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Part I: Introduction to degenerate dispersive PDE

Ref: lllposedness for dispersive equations: Degenerate dispersion and
Takeuchi-Mizohata condition, arXiv:2402.06278 (with Sung-Jin Oh)
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Linear dispersive PDE in (1 + 1)D case
Consider PDE of the form

i9:6 + plidx)d = 0

where p is a real-valued symbol.
> Example: p(&) = ¢ (transport), &2 (Schrodinger), €3 (KdV).
> Waves with group velocity p/(€) (dispersion strength).
> Wave packet: ¢ ~ a(t, x)e/Sx+P&)t with |&| > 1 and

e "% o p(idy) 0 €™ ~ p(&) + p'(£0)iOx-

» This gives the transport equation: id:a + ip'(£o)dxa ~ 0.
> That is, for supp (a(t,-)) ~ X(t), we have X(t) = O¢p.
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Linear dispersive PDE: variable coefficient case

Consider variable coefficient

96+ p(x, i0x)¢ = 0

and take ¢ ~ a(t, x)e=(x+Pt with |Z(t)| > 1 time-dependent.

» This time, Taylor expansion reads
e = o p(X,idy) 0 &= =~ p(X,Z) + dxp(X,=)x + ep(X, =)i0x
and the new term gives the system

—="x oxp(X,=) =0,
{ (t) + 9xp( :) . (Hamiltonian ODE)
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p(x, &) =~ cox"¢™

for [x| small and || large. Then we have

—=(t) + X" =" ~ 0,
{ (8) + (Hamiltonian ODE)

X(t) + coX"=m"1 ~ 0.
When X(t) — 0 (which can be arranged by choosing the initial

sign), due to conservation of X"(t)="(t), fast and large growth of
the frequency occurs, namely illposedness.

Oscillatory integrals and pseudo-differential calculus: tools for
justifying wave packet heuristics for actual solutions of in

i0td + p(x,i0x)p = 0.



Degenerate dispersion: examples from physics

Severe instability by waves approaching the point of degeneracy
> \Water wave models with vanishing height, e.g. shoreline

» MHD models with vanishing magnetic field, e.g.
Sweet—Parker model for magnetic reconnection

P> Resonant interaction of waves in compressible Euler system
(Hunter-Smothers model)

» Surface growth, sedimentation theory, magma dynamics, ...

layer 25¢ = vy




Surface growth model

» Stein—Winkler '05 Ozanski '19 Ozanski—Robinson '18
Burczak—Ozanski—Seregin '21

Oru + 8XX(6XU)2 = — V0o U — KOxx U

» Generic behavior at local extrema: cx?

» Degenerate dispersion near local minimum (¢ > 0):
D (Oxt1)? ~ xOyx i generates highly unstable behavior

S N




Part II: lllposedness for singular gSQG equations

Refs: lllposedness via degenerate dispersion for generalized surface
quasi-geostrophic equations with singular velocities, arXiv:2308.02120
(with Dongho Chae and Sung-Jin Oh), 74 pp.

On the Cauchy problem for the Hall and electron magnetohydrodynamic
equations without resistivity I: lllposedness near degenerate stationary
solutions, (with Sung-Jin Oh) Ann. PDE 8 (2022), no. 2, 106 pp.



Generalized SQG equations

We consider 2D active scalar equations of the following form:

80+ u- V6 =0,
(8SQG)

u = VEm(N)b.

where m(A) is a Fourier multiplier, A = (—A)Y/2.



Generalized SQG equations

We consider 2D active scalar equations of the following form:

80+ u- V6 =0,
(8SQG)

u = VEm(N)b.

where m(A) is a Fourier multiplier, A = (—A)Y/2.

> Wetake Q =R?> Rx T,T?and 0: Q = R, u: Q — R?.
> -SQG equations: m(A) = (—A)~1F%.
» 2D Euler corresponds to o = 0 and (usual) SQG to o = 1.



Generalized SQG equations

We consider 2D active scalar equations of the following form:

00 +u-V0=0,
(8SQG)

u = VEm(N)b.

where m(A) is a Fourier multiplier, A = (—A)Y/2.

> Wetake Q=R2RxT,T? and : Q = R, uv: Q — R
> -SQG equations: m(A) = (—A)~1F%.
» 2D Euler corresponds to a = 0 and (usual) SQG to a = 1.

Question: given m, local wellposedness for smooth data?



Assumptions on m(A\)

> We take m to be positive, smooth on R?\{0} and elliptic

(VEm(IED] Sn (€)™ "m(I€])-



Assumptions on m(A)

> We take m to be positive, smooth on R?\{0} and elliptic

(VEm(IED] Sn (€)™ "m(I€])-

Proposition (cf. CCCGW '11)

If furthermore m(|¢|) is uniformly bounded for all £, then (gSQG)
is locally wellposed in H*(€2) with all s sufficiently large.




Assumptions on m(A\)

> We take m to be positive, smooth on R?\{0} and elliptic

(VEm(IED] Sn (€)™ "m(I€])-

If furthermore m(|¢|) is uniformly bounded for all £, then (gSQG)
is locally wellposed in H*(§2) with all s sufficiently large.

Theorem (Chae—J.—Oh, preprint)

For singular m(A\), namely if m(|{|) — oo as [§| — oo, and if
|Vm| is also elliptic, then (gSQG) is strongly illposed in H*(2)
with all s sufficiently large.
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A
» Interpretation of illposedness (work in progress):

» Enhanced/Anomalous dissipation
» Geometry of initial data matters for wellposedness



Trichotomy depending on singularity of multiplier

1. If m(|¢]) Z |€|: illposedness from H> to H*
2. If m(|€]) ~ [€]P for some 0 < 3 < 1: illposedness from HY*
to H* for some v > 1 depending on 3.

3. If 1 < m(|§]) < log(l€]): illposedness from H* to itself, and
wellposedness from H%T¢ to H® for any € > 0.
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2. If m(|€]) ~ [€]P for some 0 < 3 < 1: illposedness from HY*
to H* for some v > 1 depending on 3.

3. If 1 < m(|§]) < log(l€]): illposedness from H* to itself, and
wellposedness from H%T¢ to H® for any € > 0.

Open problem: illposedness in Gevrey/analytic regularity.
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Basic properties of gSQG

> Steady states: A(x,y) = F(y), F(\/x2 + y2).
» Conservation of Hm%(/\)9||Lz: multiplying the equation by
m(A)6, integrating in space, and with ¢y = m(A)6,

%% / Om(A)0 = — / VLm(A)g - VOm(A)o

:/(vlo'V)w :/(via'V)Q/;2 — 0.

» When m= (—A)"*2, 10(t)|| ;4 -1 is conserved: stronger if
velocity is more singular.
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Theorem (Norm Inflation)

For any €,6 > 0 and s > sy, there is a data 0y € CS5,,,(2) with

comp
l0o]| s < € for which any corresponding solution 6 satisfies

sup [[0(t)l|w > €7,

te[0,0]

for some sy > 4 depending on m(N\).

Theorem (Nonexistence)

For s > sy, 36y € H*(T x R) for which there is no corresponding
solution in the space 6 € L>°([0,0]; H®) for any 6 > 0.

Steps

1. Quantitative illposedness for linearization around shear
2. Norm inflation for nonlinear equation

3. Patching argument: norm inflation to nonexistence
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Wave packets and duality testing argument

» Goal: understand the behavior of [0; + L]y = 0.
» Consider an approximate solution of 9; — L* of the form

@ ~ Gaussian(X(t), =(t)), (wave packet)

namely [0 — L*]¢ = € <2 1.
» Duality testing:

Ll
dt

{0, B)| = (e, €)] < |lpol|7

Then, for t small,

e e lE(0) ] o = (0, B)(E) 2 %Hsoollfz

which gives LP illposedness of 0; + L upon decay of ||3(t)||,»*-
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The linear equation

We consider the linearized equation around 6 = F(y):
00 + F'(y)dxm(N)8 — m(A)(F'(y))dx0 = 0.

Introduce ¢ = még recalling that it is L2 bounded, and separate
x-dependence by taking ¢ = e (t, y):

Orp + iA (m%F/(y)m% — m? G(y)m_%> =0,

with G(y) = m(A)(F'(y)). The last term is “lower order” but not
really when m is only slightly singular, as in m(A) ~ log A or
log log ... log A.

cf. This is wellposed in H* for nondegenerate case: inf|F’| > 0.
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where p is a pseudo-differential op with
» pis self-adjoint = L?-boundedness
» degenerate: p(0,A) =0.
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|
General question: how to construct approximate solutions to

where p is a pseudo-differential op with
» pis self-adjoint = L?-boundedness
» degenerate: p(0,A) =0.
» dispersive: dzp — 00 as A — o0.

The guideline: bicharacteristic ODE
{Y(t) = —onp(Y,5),
=(t) =0yp(Y,=)

and Gaussian wave packet ¢ = exp(i=(t)y — |y — Y(t)[?).



Problem of coherence

Recalling that the mechanism of illposedness is accumulation of
support near the degeneracy, we see that the naive Gaussian wave
packet cannot be a good approximation during the time interval in
which frequency growth actually occurs.
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Recalling that the mechanism of illposedness is accumulation of
support near the degeneracy, we see that the naive Gaussian wave
packet cannot be a good approximation during the time interval in
which frequency growth actually occurs.

o(t)

Yo

That is, we want ¢ such that the associated error remains small in
L2 in [0, T] with |=(T)| > |=(0)].
If p~ m(|=])|Y]|", it implies that |Y(t)] < |Y(0)|.
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We consider a general ansatz

@ = exp(i®(t, y))A(t, y)
and as a general rule, the phase function ® should satisfy
0¢® + p(y, 0,®) = 0. (Hamilton—Jacobi)

The amplitude function A then satisfies an associated transport
equation, with coefficients determined by the gradients of ®.



We consider a general ansatz

@ = exp(id(t, y))A(t, y)
and as a general rule, the phase function ® should satisfy
0t + p(y,0,®) = 0. (Hamilton—Jacobi)
The amplitude function A then satisfies an associated transport

equation, with coefficients determined by the gradients of ®.

We want: |0, ®| ~ =(t) > 1 on the support of A, while derivatives
of A and additional derivatives of 0, ® cost much less than =(t).
However, such an assumption does not propagate in time, in
general. (Technical keyword: “scale separation”)
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is to choose a “curved” initial data ®¢ such that the resulting
characteristic curves are relatively straight and parallel with each
other: maximal cancellations in the J,, ®—estimates
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When we solve the HJ equation 0;® + p(y, d,®) = 0, the key idea
is to choose a “curved” initial data ®¢ such that the resulting
characteristic curves are relatively straight and parallel with each
other: maximal cancellations in the J,, ®—estimates

End result: |0, <D( )| =~ =(t) on the support of A(t), while
|0y, ®(t,-)| < =2(t). Gives improved error estimates.
Rmk: this is “renormalization” in the differential case.



Theorem (Main linear illposedness statement)

For \o > 1, M > 1, let 0 < Tpy < 1 be the frequency growth time
from \g to M\g determined by bicharicteristic ODE.

Then any L°L? solution existing on [0,1.017] to the linear
equation with data of the form

po = e ap(y)
experiences norm growth of the form

sup  lo(t, )llks 2 (MAo)®[loll 2
t€[0,1.017y]
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» Robustness of the method: nonlinearity, supercritical
dissipation (which makes the principal symbol
time-dependent) can be treated as error terms.

> We developed a general framework for long-time coherent
wave packet construction for pseudo-differential symbols.

» Applications for various degenerate dispersive PDE, arising
from water waves, sedimentation, plasma dynamics, ...

» Challenging further directions: vector-valued case,
multi-dimensional, curved spacetime, ...



» We proved strong illposedness for singular gSQG, using wave
packets for degenerate dispersive symbol. For physical
systems, this indicates (1) strong dissipation, (2) necessity for
finding geometric conditions for local wellposedness.

» In doing so, we developed a general framework for coherent
wave packet construction, with potential applications to
various degenerate dispersive PDE.

Thank you very much for your attention!



