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Part I: Introduction to degenerate dispersive PDE

Ref: Illposedness for dispersive equations: Degenerate dispersion and
Takeuchi–Mizohata condition, arXiv:2402.06278 (with Sung-Jin Oh)



Linear dispersive PDE in (1 + 1)D case

Consider PDE of the form

i∂tϕ+ p(i∂x)ϕ = 0

where p is a real-valued symbol.

▶ Example: p(ξ) = ξ (transport), ξ2 (Schrödinger), ξ3 (KdV).

▶ Waves with group velocity p′(ξ) (dispersion strength).

▶ Wave packet: ϕ ≃ a(t, x)e iξ0x+ip(ξ0)t with |ξ0| ≫ 1 and

e−iξ0x ◦ p(i∂x) ◦ e iξ0x ≃ p(ξ0) + p′(ξ0)i∂x .

▶ This gives the transport equation: i∂ta+ ip′(ξ0)∂xa ≃ 0.

▶ That is, for supp (a(t, ·)) ∼ X (t), we have Ẋ (t) = ∂ξp.
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Linear dispersive PDE: variable coefficient case

Consider variable coefficient

i∂tϕ+ p(x , i∂x)ϕ = 0

and take ϕ ≃ a(t, x)e iΞ(t)x+ipt with |Ξ(t)| ≫ 1 time-dependent.

▶ This time, Taylor expansion reads

e−iΞx ◦ p(X , i∂x) ◦ e iΞx ≃ p(X ,Ξ) + ∂xp(X ,Ξ)x + ∂ξp(X ,Ξ)i∂x

and the new term gives the system{
−Ξ′(t) + ∂xp(X ,Ξ) = 0,

X ′(t) + ∂ξp(X ,Ξ) = 0.
(Hamiltonian ODE)
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Linear dispersive PDE: degenerate dispersion

Degenerate case: assume that p vanishes at x = 0, with

p(x , ξ) ≃ c0x
nξm

for |x | small and |ξ| large.

Then we have{
−Ξ̇(t) + c0X

n−1Ξm ≃ 0,

Ẋ (t) + c0X
nΞm−1 ≃ 0.

(Hamiltonian ODE)

When X (t) → 0 (which can be arranged by choosing the initial
sign), due to conservation of X n(t)Ξm(t), fast and large growth of
the frequency occurs, namely illposedness.

Oscillatory integrals and pseudo-differential calculus: tools for
justifying wave packet heuristics for actual solutions of in

i∂tϕ+ p(x , i∂x)ϕ = 0.
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Degenerate dispersion: examples from physics

Severe instability by waves approaching the point of degeneracy

▶ Water wave models with vanishing height, e.g. shoreline

▶ MHD models with vanishing magnetic field, e.g.
Sweet–Parker model for magnetic reconnection

▶ Resonant interaction of waves in compressible Euler system
(Hunter–Smothers model)

▶ Surface growth, sedimentation theory, magma dynamics, ...



Surface growth model

▶ Stein–Winkler ’05 Ozanski ’19 Ozanski–Robinson ’18
Burczak–Ozanski–Seregin ’21

∂tu + ∂xx(∂xu)
2 = −ν∂xxxxu − κ∂xxu

▶ Generic behavior at local extrema: cx2

▶ Degenerate dispersion near local minimum (c > 0):
∂xx(∂xu)

2 ∼ x∂xxxu generates highly unstable behavior



Part II: Illposedness for singular gSQG equations

Refs: Illposedness via degenerate dispersion for generalized surface
quasi-geostrophic equations with singular velocities, arXiv:2308.02120
(with Dongho Chae and Sung-Jin Oh), 74 pp.

On the Cauchy problem for the Hall and electron magnetohydrodynamic
equations without resistivity I: Illposedness near degenerate stationary
solutions, (with Sung-Jin Oh) Ann. PDE 8 (2022), no. 2, 106 pp.



Generalized SQG equations

We consider 2D active scalar equations of the following form:{
∂tθ + u · ∇θ = 0,

u = ∇⊥m(Λ)θ.
(gSQG)

where m(Λ) is a Fourier multiplier, Λ = (−∆)1/2.

▶ We take Ω = R2,R× T,T2 and θ : Ω → R, u : Ω → R2.

▶ α-SQG equations: m(Λ) = (−∆)−1+α
2 .

▶ 2D Euler corresponds to α = 0 and (usual) SQG to α = 1.

Question: given m, local wellposedness for smooth data?
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Assumptions on m(Λ)

▶ We take m to be positive, smooth on R2\{0} and elliptic

|∇n
ξm(|ξ|)| ≲n ⟨ξ⟩−nm(|ξ|).

Proposition (cf. CCCGW ’11)

If furthermore m(|ξ|) is uniformly bounded for all ξ, then (gSQG)
is locally wellposed in Hs(Ω) with all s sufficiently large.

Theorem (Chae–J.–Oh, preprint)

For singular m(Λ), namely if m(|ξ|) → ∞ as |ξ| → ∞, and if
|∇m| is also elliptic, then (gSQG) is strongly illposed in Hs(Ω)
with all s sufficiently large.
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Remarks

▶ For α-SQG equations, u = ∇⊥(−∆)−1+α
2 θ, our result gives

local wellposedness up to α ≤ 2 and illposedness for α > 2.
▶ Rmk: when α = 2, then u = ∇⊥θ, which gives that u ·∇θ ≡ 0.

▶ There are at least three examples of singular multipliers of
particular interest:
▶ Ohkitani model: m = log(Λ)
▶ Toy model for electron-MHD: m = Λ
▶ Asymptotic model in LQG: m = ∆.

More singularLess singular

α0

Euler

1 2

SQG Ohkitani E-MHD

3 4

AM-LQG

▶ Interpretation of illposedness (work in progress):
▶ Enhanced/Anomalous dissipation
▶ Geometry of initial data matters for wellposedness
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Trichotomy depending on singularity of multiplier

1. If m(|ξ|) ≳ |ξ|: illposedness from H∞ to Hs0

2. If m(|ξ|) ∼ |ξ|β for some 0 < β < 1: illposedness from Hγs0

to Hs0 for some γ > 1 depending on β.

3. If 1 ≪ m(|ξ|) ≲ log(|ξ|): illposedness from Hs0 to itself, and
wellposedness from Hs0+ϵ to Hs0 for any ϵ > 0.

Open problem: illposedness in Gevrey/analytic regularity.
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Basic properties of gSQG

▶ Steady states: θ̄(x , y) = F (y), F (
√
x2 + y2).

▶ Conservation of ∥m
1
2 (Λ)θ∥L2 : multiplying the equation by

m(Λ)θ, integrating in space, and with ψ = m(Λ)θ,

1

2

d

dt

∫
θm(Λ)θ = −

∫
∇⊥m(Λ)θ · ∇θm(Λ)θ

=

∫
(∇⊥θ · ∇)ψ ψ =

∫
(∇⊥θ · ∇)

ψ2

2
= 0.

▶ When m = (−∆)−1+α
2 , ∥θ(t)∥

Ḣ
α
2 −1 is conserved: stronger if

velocity is more singular.
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Theorem (Norm Inflation)

For any ϵ, δ > 0 and s ≥ s0, there is a data θ0 ∈ C∞
comp(Ω) with

∥θ0∥Hs < ϵ for which any corresponding solution θ satisfies

sup
t∈[0,δ]

∥θ(t)∥Hs > ϵ−1,

for some s0 ≥ 4 depending on m(Λ).

Theorem (Nonexistence)

For s ≥ s0, ∃θ0 ∈ Hs(T× R) for which there is no corresponding
solution in the space θ ∈ L∞([0, δ];Hs) for any δ > 0.

Steps

1. Quantitative illposedness for linearization around shear

2. Norm inflation for nonlinear equation

3. Patching argument: norm inflation to nonexistence
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Linear illposedness: overview of the proof

▶ Consider solution of the form θ = θ̄ + θ̃(t, x , y).
▶ θ̄ = F (y): smooth, degenerate F (0) = F ′(0) = 0, F ′′(0) ̸= 0.
▶ θ̃: highly oscillatory perturbation

▶ Rewrite the equation for φ := m
1
2 (Λ)θ̃, which is L2–stable.

▶ Key: φ satisfies a degenerate dispersive equation 7→
supposed to be illposed in all Lp-spaces with p ̸= 2.

▶ Difficulty: variable-coefficient, non-local. Use wave packets.

φ0

y

φ(t)
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Wave packets and duality testing argument

▶ Goal: understand the behavior of [∂t + L]φ = 0.

▶ Consider an approximate solution of ∂t − L∗ of the form

φ̃ ≃ Gaussian(X (t),Ξ(t)), (wave packet)

namely [∂t − L∗]φ̃ = ϵ ≪L2 1.

▶ Duality testing:∣∣∣∣ ddt ⟨φ, φ̃⟩
∣∣∣∣ = |⟨φ, ϵ⟩| ≪ ∥φ0∥2L2 .

Then, for t small,

∥φ(t)∥Lp∥φ̃(t)∥Lp∗ ≥ ⟨φ, φ̃⟩(t) ≥ 1

2
∥φ0∥2L2

which gives Lp illposedness of ∂t +L upon decay of ∥φ̃(t)∥Lp∗ .
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▶ Duality testing:∣∣∣∣ ddt ⟨φ, φ̃⟩
∣∣∣∣ = |⟨φ, ϵ⟩| ≪ ∥φ0∥2L2 .

Then, for t small,

∥φ(t)∥Lp∥φ̃(t)∥Lp∗ ≥ ⟨φ, φ̃⟩(t) ≥ 1

2
∥φ0∥2L2

which gives Lp illposedness of ∂t +L upon decay of ∥φ̃(t)∥Lp∗ .



The linear equation

We consider the linearized equation around θ̄ = F (y):

∂t θ̃ + F ′(y)∂xm(Λ)θ̃ −m(Λ)(F ′(y))∂x θ̃ = 0.

Introduce ϕ = m
1
2 θ̃, recalling that it is L2 bounded, and separate

x-dependence by taking ϕ = e iλxφ(t, y):

∂tφ+ iλ
(
m

1
2F ′(y)m

1
2 −m

1
2G (y)m− 1

2

)
φ = 0,

with G (y) = m(Λ)(F ′(y)). The last term is “lower order” but not
really when m is only slightly singular, as in m(Λ) ∼ log Λ or
log log ... log Λ.

cf. This is wellposed in H∞ for nondegenerate case: inf |F ′| > 0.
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General question: how to construct approximate solutions to

∂tφ+ ip(y ,Λ)φ = 0,

where p is a pseudo-differential op with

▶ p is self-adjoint =⇒ L2-boundedness

▶ degenerate: p(0,Λ) ≡ 0.

▶ dispersive: ∂Λp → ∞ as Λ → ∞.

The guideline: bicharacteristic ODE{
Ẏ (t) = −∂Λp(Y ,Ξ),
Ξ̇(t) = ∂yp(Y ,Ξ)

and Gaussian wave packet φ̃ = exp(iΞ(t)y − |y − Y (t)|2).
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Problem of coherence

Recalling that the mechanism of illposedness is accumulation of
support near the degeneracy, we see that the naive Gaussian wave
packet cannot be a good approximation during the time interval in
which frequency growth actually occurs.

φ0

y

φ(t)

That is, we want φ̃ such that the associated error remains small in
L2 in [0,T ] with |Ξ(T )| ≫ |Ξ(0)|.

If p ∼ m(|Ξ|)|Y |n, it implies that |Y (t)| ≪ |Y (0)|.
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We consider a general ansatz

φ̃ = exp(iΦ(t, y))A(t, y)

and as a general rule, the phase function Φ should satisfy

∂tΦ+ p(y , ∂yΦ) = 0. (Hamilton–Jacobi)

The amplitude function A then satisfies an associated transport
equation, with coefficients determined by the gradients of Φ.

We want: |∂yΦ| ≃ Ξ(t) ≫ 1 on the support of A, while derivatives
of A and additional derivatives of ∂yΦ cost much less than Ξ(t).
However, such an assumption does not propagate in time, in
general. (Technical keyword: “scale separation”)
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When we solve the HJ equation ∂tΦ+ p(y , ∂yΦ) = 0, the key idea
is to choose a “curved” initial data Φ0 such that the resulting
characteristic curves are relatively straight and parallel with each
other: maximal cancellations in the ∂yyΦ–estimates

y

t

End result: |∂yΦ(t, ·)| ≃ Ξ(t) on the support of A(t), while
|∂yyΦ(t, ·)| ≪ Ξ2(t). Gives improved error estimates.
Rmk: this is “renormalization” in the differential case.
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Theorem (Main linear illposedness statement)

For λ0 ≫ 1, M ≥ 1, let 0 < τM ≪ 1 be the frequency growth time
from λ0 to Mλ0 determined by bicharicteristic ODE.
Then any L∞t L2 solution existing on [0, 1.01τM ] to the linear
equation with data of the form

φ0 = e iλ0ya0(y)

experiences norm growth of the form

sup
t∈[0,1.01τM ]

∥φ(t, ·)∥Hs ≳ (Mλ0)
s∥φ0∥L2 .

φ0

y

φ(t)



Remarks

▶ Robustness of the method: nonlinearity, supercritical
dissipation (which makes the principal symbol
time-dependent) can be treated as error terms.

▶ We developed a general framework for long-time coherent
wave packet construction for pseudo-differential symbols.

▶ Applications for various degenerate dispersive PDE, arising
from water waves, sedimentation, plasma dynamics, ...

▶ Challenging further directions: vector-valued case,
multi-dimensional, curved spacetime, ...
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Summary

▶ We proved strong illposedness for singular gSQG, using wave
packets for degenerate dispersive symbol. For physical
systems, this indicates (1) strong dissipation, (2) necessity for
finding geometric conditions for local wellposedness.

▶ In doing so, we developed a general framework for coherent
wave packet construction, with potential applications to
various degenerate dispersive PDE.

Thank you very much for your attention!


