 and SR(|v;)) < k for all i. The standard and generalized
k-robustnesses of entanglement are defined, respectively,

E, def - . +so
Rk S(p) o a:SAn?(IcJI:])gk {5 = 0: SN (ﬁ) = k}
e = Ty 20 w(5) <4}
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Application to entanglement measures

Let SR(]v)) denote the Schmidt rank of the pure state |v) and let SN(p)

denote the Schmidt number of a mixed state p € Dy, i.e. SN(p) is the
least integer k such that we can write

p = pilvi){vil

with p; > 0 and SR(|v;)) < k for all i. The standard and generalized
k-robustnesses of entanglement are defined, respectively,

E, def . i +so
Rk S(p) o a:SAn?(IcJI:])gk {5 = 0: SN (ﬁ) = k}
i) * g (20 (i) <)

Define the k-projective tensor norm of X by

||XH%k & inf {3 il : X =37 il vi){wi| with SR(|v;)), SR(|wi)) < k Vi}
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Application to entanglement measures

Let SR(]v)) denote the Schmidt rank of the pure state |v) and let SN(p)

denote the Schmidt number of a mixed state p € Dy, i.e. SN(p) is the
least integer k such that we can write

p = pilvi){vil

with p; > 0 and SR(|v;)) < k for all i. The standard and generalized
k-robustnesses of entanglement are defined, respectively,

E, def . i +so
Rk S(p) o a:SAn?(IcJI:])gk {5 = 0: SN (ﬁ) = k}
ef

Rf’g(p) def

= mp 20w (5) <kp-
Define the k-projective tensor norm of X by
def . . .
||XH%k =inf {d; || : X =, ci|vi)(wi| with SR(|v;)), SR(Iw;)) < k V i}
Johnston and Kribs had conjectured that for any pure state
[v) e C"®C" and k =1,...,min{m, n}, RkE’s(|v><v|) = [|v){v|||ly.6 — 1.
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Application to entanglement measures

Let SR(]v)) denote the Schmidt rank of the pure state |v) and let SN(p)
denote the Schmidt number of a mixed state p € Dy, i.e. SN(p) is the

least integer k such that we can write
p =32 pilvi)(vil

with p; > 0 and SR(|v;)) < k for all i. The standard and generalized
k-robustnesses of entanglement are defined, respectively,

E, def . i +so
Rk S(p) o a:SAn?(IcJI:])gk {5 = 0: SN (ﬁ) = k}
ef

Rf’g(p) def

= mp 20w (5) <kp-
Define the k-projective tensor norm of X by
def . . .
||XH%k =inf {d; || : X =, ci|vi)(wi| with SR(|v;)), SR(Iw;)) < k V i}
Johnston and Kribs had conjectured that for any pure state

[v) e C"®C" and k =1,...,min{m, n}, RkE’s(|v><v|) = [|v){v|||ly.6 — 1.
Recently, Regula has shown that RkE’g(|v><v|) = |[|V){V]|ly.6 — 1.
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Application to entanglement measures

Let [v) € C"® C" and |A) := (A1, A2, ..., A,)! is the vector of Schmidt
coefficients of |v),
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Application to entanglement measures

Let [v) € C"® C" and |A) := (A1, A2, ..., A,)! is the vector of Schmidt
coefficients of |v), then we have

VYWl = (S M)
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Application to entanglement measures

Let [v) € C"® C" and |A) := (A1, A2, ..., A,)! is the vector of Schmidt
coefficients of |v), then we have

Il = (S M) and
RES(W{v) = (Siya)* 1.
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Application to entanglement measures

Let [v) € C"® C" and |A) := (A1, A2, ..., A,)! is the vector of Schmidt
coefficients of |v), then we have

r 2
[v){v]llva = (ZiZiAi)”  and
S r 2
RE(V{v) = (X n) — 1.
More generally, we have
V) (vl = REAAAD +1
where R;(JA)(A]) is given by the formula of Theorem 1.
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Application to entanglement measures

Let [v) € C"® C" and |A) := (A1, A2, ..., A,)! is the vector of Schmidt
coefficients of |v), then we have

r 2
[v){v]llva = (ZiZiAi)”  and
S r 2
RE(V{v) = (X n) — 1.
More generally, we have
V) (vl = REAAAD +1
where R;(JA)(A]) is given by the formula of Theorem 1.

Let |[v) € C™ ® C" be a pure state with non-zero Schmidt coefficients
A1, A2, - -, Ar and define [A) := (A1, Ao, ..., A;)". Then

Re*(Iv)(v]) = REIN A = 1) (vl k — 1 = REE(V) (V)
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Conclusion

1) We derived a formula for the standard robustnesses of k-coherence
and k-entanglement on pure states that agrees with known formulas for
the corresponding generalized robustnesses, thus resolving conjectures
about both of these families of measures.
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Conclusion

1) We derived a formula for the standard robustnesses of k-coherence
and k-entanglement on pure states that agrees with known formulas for
the corresponding generalized robustnesses, thus resolving conjectures
about both of these families of measures.

2) As our proof was non-constructive in nature, we also provided a
computational method based on linear programming that allows us to
quickly compute the closest k-incoherent state or closest Schmidt
number k state. (See reference)
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Conclusion

1) We derived a formula for the standard robustnesses of k-coherence
and k-entanglement on pure states that agrees with known formulas for
the corresponding generalized robustnesses, thus resolving conjectures
about both of these families of measures.

2) As our proof was non-constructive in nature, we also provided a
computational method based on linear programming that allows us to
quickly compute the closest k-incoherent state or closest Schmidt
number k state. (See reference)

3) (Open problems:) Formulas or bounds for R$(p), RE(p), RF*(p),
Re(p)-
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Conclusion

1) We derived a formula for the standard robustnesses of k-coherence
and k-entanglement on pure states that agrees with known formulas for
the corresponding generalized robustnesses, thus resolving conjectures
about both of these families of measures.

2) As our proof was non-constructive in nature, we also provided a
computational method based on linear programming that allows us to
quickly compute the closest k-incoherent state or closest Schmidt
number k state. (See reference)

3) (Open problems:) Formulas or bounds for R(p), R%(p), Rf*s(p),
Rf’g(p). Connections between Rf’ (p) and RZ(p).

Yiu-Tung Poon Evaluating the robustness of k-coherence and k-entanglement



Thank you for your attention!
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