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Vortex spirals in incompressible flows



Vortex spirals

Figure: Kelvin–Helmholtz instability



Vortex spirals: waterspout

Figure: Florida, 1969



Vortex spirals past a corner



Vortex spirals past a corner



On the formation of vortex rings

Figure: Didden ’79



Kelvin–Helmholtz instability

Figure: Mechanism for spiral formation



Kelvin–Helmholtz instability

Figure: Krasny ’86



Mathematical problems

Questions:

I construction of fluid flows with spiral behavior

I dynamics of spiral flows

I spontaneous creation of spiral flows

Difficulty: Fluid flows containing spirals are not in the standard
well-posedness class of the PDE. Even justifying them as weak
solutions gives rise to interesting challenges.

Refs: Formation of algebraic spirals by Elling (2014)

This talk: dynamics of logarithmic vortex spirals
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Intro. to Spirals

Spirals are classified according to the rate that “turns” are made.
Typical models of the spirals are of the form

θ ' f (r), r → 0+, |f (r)| → ∞.

Logarithmic spiral: f (r) ∼ ln r . The turns are made along a
geometric progression.
Algebraic spiral: f (r) ∼ r−a for some a > 0. The turns are
becoming more and more dense near the origin.
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Logarithmic Spirals: common in nature

I Characteristic property: self-similarity

I Invariance under rotation + scaling.



Algebraic vs. Logarithmic for some fluid flows

Question

Spirals in fluid flows are algebraic or logarithmic?
Everson–Sreenivasan ’92 has investigated this in various cases.

Figure: On direct experiments for shear flows by Sreenivasan et al ’89



Algebraic vs. Logarithmic for some fluid flows

Figure: On smoke rings Magarvey–MacLatchy (’64)



Algebraic vs. Logarithmic for some fluid flows

Figure: Numerical computations of Krasny ’86

cf. Algebraic spirals provide a better fit in some cases (e.g. Krasny
’87 simulations of the roll-up of tip-vortex of an elliptically loaded
wing).



Logarithmic spirals
Definition. Ω : R2 → R satisfies logarithmic spiral symmetry if
there exists some c > 0 such that Ω is invariant under the
transformation

(r , θ) 7→ (λr , θ + c lnλ), ∀λ > 0.

In other words, Ω is constant on the logarithmic spiral for any θ0:

{(r , θ) : θ − c ln r = θ0} .

In other words, there exists a function h defined on S1 such that

Ω(r , θ) = h(θ − c ln r).
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Logarithmic spirals

In this framework, the Prandtl and Alexander spirals are given by

h(t, θ) =
a

t − t0
δ(θ − θ(t)),

m−1∑
j=0

a(m)

t − t0
δ(θ − θ(m)(t)− 2πj/m).

These are self-similar solutions.

Elling–Gnann, Cieslak–Kokocki–Ozanski: non symmetric
self-similar solutions



Logarithmic spirals for Navier–Stokes flows
Steady Navier–Stokes flows on R2\{0}:

∆ω + u · ∇ω = 0, u = ∇⊥∆−1ω.

In this case, r2ω satisfies the spiral symmetry: ω = r−2h.

I Hamel (1917)

I Wang (1991)

I Sverak (2011)

I Guillod–Wittwer (2015)

Point: abundance of steady NS flows on R2\{0}



Logarithmic spirals for Euler flows

Assume ω satisfies logarithmic spiral symmetry, is a vortex sheet,
and satisfies time self similarity ω(t, x) = t−1ω̊(t−µx).

I Prandtl (1922)

I Alexander (1971)

I Kambe (1989)

I Elling–Gnann (2019)

I Cieslak–Kokocki–Ozanski (21, 22 preprint)



Logarithmic spirals for Euler flows

Previous works: under time self-similarity and vortex sheet
assumptions, write down the ansatz for the vorticity (Prandtl,
Alexander), and prove that it is indeed a weak solution to 2D Euler
(Elling–Gnann, Cieslak–Kokocki–Ozanski)

Our work (J.–Said, 23 preprint): provide a well-posedness class for
logarithmic spiral vorticities of 2D Euler, within which

I time self-similar solutions are just a special sub-class,

I vortex sheet solutions are just another sub-class, and realized
as well-defined limits of smooth solutions in R2\{0},

I and furthermore, we obtain a monotonicity formula which
gives long time dynamics for general initial data.
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Logarithmic spirals for Euler flows

Some further context for our work:

I Elgindi–J., 20, 23: scale-invariant wellposedness theory for
Euler, corresponds to the case c = 0

I Guillod: log spiral solutions can be studied under the same
framework (cf. Work on the 2D Navier–Stokes)

I Elling–Gnann 19: Justification of Alexander spirals

I Cieslak–Kokocki–Ozanski 21, 22 preprint: Justification of
Prandtl spirals

I Elgindi–Murray–Said, 22 preprint: long-time dynamics for
scale-invariant (different behavior with c 6= 0)



Intro. to 2D incompressible inviscid fluid

2D incompressible Euler equations in vorticity form:

∂tω + u · ∇ω = 0, u = ∇× (−∆)−1ω.

ω: vorticity, u: velocity.

Well-posedness of the initial value problem:

I Global with uniqueness ω0 ∈ L1 ∩ L∞(R2) (Yudovich ’63)

I Global ω0 ∈ L1 ∩ Lp (p > 1) (DiPerna–Lions)

I Global ω0 ∈M+ ∩ Ḣ−1 (Delort),
M+ ∩ Ḣ−1 + L1 (Vecchi–Wu)

I Local for analytic vortex sheets (Birkhoff–Rott equation)

Problem with vortex sheets on logarithmic spirals: no decay at
infinity and non-signed in general.
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Logarithmic vortex spiral

2D incompressible Euler equations in vorticity form:

∂tω + u · ∇ω = 0, u = ∇× (−∆)−1ω.

Our ansatz:

ω(t, r , θ) = h(t, θ − c ln r), u = ∇⊥
(
r2H(t, θ − c ln r)

)
.

Reduced equations: transport of h

∂th + 2H∂θh = 0, (1 + c2)H ′′ − 4cH ′ + 4H = h.

Surprising cancellation: advecting velocity is just 2H, which is
order two smoother than h. This gives:

‖2H‖Lip ≤ C‖h‖M.
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Logarithmic vortex spiral

Reduced equations:

∂th + 2H∂θh = 0, (1 + c2)H ′′ − 4cH ′ + 4H = h.

Surprising monotonicity formula:

d

dt

∫
hdθ = −4c

∫
(∂θH)2dθ.

This means decay (for c > 0) of the local circulation;∫
B(0,R)

ω(t, x)dx =
R2

2

∫
h(t, θ)dθ.



Logarithmic vortex spiral

Theorem on well-posedness (J.-Said, preprint)

The system

∂th + 2H∂θh = 0, (1 + c2)H ′′ − 4cH ′ + 4H = h.

is globally well-posed for any h0 ∈ C k with k ≥ 0 and locally
well-posed for Lp with p ≥ 1.



Logarithmic vortex spiral

Theorem on vortex sheet spiral limit (J.-Said, preprint)

Let h0(θ) =
∑N

i=1 Γiδ(θ − θi ). Then, the sequence of global
solutions {hε(t, ·)} corresponding to regularized initial data hε0
converges in distribution to

∑N
i=1 Γi (t)δ(θ − θi (t)).

The functions {Γi , θi}Ni=1 satisfy a system of ODE, and∑N
i=1 Γi (t)δ(θ − θi (t)) defines a weak solution to 2D Euler.

I Problem with defining∫
2H∂θhϕdθ := −

∫
h∂θ(2Hϕ)dθ

I Prandtl and Alexander spirals are simply special solutions to
the ODE system.



Logarithmic vortex spiral

Theorem on long time dynamics (J.-Said, preprint)

(1) In L∞ case: the solution converges to a constant as t →∞.

(2) In Lp case with p <∞: either the solution converges to a
constant or blows up in finite or infinite time.

(3) In the Dirac measure case: the solution decays to 0 or blows up
in finite time.

I Prandtl and Alexander spirals satisfy |Γ(t)| ∼ |t − t0|−1.



Basic questions

I Characterization of blow up

I Non-symmetric blow up for vortex sheets

I Bifurcation of non-symmetric blow up

I Stability of blow up

cf. Linear instability of Alexander spirals (Cieslak et al, 2023).

Many challenging questions:

I Long-time dynamics of finitely truncated spirals

I Formation of logarithmic spirals

Thank you for listening!
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