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Small scale creation in fluid dynamics

Goal: small scale creation for incompressible inviscid fluids.
Key points:

▶ Stability of instability, monotone quantities.

▶ Differences in two- and three-dimensional cases.

▶ Bounded and unbounded domains.



2D case

Two-dimensional incompressible Euler equations:{
∂tω + u · ∇ω = 0

u = ∇⊥∆−1ω.

All the Lp norms of ω are conserved.

Conjecture: For generic initial data, the solution satisfies

∥∇ω(t, ·)∥L∞ −→ ∞ as t → ∞.

Not easy to prove even for carefully designed initial data!
(Review paper of Drivas–Elgindi ’22).
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Proof of small scale creation in 2D

Breakthroughs by stability of instability: Denissov (’09, ’13),
Kiselev–Nazarov (’12), Kiselev–Sverak (’14), Zlatos (’15), · · ·
(survey paper by Kiselev ’18).

Basic idea: vortex thinning equation

∂t(∇⊥ω) + u · ∇(∇⊥ω) = ∇u(∇⊥ω).

Want ∇u ≈ ∇ū a hyperbolic matrix for all times.
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Concrete example: odd-odd symmetry

Choices of Denissov (’09) and Kiselev–Sverak (’14) in T2 are

sin(x) sin(y), sgn(x)sgn(y).

Stability: maximizer of kinetic energy ∥ω∥Ḣ−1 .

Instability: ∇u is hyperbolic near the origin.
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Figure: stream function ψ̄ = ∆−1ω̄



Gradient growth in R2

Difficulty: potential dispersion of vorticity.

Lamb dipole: explicit traveling wave of Euler in R2:

ω̄(t, x) = ω̄0(x −WLambt).

Nonlinear stability of Lamb dipole: Abe–Choi (’21)
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Small scale creation near Lamb dipole

Theorem (Choi–J. ’22)

Oblate perturbations of the Lamb dipole go through linear
filamentation in time: ∥∇ω(t, ·)∥Lp ≳ t for all 1 ≤ p ≤ ∞.

Figure: Filamentation near Lamb dipole in Krasny–Xu (’21)



Ideas of proof

Nonlinear stability: the Lamb dipole ω̄ is the unique maximizer of

∥ω∥Ḣ−1 − C∥ω∥L2

under some constraints up to a shift. This gives:

∥ω̄ − ω0∥L2 < δ =⇒ ∥ω̄(· − τ(t)e1)− ω(t, ·)∥L2 < ε.

(Dispersion is prohibited, being an almost maximizer.)

But similar shape implies similar speed:

d

dt

∫
R2

x1ωdx =

∫
R2

u1ωdx

is a quadratic form continuous in ∥ω∥L2∩Ḣ−1 .

This gives τ(t) ≃ WLambt, while the “tail” of the perturbation is
always strictly slower than WLamb.
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Vortex stretching in three dimensions

The 3D vorticity equation:{
∂tω + u · ∇ω = ω · ∇u,

u = ∇× (−∆)−1ω.

New in 3D: vortex stretching term, which exists even for
axisymmetric flows without swirl. (Elgindi ’21)

Our Goal: Infinite time infinite vortex stretching.
Namely, can we have ∥ω(t, ·)∥Lp → ∞ for global-in-time smooth
vorticity as t → ∞?
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Axisymmetric Euler equations without swirl

Axisymmetric and no-swirl ansatz: “simplest” 3D flow

ω = ωθ(r , z)eθ, u = ur (r , z)er + uz(r , z)ez .

Vorticity equation simplifies to

∂tω
θ + u · ∇ωθ =

ur

r
ωθ

or equivalently

∂t
ωθ

r
+ u · ∇ωθ

r
= 0.

Smooth solutions are global, but allows for vortex stretching!
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Dynamics of a single vortex ring

Region of concentrated vorticity: travels along the symmetry axis

Explicit traveling wave: Hill’s vortex ring ωθ = r1B(r , z).

Variational nonlinear stability: Choi (’22).

Filamentation near Hill’s vortex: all time Hessian growth in R3

∥∇2ω(t, ·)∥L∞ ≳ t1/2 (Choi–J., ’22).



Dynamics of multiple vortex rings
Multiple vortex rings: interesting interaction occurs (e.g.
leapfrogging, Davila–del Pino–Musso–Wei ’22).

However, if all the rings have the same sign: no mechanism for
large vortex stretching, since the “Hamiltonian” is coercive.

The simplest setup allowing for infinite vortex stretching: two
symmetric rings with opposite signs (“anti-parallel’).
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Head-on collision of vortex rings
By anti-parallel, we simply mean that

ωθ(r , z) = −ωθ(r ,−z), ωθ ≤ 0 on R3
+ = {z > 0}.

(Equivalent with a single negative vortex ring on R3
+.)

Extensive numerical works: Oshima (78), Kambe–Minota (83),

Peace–Riley (83), Lim–Nickels (92), Chu–Wang–Chang–Chang–Chang (95), ...



Experiments/Numerics show three stages of motion:

▶ 1. weak interaction and free traveling

▶ 2. squeezing and vortex stretching

▶ 3. breakup and reconnection



Head-on collision of vortex rings

Stages 1 and 2 are essentially inviscid phenomena. Maximal radius
of rings before breakup increases with the Reynolds number,
suggesting infinite vortex stretching for Euler.

Cauchy formula for axisymmetric flows without swirl:

ω(t,Φ(t, r , z)) =
Φr (t, r , z)

r
ω0(r , z),

where Φ = (Φr ,Φz) is the flow map.

Rate of vortex stretching ≈ expansion of rings in r .

Difficulty: lack of stability, instead we rely on monotonicity.
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Monotonicity

Theorem (Choi–J., preprint)

For anti-parallel flows, the quantities

P =

∫∫
[0,∞)2

−r2ω(t, r , z)drdz , Z =

∫∫
[0,∞)2

−zω(t, r , z) drdz

are monotone in time: P increases and Z decreases.

Recall: circulation conservation∫∫
[0,∞)2

−ω(t, r , z)drdz = ∥r−1ω∥L1(R3
+)
.

Comparison: in the case of single-signed vortex ring, Z is
decreasing and P is conserved.
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Application I: infinite growth of gradient

Theorem (Choi–J., preprint)

There exists a C∞
c (R3) datum ω0 with the unique global solution

ω(t, ·) satisfying, for all α > 0,

sup
t∈[0,∞]

∥ω(t, ·)∥Cα(R3) = ∞.

The proof is based on 2D hyperbolic growth scenario, with lack of
stability and compactness handled by monotonicity.
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Application I: growth of gradient

Version of Kiselev–Sverak Key Lemma for axisymmetric flows:(
ur (t, r , z)
uz(t, r , z)

)
≃

(
r

−2z

)
I(t, |x |) cf. Elgindi ’21

In our case: mass could escape to infinity, in which case I → 0.

+1

r

z

Mass cannot escape to the z-direction due to monotonicity.
Escaping to the r -direction indeed occurs but this gives vortex
stretching.
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Application II: universal growth rates

Theorem (Choi–J., preprint)

For any compactly supported anti-parallel vorticity, at least t
2
15
−

growth of the vortex impulse occurs:

P(t) :=

∫∫
[0,∞)2

−r2ω(t, r , z) drdz ≳ t
2
15
−, ∀t ≥ 0.

This implies infinite growth of the support diameter.

Roughly, rate of vortex stretching ∼ [r ] ≳ t
1
15
−

cf. variational proof of vortex stretching



Key inequality

▶ Strategy inspired by Iftimie–Sideris–Gamblin (’99): lower
bound on Ṗ purely based on monotone and conserved
quantities.

▶ Our key inequality: for 1 < q < 15/13

E ≲q XP
1
q (Ṗ)1−

1
q ,

and X ≤ X0 with

X = ∥ξ∥
4
q
− 10

3

L1
∥ξ∥

1
3
L∞Z

4(q−1)
q P

1−q
q + ∥ξ∥

3
q
− 7

3

L1
∥ξ∥

1
3
L∞Z

2(q−1)
q .

▶ Here, E is the kinetic energy of the fluid and ξ = ω/r .

▶ Integrating in time gives P → ∞, implying infinite growth of
support and maximum, thanks to the Cauchy formula.



Application III: infinite vortex stretching

Corollary

Let 0 ≤ δ < 1/15. Assume that for some p ∈ [2− δ,∞], the initial
data is of compact support and satisfies∥∥r |ω0|−11{|ω0|>0}

∥∥
L

1−δ
1−((2−δ)/p) (R3)

<∞ (1)

Then, for each ε > 0, we have

∥ω(t, ·)∥Lp(R3) ≥ Cε(1 + t)
1

2−δ
( 2
15
−2δ)−ε for all t ≥ 0.

Condition (1) is satisfied for

▶ Smooth vortex patches

▶ Vorticity with C 1,1/15− regularity.

An additional contradiction argument gives lim supt→∞
∥ω(t,·)∥L∞
(1+t)0.13+

= ∞.



Discussion

Question: actual rate of vortex stretching?

▶ Dyson model for vortex rings: predicts t as in 2D (false).

▶ Majda (’94), Danchin (’00): exp(Ct).

▶ Childress (’07–08): upper bound of t2 and then t4/3.

▶ Feng–Sverak (’15): upper bound of t2.

▶ Childress–Gilbert–Valiant (’16): t4/3 is indeed achievable, by
modulated Sadovskii vortex
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