Degenerate dispersion and illposedness for generalized SQG equations with singular velocities

 $\label{eq:local_local_local} \mbox{In-Jee Jeong (Seoul National Univ.)} \mbox{ with D. Chae (Chung-Ang Univ.) and S.-J. Oh (Berkeley)}$

Seminar in USTC Jan 22, 2025

Part I: Introduction to degenerate dispersive PDE

Ref: Illposedness for dispersive equations: Degenerate dispersion and Takeuchi–Mizohata condition, arXiv:2402.06278 (with Sung-Jin Oh)

Consider PDE of the form

$$i\partial_t \phi + p(i\partial_x)\phi = 0$$

where p is a real-valued symbol.

Consider PDE of the form

$$i\partial_t \phi + p(i\partial_x)\phi = 0$$

where p is a real-valued symbol.

► Example: $p(\xi) = \xi$ (transport), ξ^2 (Schrödinger), ξ^3 (KdV).

Consider PDE of the form

$$i\partial_t \phi + p(i\partial_x)\phi = 0$$

where p is a real-valued symbol.

- ► Example: $p(\xi) = \xi$ (transport), ξ^2 (Schrödinger), ξ^3 (KdV).
- ▶ Waves with **group velocity** $p'(\xi)$ (dispersion strength).

Consider PDE of the form

$$i\partial_t \phi + p(i\partial_x)\phi = 0$$

where p is a real-valued symbol.

- ▶ Example: $p(\xi) = \xi$ (transport), ξ^2 (Schrödinger), ξ^3 (KdV).
- ▶ Waves with **group velocity** $p'(\xi)$ (dispersion strength).
- Wave packet: $\phi \simeq a(t,x)e^{i\xi_0x+ip(\xi_0)t}$ with $|\xi_0|\gg 1$ and

$$e^{-i\xi_0x}\circ p(i\partial_x)\circ e^{i\xi_0x}\simeq p(\xi_0)+p'(\xi_0)i\partial_x.$$

Consider PDE of the form

$$i\partial_t \phi + p(i\partial_x)\phi = 0$$

where p is a real-valued symbol.

- ▶ Example: $p(\xi) = \xi$ (transport), ξ^2 (Schrödinger), ξ^3 (KdV).
- ▶ Waves with **group velocity** $p'(\xi)$ (dispersion strength).
- Wave packet: $\phi \simeq a(t,x)e^{i\xi_0x+ip(\xi_0)t}$ with $|\xi_0|\gg 1$ and

$$e^{-i\xi_0x}\circ p(i\partial_x)\circ e^{i\xi_0x}\simeq p(\xi_0)+p'(\xi_0)i\partial_x.$$

▶ This gives the transport equation: $i\partial_t a + ip'(\xi_0)\partial_x a \simeq 0$.

Consider PDE of the form

$$i\partial_t \phi + p(i\partial_x)\phi = 0$$

where p is a real-valued symbol.

- ► Example: $p(\xi) = \xi$ (transport), ξ^2 (Schrödinger), ξ^3 (KdV).
- ▶ Waves with **group velocity** $p'(\xi)$ (dispersion strength).
- Wave packet: $\phi \simeq a(t,x)e^{i\xi_0x+ip(\xi_0)t}$ with $|\xi_0|\gg 1$ and

$$e^{-i\xi_0x}\circ p(i\partial_x)\circ e^{i\xi_0x}\simeq p(\xi_0)+p'(\xi_0)i\partial_x.$$

- ▶ This gives the transport equation: $i\partial_t a + ip'(\xi_0)\partial_x a \simeq 0$.
- ▶ That is, for supp $(a(t,\cdot)) \sim X(t)$, we have $\dot{X}(t) = \partial_{\xi} p$.

Linear dispersive PDE: variable coefficient case

Consider variable coefficient

$$i\partial_t \phi + p(\mathbf{x}, i\partial_{\mathbf{x}})\phi = 0$$

and take $\phi \simeq a(t,x)e^{i\Xi(t)x+ipt}$ with $|\Xi(t)|\gg 1$ time-dependent.

Linear dispersive PDE: variable coefficient case

Consider variable coefficient

$$i\partial_t \phi + p(\mathbf{x}, i\partial_{\mathbf{x}})\phi = 0$$

and take $\phi \simeq a(t,x)e^{i\Xi(t)x+ipt}$ with $|\Xi(t)|\gg 1$ time-dependent.

► This time, Taylor expansion reads

and the new term gives the system

$$\begin{cases} -\Xi'(t) + \partial_X p(X, \Xi) = 0, \\ X'(t) + \partial_\xi p(X, \Xi) = 0. \end{cases}$$
 (Hamiltonian ODE)

Linear dispersive PDE: degenerate dispersion

Degenerate case: assume that p vanishes at x = 0, with

$$p(x,\xi) \simeq c_0 x^n \xi^m$$

for |x| small and $|\xi|$ large.

Linear dispersive PDE: degenerate dispersion

Degenerate case: assume that p vanishes at x = 0, with

$$p(x,\xi) \simeq c_0 x^n \xi^m$$

for |x| small and $|\xi|$ large. Then we have

$$\begin{cases} -\dot{\Xi}(t) + c_0 X^{n-1} \Xi^m \simeq 0, \\ \dot{X}(t) + c_0 X^n \Xi^{m-1} \simeq 0. \end{cases}$$
 (Hamiltonian ODE)

When $X(t) \to 0$ (which can be arranged by choosing the initial sign), due to conservation of $X^n(t) \equiv^m(t)$, fast and large growth of the frequency occurs, namely **illposedness**.

Linear dispersive PDE: degenerate dispersion

Degenerate case: assume that p vanishes at x = 0, with

$$p(x,\xi) \simeq c_0 x^n \xi^m$$

for |x| small and $|\xi|$ large. Then we have

$$\begin{cases} -\dot{\Xi}(t) + c_0 X^{n-1} \Xi^m \simeq 0, \\ \dot{X}(t) + c_0 X^n \Xi^{m-1} \simeq 0. \end{cases}$$
 (Hamiltonian ODE)

When $X(t) \to 0$ (which can be arranged by choosing the initial sign), due to conservation of $X^n(t)\Xi^m(t)$, fast and large growth of the frequency occurs, namely **illposedness**.

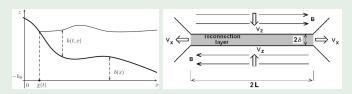
Oscillatory integrals and pseudo-differential calculus: tools for justifying *wave packet heuristics* for actual solutions of in

$$i\partial_t \phi + p(x, i\partial_x)\phi = 0.$$

Degenerate dispersion: examples from physics

Severe instability by waves approaching the point of degeneracy

- ▶ Water wave models with vanishing height, e.g. shoreline
- MHD models with vanishing magnetic field, e.g.
 Sweet–Parker model for magnetic reconnection
- Resonant interaction of waves in compressible Euler system (Hunter–Smothers model)
- Surface growth, sedimentation theory, magma dynamics, ...

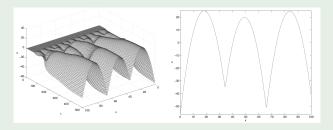


Surface growth model

 Stein-Winkler '05 Ozanski '19 Ozanski-Robinson '18 Burczak-Ozanski-Seregin '21

$$\partial_t u + \partial_{xx} (\partial_x u)^2 = -\nu \partial_{xxx} u - \kappa \partial_{xx} u$$

- ▶ Generic behavior at local extrema: cx^2
- ▶ Degenerate dispersion near local minimum (c > 0): $\partial_{xx}(\partial_x u)^2 \sim x \partial_{xxx} u$ generates highly unstable behavior



Part II: Illposedness for singular gSQG equations

Refs: Illposedness via degenerate dispersion for generalized surface quasi-geostrophic equations with singular velocities, arXiv:2308.02120 (with Dongho Chae and Sung-Jin Oh), 74 pp.

On the Cauchy problem for the Hall and electron magnetohydrodynamic equations without resistivity I: Illposedness near degenerate stationary solutions, (with Sung-Jin Oh) Ann. PDE 8 (2022), no. 2, 106 pp.

Generalized SQG equations

We consider 2D active scalar equations of the following form:

$$\begin{cases} \partial_t \theta + u \cdot \nabla \theta = 0, \\ u = \nabla^{\perp} m(\Lambda) \theta. \end{cases}$$
 (gSQG)

where $m(\Lambda)$ is a Fourier multiplier, $\Lambda = (-\Delta)^{1/2}$.

Generalized SQG equations

We consider 2D active scalar equations of the following form:

$$\begin{cases} \partial_t \theta + u \cdot \nabla \theta = 0, \\ u = \nabla^{\perp} m(\Lambda) \theta. \end{cases}$$
 (gSQG)

where $m(\Lambda)$ is a Fourier multiplier, $\Lambda = (-\Delta)^{1/2}$.

- We take $\Omega = \mathbb{R}^2$, $\mathbb{R} \times \mathbb{T}$, \mathbb{T}^2 and $\theta : \Omega \to \mathbb{R}$, $u : \Omega \to \mathbb{R}^2$.
- ▶ α-SQG equations: $m(Λ) = (-Δ)^{-1+\frac{α}{2}}$.
- ▶ 2D Euler corresponds to $\alpha = 0$ and (usual) SQG to $\alpha = 1$.

Generalized SQG equations

We consider 2D active scalar equations of the following form:

$$\begin{cases} \partial_t \theta + u \cdot \nabla \theta = 0, \\ u = \nabla^{\perp} m(\Lambda) \theta. \end{cases}$$
 (gSQG)

where $m(\Lambda)$ is a Fourier multiplier, $\Lambda = (-\Delta)^{1/2}$.

- We take $\Omega = \mathbb{R}^2$, $\mathbb{R} \times \mathbb{T}$, \mathbb{T}^2 and $\theta : \Omega \to \mathbb{R}$, $u : \Omega \to \mathbb{R}^2$.
- ▶ α-SQG equations: $m(Λ) = (-Δ)^{-1+\frac{α}{2}}$.
- ▶ 2D Euler corresponds to $\alpha = 0$ and (usual) SQG to $\alpha = 1$.

Question: given *m*, local wellposedness for smooth data?

Assumptions on $m(\Lambda)$

▶ We take m to be positive, smooth on $\mathbb{R}^2 \setminus \{0\}$ and **elliptic**

$$|\nabla_{\xi}^{n}m(|\xi|)|\lesssim_{n}\langle\xi\rangle^{-n}m(|\xi|).$$

Assumptions on $m(\Lambda)$

▶ We take m to be positive, smooth on $\mathbb{R}^2 \setminus \{0\}$ and **elliptic**

$$|\nabla_{\xi}^{n}m(|\xi|)|\lesssim_{n} \langle \xi \rangle^{-n}m(|\xi|).$$

Proposition (cf. CCCGW '11)

If furthermore $m(|\xi|)$ is **uniformly bounded** for all ξ , then (gSQG) is locally wellposed in $H^s(\Omega)$ with all s sufficiently large.

Assumptions on $m(\Lambda)$

▶ We take m to be positive, smooth on $\mathbb{R}^2 \setminus \{0\}$ and **elliptic**

$$|\nabla_{\xi}^{n}m(|\xi|)|\lesssim_{n}\langle\xi\rangle^{-n}m(|\xi|).$$

Proposition (cf. CCCGW '11)

If furthermore $m(|\xi|)$ is **uniformly bounded** for all ξ , then (gSQG) is locally wellposed in $H^s(\Omega)$ with all s sufficiently large.

Theorem (Chae–J.–Oh, preprint)

For singular $m(\Lambda)$, namely if $m(|\xi|) \to \infty$ as $|\xi| \to \infty$, and if $|\nabla m|$ is also elliptic, then (gSQG) is strongly illposed in $H^s(\Omega)$ with all s sufficiently large.

Remarks

- ► For α -SQG equations, $u = \nabla^{\perp}(-\Delta)^{-1+\frac{\alpha}{2}}\theta$, our result gives local wellposedness up to $\alpha \leq 2$ and illposedness for $\alpha > 2$.
 - ▶ Rmk: when $\alpha = 2$, then $u = \nabla^{\perp} \theta$, which gives that $u \cdot \nabla \theta \equiv 0$.

Remarks

- ► For α -SQG equations, $u = \nabla^{\perp}(-\Delta)^{-1+\frac{\alpha}{2}}\theta$, our result gives local wellposedness up to $\alpha \leq 2$ and illposedness for $\alpha > 2$.
 - ▶ Rmk: when $\alpha = 2$, then $u = \nabla^{\perp} \theta$, which gives that $u \cdot \nabla \theta \equiv 0$.
- There are at least three examples of singular multipliers of particular interest:
 - ▶ Ohkitani model: $m = \log(\Lambda)$
 - ► Toy model for electron-MHD: $m = \Lambda$
 - Asymptotic model in LQG: $m = \Delta$.

Remarks

- ► For α -SQG equations, $u = \nabla^{\perp}(-\Delta)^{-1+\frac{\alpha}{2}}\theta$, our result gives local wellposedness up to $\alpha \leq 2$ and illposedness for $\alpha > 2$.
 - ▶ Rmk: when $\alpha = 2$, then $u = \nabla^{\perp} \theta$, which gives that $u \cdot \nabla \theta \equiv 0$.
- There are at least three examples of singular multipliers of particular interest:
 - ▶ Ohkitani model: $m = \log(\Lambda)$
 - ► Toy model for electron-MHD: $m = \Lambda$
 - Asymptotic model in LQG: $m = \Delta$.

- ► Interpretation of illposedness (work in progress):
 - ► Enhanced/Anomalous dissipation
 - Geometry of initial data matters for wellposedness

Trichotomy depending on singularity of multiplier

- 1. If $m(|\xi|) \gtrsim |\xi|$: illposedness from H^{∞} to H^{s_0}
- 2. If $m(|\xi|) \sim |\xi|^{\beta}$ for some $0 < \beta < 1$: illposedness from $H^{\gamma s_0}$ to H^{s_0} for some $\gamma > 1$ depending on β .
- 3. If $1 \ll m(|\xi|) \lesssim \log(|\xi|)$: illposedness from H^{s_0} to itself, and wellposedness from $H^{s_0+\epsilon}$ to H^{s_0} for any $\epsilon > 0$.

Trichotomy depending on singularity of multiplier

- 1. If $m(|\xi|) \gtrsim |\xi|$: illposedness from H^{∞} to H^{s_0}
- 2. If $m(|\xi|) \sim |\xi|^{\beta}$ for some $0 < \beta < 1$: illposedness from $H^{\gamma s_0}$ to H^{s_0} for some $\gamma > 1$ depending on β .
- 3. If $1 \ll m(|\xi|) \lesssim \log(|\xi|)$: illposedness from H^{s_0} to itself, and wellposedness from $H^{s_0+\epsilon}$ to H^{s_0} for any $\epsilon > 0$.

Open problem: illposedness in Gevrey/analytic regularity.

Basic properties of gSQG

► Steady states: $\bar{\theta}(x,y) = F(y)$, $F(\sqrt{x^2 + y^2})$.

Basic properties of gSQG

- ► Steady states: $\bar{\theta}(x,y) = F(y)$, $F(\sqrt{x^2 + y^2})$.
- Conservation of $\|m^{\frac{1}{2}}(\Lambda)\theta\|_{L^2}$: multiplying the equation by $m(\Lambda)\theta$, integrating in space, and with $\psi=m(\Lambda)\theta$,

$$\begin{split} \frac{1}{2} \frac{d}{dt} \int \theta \textit{m}(\Lambda) \theta &= -\int \nabla^{\perp} \textit{m}(\Lambda) \theta \cdot \nabla \theta \textit{m}(\Lambda) \theta \\ &= \int (\nabla^{\perp} \theta \cdot \nabla) \psi \, \psi = \int (\nabla^{\perp} \theta \cdot \nabla) \frac{\psi^2}{2} = 0. \end{split}$$

Basic properties of gSQG

- ► Steady states: $\bar{\theta}(x,y) = F(y)$, $F(\sqrt{x^2 + y^2})$.
- Conservation of $\|m^{\frac{1}{2}}(\Lambda)\theta\|_{L^2}$: multiplying the equation by $m(\Lambda)\theta$, integrating in space, and with $\psi=m(\Lambda)\theta$,

$$\begin{split} \frac{1}{2} \frac{d}{dt} \int \theta m(\Lambda) \theta &= - \int \nabla^{\perp} m(\Lambda) \theta \cdot \nabla \theta m(\Lambda) \theta \\ &= \int (\nabla^{\perp} \theta \cdot \nabla) \psi \, \psi = \int (\nabla^{\perp} \theta \cdot \nabla) \frac{\psi^2}{2} = 0. \end{split}$$

▶ When $m = (-\Delta)^{-1+\frac{\alpha}{2}}$, $\|\theta(t)\|_{\dot{H}^{\frac{\alpha}{2}-1}}$ is conserved: stronger if velocity is more singular.

Theorem (Norm Inflation)

For any $\epsilon, \delta > 0$ and $s \geq s_0$, there is a data $\theta_0 \in C^{\infty}_{comp}(\Omega)$ with $\|\theta_0\|_{H^s} < \epsilon$ for which any corresponding solution θ satisfies

$$\sup_{t\in[0,\delta]}\|\theta(t)\|_{\mathcal{H}^s}>\epsilon^{-1},$$

for some $s_0 \ge 4$ depending on $m(\Lambda)$.

Theorem (Norm Inflation)

For any $\epsilon, \delta > 0$ and $s \geq s_0$, there is a data $\theta_0 \in C^{\infty}_{comp}(\Omega)$ with $\|\theta_0\|_{H^s} < \epsilon$ for which any corresponding solution θ satisfies

$$\sup_{t\in[0,\delta]}\|\theta(t)\|_{H^s}>\epsilon^{-1},$$

for some $s_0 \ge 4$ depending on $m(\Lambda)$.

Theorem (Nonexistence)

For $s \geq s_0$, $\exists \theta_0 \in H^s(\mathbb{T} \times \mathbb{R})$ for which there is **no** corresponding solution in the space $\theta \in L^{\infty}([0,\delta]; H^s)$ for any $\delta > 0$.

Theorem (Norm Inflation)

For any $\epsilon, \delta > 0$ and $s \geq s_0$, there is a data $\theta_0 \in C^{\infty}_{comp}(\Omega)$ with $\|\theta_0\|_{H^s} < \epsilon$ for which any corresponding solution θ satisfies

$$\sup_{t\in[0,\delta]}\|\theta(t)\|_{H^s}>\epsilon^{-1},$$

for some $s_0 \ge 4$ depending on $m(\Lambda)$.

Theorem (Nonexistence)

For $s \geq s_0$, $\exists \theta_0 \in H^s(\mathbb{T} \times \mathbb{R})$ for which there is **no** corresponding solution in the space $\theta \in L^{\infty}([0,\delta]; H^s)$ for any $\delta > 0$.

Steps

- 1. Quantitative illposedness for linearization around shear
- 2. Norm inflation for nonlinear equation
- 3. Patching argument: norm inflation to nonexistence

Linear illposedness: overview of the proof

- ► Consider solution of the form $\theta = \bar{\theta} + \tilde{\theta}(t, x, y)$.
 - $lackbox{} \bar{\theta}=F(y)$: smooth, degenerate $F(0)=F'(0)=0,\ F''(0)\neq 0.$
 - $lackbox{}{ ilde{ heta}}$: highly oscillatory perturbation

Linear illposedness: overview of the proof

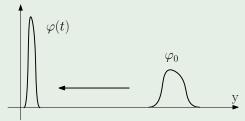
- ► Consider solution of the form $\theta = \bar{\theta} + \tilde{\theta}(t, x, y)$.
 - $ar{\theta} = F(y)$: smooth, degenerate F(0) = F'(0) = 0, $F''(0) \neq 0$.
 - $ightharpoonup ilde{ heta}$: highly oscillatory perturbation
- ▶ Rewrite the equation for $\varphi := m^{\frac{1}{2}}(\Lambda)\tilde{\theta}$, which is L^2 -stable.

Linear illposedness: overview of the proof

- ► Consider solution of the form $\theta = \bar{\theta} + \tilde{\theta}(t, x, y)$.
 - $lackbox{\ } \bar{\theta}=F(y)$: smooth, degenerate F(0)=F'(0)=0, $F''(0)\neq 0$.
 - $ightharpoonup ilde{ heta}$: highly oscillatory perturbation
- ▶ Rewrite the equation for $\varphi := m^{\frac{1}{2}}(\Lambda)\tilde{\theta}$, which is L^2 –stable.
- ► Key: φ satisfies a **degenerate dispersive** equation \mapsto supposed to be illposed in all L^p -spaces with $p \neq 2$.

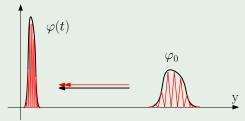
Linear illposedness: overview of the proof

- ► Consider solution of the form $\theta = \bar{\theta} + \tilde{\theta}(t, x, y)$.
 - $lackbox{\ } \bar{\theta}=F(y)$: smooth, degenerate F(0)=F'(0)=0, $F''(0)\neq 0$.
 - $ightharpoonup ilde{ heta}$: highly oscillatory perturbation
- ► Rewrite the equation for $\varphi := m^{\frac{1}{2}}(\Lambda)\tilde{\theta}$, which is L^2 -stable.
- ► Key: φ satisfies a **degenerate dispersive** equation \mapsto supposed to be illposed in all L^p -spaces with $p \neq 2$.
- ▶ Difficulty: variable-coefficient, non-local. Use wave packets.



Linear illposedness: overview of the proof

- ► Consider solution of the form $\theta = \bar{\theta} + \tilde{\theta}(t, x, y)$.
 - $lackbox{\ } \bar{\theta}=F(y)$: smooth, degenerate F(0)=F'(0)=0, $F''(0)\neq 0$.
 - $ightharpoonup ilde{ heta}$: highly oscillatory perturbation
- ► Rewrite the equation for $\varphi := m^{\frac{1}{2}}(\Lambda)\tilde{\theta}$, which is L^2 -stable.
- ► Key: φ satisfies a **degenerate dispersive** equation \mapsto supposed to be illposed in all L^p -spaces with $p \neq 2$.
- ▶ Difficulty: variable-coefficient, non-local. Use wave packets.



Wave packets and duality testing argument

▶ Goal: understand the behavior of $[\partial_t + \mathcal{L}]\varphi = 0$.

Wave packets and duality testing argument

- ▶ Goal: understand the behavior of $[\partial_t + \mathcal{L}]\varphi = 0$.
- ▶ Consider an approximate solution of $\partial_t \mathcal{L}^*$ of the form

$$ilde{arphi} \simeq \operatorname{Gaussian}(X(t),\Xi(t)),$$
 (wave packet)

namely
$$[\partial_t - \mathcal{L}^*] ilde{arphi} = \epsilon \ll_{\mathit{L}^2} 1$$
.

Wave packets and duality testing argument

- ▶ Goal: understand the behavior of $[\partial_t + \mathcal{L}]\varphi = 0$.
- lacktriangle Consider an approximate solution of $\partial_t \mathcal{L}^*$ of the form

$$\tilde{\varphi} \simeq \operatorname{Gaussian}(X(t), \Xi(t)),$$
 (wave packet)

namely $[\partial_t - \mathcal{L}^*] \tilde{arphi} = \epsilon \ll_{\mathcal{L}^2} 1$.

► Duality testing:

$$\left|\frac{d}{dt}\langle\varphi,\tilde{\varphi}\rangle\right| = |\langle\varphi,\epsilon\rangle| \ll \|\varphi_0\|_{L^2}^2.$$

Then, for t small,

$$\|\varphi(t)\|_{L^p}\|\tilde{\varphi}(t)\|_{L^{p^*}} \geq \langle \varphi, \tilde{\varphi} \rangle(t) \geq \frac{1}{2}\|\varphi_0\|_{L^2}^2$$

which gives L^p illposedness of $\partial_t + \mathcal{L}$ upon decay of $\|\tilde{\varphi}(t)\|_{L^p}$.

We consider the linearized equation around $\bar{\theta} = F(y)$:

$$\partial_t \widetilde{\theta} + F'(y) \partial_x m(\Lambda) \widetilde{\theta} - m(\Lambda) (F'(y)) \partial_x \widetilde{\theta} = 0.$$

We consider the linearized equation around $\bar{\theta} = F(y)$:

$$\partial_t \widetilde{\theta} + F'(y) \partial_x m(\Lambda) \widetilde{\theta} - m(\Lambda) (F'(y)) \partial_x \widetilde{\theta} = 0.$$

Introduce $\phi=m^{\frac{1}{2}}\widetilde{\theta}$, recalling that it is L^2 bounded, and separate x-dependence by taking $\phi=e^{i\lambda x}\varphi(t,y)$:

We consider the linearized equation around $\bar{\theta} = F(y)$:

$$\partial_t \widetilde{\theta} + F'(y) \partial_x m(\Lambda) \widetilde{\theta} - m(\Lambda) (F'(y)) \partial_x \widetilde{\theta} = 0.$$

Introduce $\phi=m^{\frac{1}{2}}\widetilde{\theta}$, recalling that it is L^2 bounded, and separate x-dependence by taking $\phi=e^{i\lambda x}\varphi(t,y)$:

$$\partial_t \varphi + i\lambda \left(m^{\frac{1}{2}} F'(y) m^{\frac{1}{2}} - m^{\frac{1}{2}} G(y) m^{-\frac{1}{2}} \right) \varphi = 0,$$

with
$$G(y) = m(\Lambda)(F'(y))$$
.

We consider the linearized equation around $\bar{\theta} = F(y)$:

$$\partial_t \widetilde{\theta} + F'(y) \partial_x m(\Lambda) \widetilde{\theta} - m(\Lambda) (F'(y)) \partial_x \widetilde{\theta} = 0.$$

Introduce $\phi=m^{\frac{1}{2}}\widetilde{\theta}$, recalling that it is L^2 bounded, and separate x-dependence by taking $\phi=e^{i\lambda x}\varphi(t,y)$:

$$\partial_t \varphi + i\lambda \left(m^{\frac{1}{2}} F'(y) m^{\frac{1}{2}} - m^{\frac{1}{2}} G(y) m^{-\frac{1}{2}} \right) \varphi = 0,$$

with $G(y) = m(\Lambda)(F'(y))$. The last term is "lower order" but not really when m is only *slightly* singular, as in $m(\Lambda) \sim \log \Lambda$ or $\log \log ... \log \Lambda$.

We consider the linearized equation around $\bar{\theta} = F(y)$:

$$\partial_t \widetilde{\theta} + F'(y) \partial_x m(\Lambda) \widetilde{\theta} - m(\Lambda) (F'(y)) \partial_x \widetilde{\theta} = 0.$$

Introduce $\phi=m^{\frac{1}{2}}\widetilde{\theta}$, recalling that it is L^2 bounded, and separate x-dependence by taking $\phi=e^{i\lambda x}\varphi(t,y)$:

$$\partial_t \varphi + i\lambda \left(m^{\frac{1}{2}} F'(y) m^{\frac{1}{2}} - m^{\frac{1}{2}} G(y) m^{-\frac{1}{2}} \right) \varphi = 0,$$

with $G(y) = m(\Lambda)(F'(y))$. The last term is "lower order" but not really when m is only *slightly* singular, as in $m(\Lambda) \sim \log \Lambda$ or $\log \log ... \log \Lambda$.

cf. This is wellposed in H^{∞} for nondegenerate case: inf |F'| > 0.

General question: how to construct approximate solutions to

$$\partial_t \varphi + i p(y, \Lambda) \varphi = 0,$$

where p is a pseudo-differential op with

- ightharpoonup p is self-adjoint $\implies L^2$ -boundedness
- ▶ degenerate: $p(0, \Lambda) \equiv 0$.
- ▶ dispersive: $\partial_{\Lambda} p \to \infty$ as $\Lambda \to \infty$.

General question: how to construct approximate solutions to

$$\partial_t \varphi + i p(y, \Lambda) \varphi = 0,$$

where p is a pseudo-differential op with

- ightharpoonup p is self-adjoint $\implies L^2$ -boundedness
- ▶ degenerate: $p(0, \Lambda) \equiv 0$.
- ▶ dispersive: $\partial_{\Lambda} p \to \infty$ as $\Lambda \to \infty$.

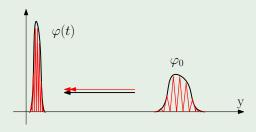
The guideline: bicharacteristic ODE

$$\begin{cases} \dot{Y}(t) = -\partial_{\Lambda} p(Y, \Xi), \\ \dot{\Xi}(t) = \partial_{Y} p(Y, \Xi) \end{cases}$$

and Gaussian wave packet $\tilde{\varphi} = \exp(i\Xi(t)y - |y - Y(t)|^2)$.

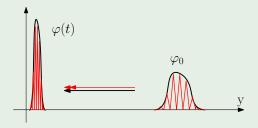
Problem of coherence

Recalling that the mechanism of illposedness is accumulation of support near the degeneracy, we see that the naive Gaussian wave packet cannot be a good approximation during the time interval in which frequency growth actually occurs.



Problem of coherence

Recalling that the mechanism of illposedness is accumulation of support near the degeneracy, we see that the naive Gaussian wave packet cannot be a good approximation during the time interval in which frequency growth actually occurs.



That is, we want $\tilde{\varphi}$ such that the associated error remains small in L^2 in [0,T] with $|\Xi(T)|\gg |\Xi(0)|$.

If $p \sim m(|\Xi|)|Y|^n$, it implies that $|Y(t)| \ll |Y(0)|$.

We consider a general ansatz

$$\tilde{\varphi} = \exp(i\Phi(t,y))A(t,y)$$

and as a general rule, the phase function Φ should satisfy

$$\partial_t \Phi + p(y, \partial_y \Phi) = 0.$$
 (Hamilton–Jacobi)

The amplitude function A then satisfies an associated transport equation, with coefficients determined by the gradients of Φ .

We consider a general ansatz

$$\tilde{\varphi} = \exp(i\Phi(t,y))A(t,y)$$

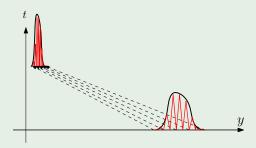
and as a general rule, the phase function Φ should satisfy

$$\partial_t \Phi + p(y, \partial_y \Phi) = 0.$$
 (Hamilton–Jacobi)

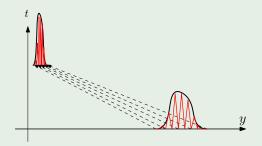
The amplitude function A then satisfies an associated transport equation, with coefficients determined by the gradients of Φ .

We want: $|\partial_y \Phi| \simeq \Xi(t) \gg 1$ on the support of A, while derivatives of A and additional derivatives of $\partial_y \Phi$ cost much less than $\Xi(t)$. However, such an assumption does not propagate in time, in general. (Technical keyword: "scale separation")

When we solve the HJ equation $\partial_t \Phi + p(y, \partial_y \Phi) = 0$, the key idea is to **choose** a "curved" initial data Φ_0 such that the resulting characteristic curves are relatively straight and parallel with each other: **maximal cancellations** in the $\partial_{yy}\Phi$ -estimates

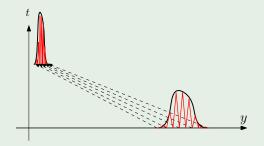


When we solve the HJ equation $\partial_t \Phi + p(y, \partial_y \Phi) = 0$, the key idea is to **choose** a "curved" initial data Φ_0 such that the resulting characteristic curves are relatively straight and parallel with each other: **maximal cancellations** in the $\partial_{yy}\Phi$ -estimates



End result: $|\partial_y \Phi(t,\cdot)| \simeq \Xi(t)$ on the support of A(t), while $|\partial_{yy} \Phi(t,\cdot)| \ll \Xi^2(t)$. Gives improved error estimates.

When we solve the HJ equation $\partial_t \Phi + p(y, \partial_y \Phi) = 0$, the key idea is to **choose** a "curved" initial data Φ_0 such that the resulting characteristic curves are relatively straight and parallel with each other: **maximal cancellations** in the $\partial_{yy}\Phi$ -estimates



End result: $|\partial_y \Phi(t,\cdot)| \simeq \Xi(t)$ on the support of A(t), while $|\partial_{yy} \Phi(t,\cdot)| \ll \Xi^2(t)$. Gives improved error estimates. Rmk: this is "renormalization" in the differential case.

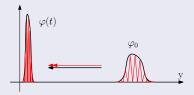
Theorem (Main linear illposedness statement)

For $\lambda_0\gg 1$, $M\geq 1$, let $0<\tau_M\ll 1$ be the frequency growth time from λ_0 to $M\lambda_0$ determined by bicharicteristic ODE. Then any $L_t^\infty L^2$ solution existing on $[0,1.01\tau_M]$ to the linear equation with data of the form

$$\varphi_0 = e^{i\lambda_0 y} a_0(y)$$

experiences norm growth of the form

$$\sup_{t\in[0,1.01\tau_M]}\|\varphi(t,\cdot)\|_{H^s}\gtrsim (M\lambda_0)^s\|\varphi_0\|_{L^2}.$$



► Robustness of the method: nonlinearity, supercritical dissipation (which makes the principal symbol time-dependent) can be treated as error terms.

- ► Robustness of the method: nonlinearity, supercritical dissipation (which makes the principal symbol time-dependent) can be treated as error terms.
- ► We developed a general framework for long-time coherent wave packet construction for pseudo-differential symbols.

- ► Robustness of the method: nonlinearity, supercritical dissipation (which makes the principal symbol time-dependent) can be treated as error terms.
- ► We developed a general framework for long-time coherent wave packet construction for pseudo-differential symbols.
- ► Applications for various degenerate dispersive PDE, arising from water waves, sedimentation, plasma dynamics, ...

- ► Robustness of the method: nonlinearity, supercritical dissipation (which makes the principal symbol time-dependent) can be treated as error terms.
- ► We developed a general framework for long-time coherent wave packet construction for pseudo-differential symbols.
- ► Applications for various degenerate dispersive PDE, arising from water waves, sedimentation, plasma dynamics, ...
- ► Challenging further directions: **vector-valued case**, **multi-dimensional**, **curved spacetime**, ...

Summary

- ▶ We proved strong illposedness for **singular** gSQG, using wave packets for degenerate dispersive symbol. For physical systems, this indicates (1) strong dissipation, (2) necessity for finding geometric conditions for local wellposedness.
- ▶ In doing so, we developed a general framework for coherent wave packet construction, with potential applications to various degenerate dispersive PDE.

Thank you very much for your attention!