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Two-dimensional incompressible fluid

2D Euler in vorticity form
∂tω + u · ∇ω = 0,

u = ∇⊥∆−1ω,

ω(t = 0) = ω0

(Euler)

Vorticity ω, Velocity u. Domain R2 or T2.

Strongest conservation law: ∥ω∥L∞ = ∥ω0∥L∞ .

Classical (’30s): global wellposedness for C∞
c

Yudovich (’63): wellposedness in L∞.
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Notion of wellposedness

Fix a data space X and a solution space Y (e.g. L∞([0,T ];X ))

1 Existence: given ω0 ∈ X , there is a solution ω ∈ Y .

2 Uniqueness: given ω0 ∈ X , there is at most one solution in Y .

3 Continuous dependence of the solution map X 7→ Y .

Incompressible Euler is a transport equation, regularity of the
solution expected to be preserved in time. Most typical choice:
Y = L∞([0,T ];X ) or C ([0,T ];X ).
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Sobolev wellposedness and critical regularity

Theorem (Ebin–Marsden, Kato–Ponce, Kato ’70s)

The two-dimensional incompressible Euler equation is globally
wellposed with X = W s,p(R2) if sp > 2.

We say W s,p(R2) with sp = 2 are critical Sobolev spaces.

Examples: L∞, H1, W 2,1.

Scaling criticality: ω(t, x) 7→ ω(t, λx) leaves Ẇ 2/p,p invariant.
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Why do we care?

Motivations

Theoretical desire: wellposedness in the largest possible class

Coincide with strongest conservation law

Some physical situations (e.g. logarithmic spirals)

Slightly sub/super-critical dynamics
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Understanding criticality

The H1 estimate for ω:

1

2

d

dt
∥∇ω∥2L2 = −

∫
∇u : ∇ω∇ω ≤ ∥∇u∥L∞∥∇ω∥2L2

and the point is that

ω ∈ H1 ∩ L∞ ≠⇒ ∇u ∈ L∞.

If we want ω0 ∈ H1 with ω(t, ·) /∈ H1, then

Pick initial data for which the RHS is divergent,

Propagate a lower bound for the RHS for some time.
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Failure of critical ∥∇u∥L∞ bound

Note ∇u = ∇∇⊥∆−1ω.

Leibniz rule for ∆

∆(fg) = ∆(f )g + f∆(g) + 2∇(f ) · ∇(g).

This gives

∆(x1x2 ln |x |) = 2∇(x1x2) · ∇ ln |x | ∈ L∞.

Generalizing, for α < 1/2,

∆(x1x2| ln |x ||α) = O(| ln |x ||α−1) ∈ L∞ ∩ H1.

On the other hand, for α > 0

∇u = ∇∇⊥(x1x2| ln |x ||α) = O(| ln |x ||α) /∈ L∞.
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Understanding criticality

Two ways handling failure of ∥∇u∥L∞ bound:

Log-Lipschitz continuity

sup
|x−x ′|<1/4

|u(x)− u(x ′)|
|x − x ′|| ln |x − x ′||

≤ C∥ω∥L∞

Gives Yudovich theory and its generalizations.

Log-inequality

∥∇u∥L∞ ≤ C∥ω∥L∞ ln(10 + ∥ω∥X ), X = subcritical

Potential expexp growth (Denisov ’09, Kiselev–Sverak ’14,...)
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Sobolev wellposedness and critical regularity

Theorem (Bourgain–Li ’15 ’19, Elgindi–J. ’17, J.–Kim ’24)

Euler is strongly illposed in W s,p with sp = n if 1 < p < ∞.

Precise illposedness statements in 2D:

(norm inflation) for any ϵ, δ > 0, there exists ω0 ∈ C∞
c s.t.

∥ω0∥W 2/p,p < ϵ, sup
t∈(0,δ)

∥ω(t)∥W 2/p,p >
1

ϵ
.

(nonexistence) there exists ω0 ∈ W
2/p,p
comp ∩ L∞ such that the

Yudovich solution escapes W 2/p,p instantaneously, i.e.

∥ω0∥W 2/p,p < ϵ, ∥ω(t)∥W 2/p,p = +∞, t ∈ (0, δ]
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Critical Besov case

Critical Besov: Vishik (’98, ’99), Chae (’04), Pak–Park (’04, ’13).

The n-dim’l Euler is locally wellposed in the critical Besov spaces

B
n/p
p,1 for all 1 ≤ p ≤ ∞.

One of the key points is that

ω ∈ B
n/p
p,1 =⇒ ∇u ∈ B

n/p
p,1 =⇒ ∇u ∈ L∞ =⇒ regularity

Hence, for illposedness, it is essential to take

ω0 ∈ W n/q,q\ ∪p B
n/p
p,1 .
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Geometry of illposedness

Pioneering works: Denisov (’09), Bourgain–Li (’13),
Kiselev–Sverak (’14)

Vorticity odd in both axes and non-negative on (R+)
2:

generates hyperbolic flow near the origin
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Geometry of illposedness

Data in the form of dyadic bubbles:

ω0(x) =
∞∑
j=1

ajφ(2
jx), {aj}j≥1 ∈ ℓ∞
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Choice of initial data

Dyadic bubbles:

ω0(x) =
∞∑
j=1

ajφ(2
jx), {aj}j≥1 ∈ ℓ∞

Choice of {aj}j≥1 determines the (critical) space: e.g.

∥ω0∥L∞ ∼ ∥{aj} ∥ℓ∞ , ∥ω0∥Ḣ1 ∼ ∥{aj} ∥ℓ2 , ∥ω0∥Ḃ1
2,1

∼ ∥{aj} ∥ℓ1

This suggests taking aj = j−α, 1 ≥ α > 1/2. Essentially,

ω0(x) ∼ | ln |x ||−α x1x2
|x |2

χ(|x | ≤ 1).
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Main issues

The goal:

∥ω(t)∥2H1 − ∥ω0∥2H1 ∼
∫ t

0

∫
R2

∇u∇ω∇ωdxdt = ∞.

Difficulty: understanding ω 7→ ∇u, a regularization effect due to
vortex thinning (cf. Elgindi–J. ’23, Elgindi–Shikh Khalil ’22):

∥∇u(t)∥L∞ ≲ t−1.

Understanding non-locality by Kiselev–Sverak Key Lemma and
dynamical tracking of vortex: sharp space-time lower bound on ∇u.

In the end: we need to take α = 1/2 + ϵ (“barely” H1).
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Localization argument with Hardy inequality

Decompose ω(t) =
∑

j≥1 ω
(j)(t) with

ω0 =
∑
j≥1

ω
(j)
0 =

∑
j≥1

1

jα
φ(2jx)

Orthogonality and Hardy inequality

∥ω(t)∥2
Ḣ1 ≳ ∥x−1

2 ω(t)∥2L2 =
∑
j≥1

∥x−1
2 ω(j)(t)∥2L2

Localization:

∥x−1
2 ω(j)(t)∥L2 ∼

1

x
(j)
2 (t)

∥ω(j)(t)∥L2 =
1

x
(j)
2 (t)

∥ω(j)
0 ∥L2
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Localization argument with Hardy inequality

Decompose ω(t) =
∑

j≥1 ω
(j)(t) with

ω0 =
∑
j≥1

ω
(j)
0 =

∑
j≥1

1

jα
φ(2jx)

Orthogonality and Hardy inequality

∥ω(t)∥2
Ḣ1 ≳ ∥x−1

2 ω(t)∥2L2 =
∑
j≥1

∥x−1
2 ω(j)(t)∥2L2

Localization:
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Localization argument with Hardy inequality

Recall:
∥ω(t)∥2

Ḣ1 ≳
∑
j≥1

(x
(j)
2 (t))−2∥ω(j)

0 ∥2L2 .

Dynamics of x
(j)
2 :

d

dt
(x

(j)
2 )−2 = −

2u2(t, x
(j)
2 )

x
(j)
2

(x
(j)
2 )−2

Kiselev–Sverak Key Lemma (’14): singles out the unbounded
term in the singular integral operator ∇2∆−1

−u2(t, x)

x2
=

4

π

∫
|y |≥2|x |

y1y2
|y |4

ω(t, y)dy + O(∥ω0∥L∞).

Application of Key Lemma:

d

dt
ln (x

(j)
2 )−2 ∼

∑
1≤k<j

1

kα
(x

(k)
1 (t))−4
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Ḣ1 ≳
∑
j≥1

(x
(j)
2 (t))−2∥ω(j)

0 ∥2L2 .

Dynamics of x
(j)
2 :

d

dt
(x

(j)
2 )−2 = −

2u2(t, x
(j)
2 )

x
(j)
2

(x
(j)
2 )−2

Kiselev–Sverak Key Lemma (’14): singles out the unbounded
term in the singular integral operator ∇2∆−1

−u2(t, x)

x2
=

4

π

∫
|y |≥2|x |

y1y2
|y |4

ω(t, y)dy + O(∥ω0∥L∞).

Application of Key Lemma:

d

dt
ln (x

(j)
2 )−2 ∼

∑
1≤k<j

1

kα
(x

(k)
1 (t))−4

In-Jee Jeong (Seoul National Univ.) Joint works with T. Elgindi, T. Yoneda, J. KimIncompressible Euler equations at critical regularity



Localization argument with Hardy inequality

Observation: invariant timescale (localized stability)

T (j) ∼ 1∑
1≤k<j k

−α

and on [0,T (j)], jth bubble remains essentially unchanged.

Integrating the ODE:

1

x
(j)
2 (t)

≳
1

x
(j)
2 (0)

exp

 ∑
1≤k<j :T (k)≥t

1

kα
(x

(k)
1 )−4


Finally, check

∑
j≥1(x

(j)
2 (t))−2∥ω(j)

0 ∥2L2 = ∞ for α = 1/2 + ϵ.
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Some advertisement

Improvements in the proofs and applications:

Bourgain–Li ’15: complicated contradiction argument

Elgindi–J. ’17: simple contradiction argument firmly based on
Yudovich estimates and Key Lemma, quantitative rate

J.–Yoneda ’19: more general initial data for illposedness, with
applications to Navier–Stokes (enhanced dissipation)

J.–Kim ’24: localized norm inflation rates without any
contradiction argument, applicable to SQG and others

Jo–Kim: ω0 ∈ H1, u0 ∈ C 1 such that ω(t) /∈ H1.

Different approaches:

Cordoba–Martinez-Zoroa, Cordoba–Martinez-Zoroa–Ozanski

Elgindi, Elgindi–Khalil

In-Jee Jeong (Seoul National Univ.) Joint works with T. Elgindi, T. Yoneda, J. KimIncompressible Euler equations at critical regularity



Some advertisement

Improvements in the proofs and applications:

Bourgain–Li ’15: complicated contradiction argument

Elgindi–J. ’17: simple contradiction argument firmly based on
Yudovich estimates and Key Lemma, quantitative rate

J.–Yoneda ’19: more general initial data for illposedness, with
applications to Navier–Stokes (enhanced dissipation)

J.–Kim ’24: localized norm inflation rates without any
contradiction argument, applicable to SQG and others

Jo–Kim: ω0 ∈ H1, u0 ∈ C 1 such that ω(t) /∈ H1.

Different approaches:

Cordoba–Martinez-Zoroa, Cordoba–Martinez-Zoroa–Ozanski

Elgindi, Elgindi–Khalil

In-Jee Jeong (Seoul National Univ.) Joint works with T. Elgindi, T. Yoneda, J. KimIncompressible Euler equations at critical regularity



Some advertisement

Improvements in the proofs and applications:

Bourgain–Li ’15: complicated contradiction argument

Elgindi–J. ’17: simple contradiction argument firmly based on
Yudovich estimates and Key Lemma, quantitative rate

J.–Yoneda ’19: more general initial data for illposedness, with
applications to Navier–Stokes (enhanced dissipation)

J.–Kim ’24: localized norm inflation rates without any
contradiction argument, applicable to SQG and others

Jo–Kim: ω0 ∈ H1, u0 ∈ C 1 such that ω(t) /∈ H1.

Different approaches:

Cordoba–Martinez-Zoroa, Cordoba–Martinez-Zoroa–Ozanski

Elgindi, Elgindi–Khalil

In-Jee Jeong (Seoul National Univ.) Joint works with T. Elgindi, T. Yoneda, J. KimIncompressible Euler equations at critical regularity



Some advertisement

Improvements in the proofs and applications:

Bourgain–Li ’15: complicated contradiction argument

Elgindi–J. ’17: simple contradiction argument firmly based on
Yudovich estimates and Key Lemma, quantitative rate

J.–Yoneda ’19: more general initial data for illposedness, with
applications to Navier–Stokes (enhanced dissipation)

J.–Kim ’24: localized norm inflation rates without any
contradiction argument, applicable to SQG and others

Jo–Kim: ω0 ∈ H1, u0 ∈ C 1 such that ω(t) /∈ H1.

Different approaches:

Cordoba–Martinez-Zoroa, Cordoba–Martinez-Zoroa–Ozanski

Elgindi, Elgindi–Khalil

In-Jee Jeong (Seoul National Univ.) Joint works with T. Elgindi, T. Yoneda, J. KimIncompressible Euler equations at critical regularity



Some advertisement

Improvements in the proofs and applications:

Bourgain–Li ’15: complicated contradiction argument

Elgindi–J. ’17: simple contradiction argument firmly based on
Yudovich estimates and Key Lemma, quantitative rate

J.–Yoneda ’19: more general initial data for illposedness, with
applications to Navier–Stokes (enhanced dissipation)

J.–Kim ’24: localized norm inflation rates without any
contradiction argument, applicable to SQG and others

Jo–Kim: ω0 ∈ H1, u0 ∈ C 1 such that ω(t) /∈ H1.

Different approaches:

Cordoba–Martinez-Zoroa, Cordoba–Martinez-Zoroa–Ozanski

Elgindi, Elgindi–Khalil

In-Jee Jeong (Seoul National Univ.) Joint works with T. Elgindi, T. Yoneda, J. KimIncompressible Euler equations at critical regularity



Some advertisement

Improvements in the proofs and applications:

Bourgain–Li ’15: complicated contradiction argument

Elgindi–J. ’17: simple contradiction argument firmly based on
Yudovich estimates and Key Lemma, quantitative rate

J.–Yoneda ’19: more general initial data for illposedness, with
applications to Navier–Stokes (enhanced dissipation)

J.–Kim ’24: localized norm inflation rates without any
contradiction argument, applicable to SQG and others

Jo–Kim: ω0 ∈ H1, u0 ∈ C 1 such that ω(t) /∈ H1.

Different approaches:

Cordoba–Martinez-Zoroa, Cordoba–Martinez-Zoroa–Ozanski

Elgindi, Elgindi–Khalil

In-Jee Jeong (Seoul National Univ.) Joint works with T. Elgindi, T. Yoneda, J. KimIncompressible Euler equations at critical regularity



Some advertisement

Improvements in the proofs and applications:

Bourgain–Li ’15: complicated contradiction argument

Elgindi–J. ’17: simple contradiction argument firmly based on
Yudovich estimates and Key Lemma, quantitative rate

J.–Yoneda ’19: more general initial data for illposedness, with
applications to Navier–Stokes (enhanced dissipation)

J.–Kim ’24: localized norm inflation rates without any
contradiction argument, applicable to SQG and others

Jo–Kim: ω0 ∈ H1, u0 ∈ C 1 such that ω(t) /∈ H1.

Different approaches:

Cordoba–Martinez-Zoroa, Cordoba–Martinez-Zoroa–Ozanski

Elgindi, Elgindi–Khalil

In-Jee Jeong (Seoul National Univ.) Joint works with T. Elgindi, T. Yoneda, J. KimIncompressible Euler equations at critical regularity



Many questions remain open: general critical data, subcritical data
(Cordoba–Martinez-Zoroa–Ozanski), degeneration of Hölder
regularity, ...

Conceptual question: Understanding illposedness in the Fourier
side. (All the existing arguments strongly rely on the Lagrangian
framework.)

Thank you for listening!
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