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Guiding idea:
generalized resource theories as order
theories for stochastic (probabilistic)
structures



The Precursor: Majorization



Lorenz Curves and Majorization

e two probability distributions,
p=(p1,...,pn) and
q = (917”-7%)

e truncated sums P(k) = Z?:l P%
and Q(k) = Zle qf for all

B=lcoo,@

e p majorizes q, i.e., p = q,
whenever P(k) > Q(k), for all k

e minimal element: uniform
distribution e = n=1(1,1,--- ;1)
Hardy, Littlewood, and Pdlya (1929):
prq <= q= Mp, for some
bistochastic matrix M.

Lorenz curve for probability

distribution p = (p1,- -+ ,pn):

!
| ! |
]

| i |Z/4 3% A4

(zr,yr) = (k/n, P(K)), 1<k<mn
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Blackwell’s Extensions



Statistical Decision Problems

experiment decision
) — X —

- - 0 — r  —
Stakishcal mmodel decsion w(z|0) d(ulz)

payoff is £(0,u) € R

Definition

A statistical model (or experiment) is a triple
w = (O, X, w), a statistical decision problem (or game)
is a triple g = (©,U, ().
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Playing Games with Experiments

experiment
G —

e the experiment (model) is X Uu
given, i.e., it is the
“resource” $ $ $
e the decision instead can
be optimized 0 — x u

Definition
The expected payoff of a statistical model w = (0, X', w)
w.r.t. a decision problem g = (©,U, () is given by

Egw] = 0I{I(1§|i}§ 00, u)d(ulz)w(z|0)|0] " .

u,x,
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Comparing Statistical Models 1/2

First model:
w = (0, X, w(z|))

experiment decision
) — X —

$ $

0 — r —
w(x|6) d(u|z)

U

$

u

S)

Second model:

w' = (0, ), w'(y|0))

experiment

y d<isic>)n U
$ $

— T — U
w!(y|0) ' (uly)

For a fixed decision problem g = (©,U, (), the expected
payoffs Eg[w]| and Eg[w’| can always be ordered.
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Comparing Statistical Models 2/2

Definition (Information Preorder)

If the model w = (O, X', w) is better than model
w = (0,),uw) , then
we say that w is more informative than w’, and write

w>w .

Problem. Can we visualize the information morphism > more
concretely?
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Information Morphism = Statistical Sufficiency

Blackwell-Sherman-Stein Theorem
(1948-1953)

Given two experiments with the same
parameter space, w = (O, X', w) and
w' = (0,Y,w'), the condition w = w’
holds iff there exists a conditional
probability ¢(y|z) such that

w'(ylo) = 3=, e(ylr)w(z|0).

o — Y o — x %y

David H. Blackwell
i i = i ﬁ ﬁ (1919-2010)
06 — 0 — =z

H y
w’(y|0) w(z|0) e(ylz) 6/19



Special Case: Dichotomies

e two pairs of probability distributions, i.e.,
two dichotomies, (py,p,) and (q,q,), of
dimension m and n, respectively

e relabel entries such that ratios p}/p} and .
q]/qj, are nonincreasing

e construct the truncated sums

Pa(k‘)=21 1 P and Qp(k) = Z] 1q5

e (p;,ps) = (qy,qs) iff the relative Lorenz !
curve of the former is never below that of
the latter

Relative Lorenz curves:
(Ik7yk) = (PQ(k)7 Pl(k))
Blackwell's Theorem for Dichotomies (1953):

(p1,P2) = (q1,93) <= q, = Mp,, for

some stochastic matrix M. 7/19



The Viewpoint of Communication
Theory



Statistics vs Information Theory

e Statistical models are mathematically equivalent to noisy
channels:

9_:7 W(Zizﬂ) =X

e However: while in statistics the input is inaccessible
(Nature does not bother with coding!)

Ol seia|2= [

e in communication theory a sender does code!

s .‘L‘ Ol u=l9) ‘:PL'T*\‘ >4

—
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From Decision Problems to Decoding Problems

w|=> :> S AL
wo=| 2 [=E= W =9

Definition (Decoding Problems)

Given a channel w = (X, Y, w(y|z)), a is
defined by an encoding e = (M, X', e(xz|m)) and the payoff
function is the optimum guessing probability:

def —1 P *Hmin(M|Y)
e[W] = max d(m z)e(x|m)|M|™ =2
s 3 dnly)ola)elelm) M



Comparison of Classical Noisy Channels

Given two discrete noisy channelsw: X —Y and w': X — Z,
consider the following pre-orders:

: there exists ¢(z|y):
w'(z]2) = 3, p(2ly)w(y|z)

. for all encodings e = (M, X, e(z|m)),
H(M|Y) < H(M|Z)

: for all encodings e = (M, X, e(z|m)),
Hmin(M|Y) § Hmln(M|Z)

we have: (1) = (2) (data-processing inequality), (2) =~ (1)
(Korner and Marton, 1977), but (1) <= (3) (FB, 2016).



Some Classical Channel Morphisms

Output degrading:

z_-?’ w !--—>@ :)D?i = = =2z

Input degrading:

Full coding (Shannon's “channel inclusion”, 1958):

[A: :>&
> - W @ﬂ:)&
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Extensions to the Quantum Case



Some Quantum Channel Morphisms

Output degrading:

Qe -4

Input degrading:
A ﬁD’iAeD——)B = A}"D@B

Quantum coding with forward CC:

A’»;DAAeD_’B Dag - K= o#
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Output Degradability



Comparison of Quantum Statistical Models 1/2

Quantum statistical models as cg-channels:

B'ﬂ——)fg

Formulation below from: A.S. Holevo, Statistical Decision Theory for

Quantum Systems, 1973.

classical case

quantum case

e decision problems g = (©,U, ()

e models w = (0, X, {w(x|6)})

e decisions d(u|z)

o pe(u,0) = 3=, d(ulz)w(=|0)|©]

o Fglw] = ;(r}f\lf) (0, u)pe(u,0)

e decision problems g = (©,U, ¢)

e quantum models £ = (0, Hg,{p%})
o POVMs {P¥ : u € U}

o pa(u,0) = Te[o4 PE] 6"

o E[€] = ma £(0,u)pg(u, 0
gl€] = (0, u)pg(u, 0)



Comparison of Quantum Statistical Models 2/2

What follows is from: FB, Comm. Math. Phys., 2012
e consider two quantum statistical models
E=(0,Hs,{pl}) and & = (6, Hg, {0%})
e information ordering: £ = &' iff E4[E] > E,4[E] for all g
o & > £ iff there exists a quantum statistical morphism

(essentially, a PTP map) M : L(Hs) — L(Hs) such that
M(p%) = o, for all 6

e complete information ordering: £ >_ &’ iff
E®F = & & F for all ancillary models F (in fact, one
informationally complete model suffices)

o &£ =, & iff there exists a CPTP map
N L(Hs) — L(Hs) such that N'(p%) = 0%, for all 6

o if £ is abelian, then £ =_ &' iff € = &’ 14/19



Comparison of Quantum Channels 1/2

R —
W, %
— 4 | > 4Bl

Definition (Quantum Decoding Problems)

Given a quantum channel (CPTP map) N : A — B, a
is defined by a bipartite state
wra and the payoff function is the optimum singlet fraction:

E,[N] = max(®}o|(idr ® D, 0 Nas) (wWra) |2 5)



Comparison of Quantum Channels 2/2

Theorem (FB, 2016)

Given two quantum channels N : A — B and N' : A — B’, the
following are equivalent:

1. output degradability: there exists CPTP map C:
N'=CoWlN;

2. coherence preorder: for any bipartite state wgra,
E,[N] > Ey[N7], that is,
Huin(R|B) (ideA)(w) < Hmin(R|B') (don)(w)-

~ applications to the theory of
and, by adding symmetry constraints, to
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Application to Open Quantum
Systems Dynamics



Discrete-Time Stochastic Processes

e let x;, fori=0,1,..., index the
state of a system at time ¢t = ¢;

e if the system can be initialized at time Ll
t =1, the process is fully described
by the conditional distribution

p(zN, ..., x1|x0)

e if the system evolving is quantum, we
only have a quantum dynamical

mapping {Ngu)_,Qi }7_:1

e the process is divisible if there exist
channels D@ such that
NG = D) 6 N for all ¢

e problem: to provide a fully
information-theoretic characterization
of divisibility

N
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Divisibility as “Quantum Information Flow”

Theorem (2016-2018)

Given an initial open quantum system (g, a quantum
dynamical mapping {N&)HQ } . is divisibile if and only if,
for any initial state wrg,, -

Hmin(R|Q1) S Hmin(R|Q2) S Tt S Hmln(R|QN) .

L

to €, € &y

LN

Five_
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Conclusions



Conclusions

the theory of statistical comparison studies morphisms
(preorders) of one “statistical structure” X into another
“statistical structure” Y

equivalent conditions are given in terms of (finitely or
infinitely many) monotones, e.g., f;(X) > fi(Y)

such monotones shed light on the “resources” at stake in
the operational framework at hand

in a sense, statistical comparison is complementary to
SDP, which instead searches for efficiently computable
functions like f(X,Y)

however, SDP does not provide much insight into the
resources at stake (and not all statistical comparisons are
equivalent to SDP!)

Thank you
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