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Small scale creation in fluid dynamics

Goal: small scale creation for incompressible inviscid fluids.
Key points:

> Stability of instability, monotone quantities.
» Differences in two- and three-dimensional cases.

» Bounded and unbounded domains.



2D case

Two-dimensional incompressible Euler equations:

Ow~+u-Vw=0
u=V+ATlw.

All the LP norms of w are conserved.
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2D case

Two-dimensional incompressible Euler equations:

Ow~+u-Vw=0
u=V+ATlw.

All the LP norms of w are conserved.

Conjecture: For generic initial data, the solution satisfies

IVw(t, )||fec —> 00 as t— oo.

Not easy to prove even for carefully designed initial data!
(Review paper of Drivas—Elgindi '22).



Proof of small scale creation in 2D

Breakthroughs by stability of instability: Denissov ('09, '13),
Kiselev—Nazarov ('12), Kiselev—Sverak ('14), Zlatos ('15), - -
(survey paper by Kiselev '18).




Proof of small scale creation in 2D

Breakthroughs by stability of instability: Denissov ('09, '13),
Kiselev—Nazarov ('12), Kiselev—Sverak ('14), Zlatos ('15), - -
(survey paper by Kiselev '18).

Basic idea: vortex thinning equation
Or(Viw) + u- V(Viw) = Vu(V+w).

Want Vu ~ Vi a hyperbolic matrix for all times.



Concrete example: odd-odd symmetry

Choices of Denissov ('09) and Kiselev—Sverak ('14) in T? are

sin(x)sin(y), sgn(x)sgn(y).



Concrete example: odd-odd symmetry

Choices of Denissov ('09) and Kiselev—Sverak ('14) in T? are
sin(x)sin(y),  sgn(x)sgn(y).

Stability: maximizer of kinetic energy ||wl|;-1.

Instability: Vu is hyperbolic near the origin.



Figure: stream function ¢ = A~1%
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Gradient growth in R?

Difficulty: potential dispersion of vorticity.



Gradient growth in R?

Difficulty: potential dispersion of vorticity.
Lamb dipole: explicit traveling wave of Euler in R?:
(I)(t,X) = (I)()(X — WLambt)-

Nonlinear stability of Lamb dipole: Abe—Choi ('21)
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Small scale creation near Lamb dipole
Theorem (Choi-J. '22)

Oblate perturbations of the Lamb dipole go through linear
filamentation in time: ||Vw(t,-)||tr 2 t forall 1< p < 0.
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Figure: Filamentation near Lamb dipole in Krasny—Xu ('21)



|deas of proof

Nonlinear stability: the Lamb dipole & is the unique maximizer of
]l g1 = Cllwll2
under some constraints up to a shift. This gives:
[© —woll2 <0 = [lo(- = 7(t)er) — w(t, )2 <e.

(Dispersion is prohibited, being an almost maximizer.)
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|deas of proof

Nonlinear stability: the Lamb dipole & is the unique maximizer of
]l g1 = Cllwll2
under some constraints up to a shift. This gives:
[© —woll2 <0 = [lo(- = 7(t)er) — w(t, )2 <e.

(Dispersion is prohibited, being an almost maximizer.)

But similar shape implies similar speed:

d

_ X]_de = U]_(A)dX
dt R2 R2

is a quadratic form continuous in [|wl|;2qz-1-

This gives 7(t) ~ Wyampt, while the “tail” of the perturbation is
always strictly slower than W mp.



Vortex stretching in three dimensions

The 3D vorticity equation:

ow+u-Vw=w-Vu,
u=V x(-A)"w.



Vortex stretching in three dimensions

The 3D vorticity equation:
ow+u-Vw=w-Vu,
u=V x(-A)"w.

New in 3D: vortex stretching term, which exists even for
axisymmetric flows without swirl. (Elgindi '21)



Vortex stretching in three dimensions

The 3D vorticity equation:

ow+u-Vw=w-Vu,
u=V x(-A)"w.

New in 3D: vortex stretching term, which exists even for
axisymmetric flows without swirl. (Elgindi '21)

Our Goal: Infinite time infinite vortex stretching.
Namely, can we have ||w(t, )|/ — oo for global-in-time smooth
vorticity as t — oo?



Axisymmetric Euler equations without swirl

Axisymmetric and no-swirl ansatz: “simplest” 3D flow

w =uw(r, 2)e’, u=u'(r,z)e" + u?(r,z)e’.
Vorticity equation simplifies to
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or equivalently

0 0
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Axisymmetric Euler equations without swirl

Axisymmetric and no-swirl ansatz: “simplest” 3D flow

w =uw(r, 2)e’, u=u'(r,z)e" + u?(r,z)e’.
Vorticity equation simplifies to

r

u
Ow? +u- Vol = —uf
r

or equivalently

0 0
Ot u-VE =0
r r

Smooth solutions are global, but allows for vortex stretching!



Dynamics of a single vortex ring

Region of concentrated vorticity: travels along the symmetry axis
Explicit traveling wave: Hill’s vortex ring w’ = rlg(r, z2).
Variational nonlinear stability: Choi ('22).

Filamentation near Hill's vortex: all time Hessian growth in R3
V2w(t, )| = t¥/? (Choi-J., '22).
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Multiple vortex rings: interesting interaction occurs (e.g.
leapfrogging, Davila—del Pino—-Musso—-Wei '22).
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Dynamics of multiple vortex rings
Multiple vortex rings: interesting interaction occurs (e.g.

leapfrogging, Davila—del Pino—-Musso—-Wei '22).

However, if all the rings have the same sign: no mechanism for
large vortex stretching, since the “Hamiltonian” is coercive.

The simplest setup allowing for infinite vortex stretching: two
symmetric rings with opposite signs (“anti-parallel’).




Head-on collision of vortex rings
By anti-parallel, we simply mean that

WO(r,z) = —¥(r, —2), w? <0onR3 ={z>0}.

(Equivalent with a single negative vortex ring on R3..)

Extensive numerical works: Oshima (78), Kambe-Minota (83),
Peace—Riley (83), Lim—Nickels (92), Chu-Wang—Chang—Chang—Chang (95), ...
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Experiments/Numerics show three stages of motion:

» 1. weak interaction and free traveling
P> 2. squeezing and vortex stretching
» 3. breakup and reconnection




Head-on collision of vortex rings

Stages 1 and 2 are essentially inviscid phenomena. Maximal radius
of rings before breakup increases with the Reynolds number,
suggesting infinite vortex stretching for Euler.

Cauchy formula for axisymmetric flows without swirl:

o7 (t,r,z)

w(t,®(t,r,z)) = wo(r, z),

where ® = (®", ®?) is the flow map.



Head-on collision of vortex rings

Stages 1 and 2 are essentially inviscid phenomena. Maximal radius
of rings before breakup increases with the Reynolds number,
suggesting infinite vortex stretching for Euler.

Cauchy formula for axisymmetric flows without swirl:

o7 (t,r,z)

w(t,®(t,r,z)) = wo(r, z),

where ® = (®", ®?) is the flow map.
Rate of vortex stretching = expansion of rings in r.

Difficulty: lack of stability, instead we rely on monotonicity.



Monotonicity

Theorem (Choi—J., preprint)

For anti-parallel flows, the quantities
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Monotonicity

Theorem (Choi—J., preprint)

For anti-parallel flows, the quantities

P = // —r2w(t, r,z)drdz, Z= // —zw(t,r,z)drdz
[0,00)2 [0,00)?

are monotone in time: P increases and Z decreases.

Recall: circulation conservation

// —w(t,r,z)drdz = ||r*1wHL1(R§r).
[0,00)

Comparison: in the case of single-signed vortex ring, Z is
decreasing and P is conserved.



Application I: infinite growth of gradient

Theorem (Choi-J., preprint)

There exists a C2°(R3) datum wq with the unique global solution
w(t,-) satisfying, for all o > 0,

sup [lw(t, )|l co(msy = oo
te[0,00]



Application I: infinite growth of gradient

Theorem (Choi-J., preprint)

There exists a C2°(R3) datum wq with the unique global solution
w(t,-) satisfying, for all o > 0,

sup [lw(t, )|l co(msy = oo

te[0,00]

The proof is based on 2D hyperbolic growth scenario, with lack of
stability and compactness handled by monotonicity.



Application |: growth of gradient

Version of Kiselev—Sverak Key Lemma for axisymmetric flows:
(62N o (7 Y 7(e|x])  of. Elgindi 21
u(t,r,z)) = \—2z ’ '

In our case: mass could escape to infinity, in which case Z — 0.



Application |: growth of gradient

Version of Kiselev—Sverak Key Lemma for axisymmetric flows:
(62N o (7 Y 7(e|x])  of. Elgindi 21
u(t,r,z)) = \—2z ’ '

In our case: mass could escape to infinity, in which case Z — 0.

Mass cannot escape to the z-direction due to monotonicity.
Escaping to the r-direction indeed occurs but this gives vortex
stretching.



Application Il: universal growth rates

Theorem (Choi—J., preprint)

.. 2_
For any compactly supported anti-parallel vorticity, at least t15
growth of the vortex impulse occurs:

P(t) = // —rw(t,r,z)drdz >, tl%*, vVt > 0.
[0,00)?
This implies infinite growth of the support diameter.

. 1
Roughly, rate of vortex stretching ~ [r] = tis

cf. variational proof of vortex stretching



Key inequality

> Strategy inspired by Iftimie-Sideris—Gamblin ('99): lower
bound on P purely based on monotone and conserved
quantities.

» Our key inequality: for 1 < g < 15/13
i .11
E Sq XPa(P) 9,
and X < Xp with

4_10 4(g—1) 3_7 2(g—1)

0 1 1—g 7 1
X=Elf P NEllieZz™ Pa + Nl el Z e

» Here, E is the kinetic energy of the fluid and £ = w/r.
> Integrating in time gives P — oo, implying infinite growth of
support and maximum, thanks to the Cauchy formula.



Application IlI: infinite vortex stretching

Corollary

Let 0 < 0 < 1/15. Assume that for some p € [2 — §, o], the initial
data is of compact support and satisfies

Irlwol ™ 1{|wo|>0}||LW(R3) <0 (1)

Then, for each € > 0, we have

e (t, Ml pm3y = Ce(L + t)%;(%_zé)_s for all t>0.

Condition (1) is satisfied for
» Smooth vortex patches

> Vorticity with C11/15~ regularity.

llw(t)lgeo
1013+ = &

An additional contradiction argument gives limsup,_,



Discussion

Question: actual rate of vortex stretching?

» Dyson model for vortex rings: predicts t as in 2D (false).
Majda ('94), Danchin ('00): exp(Ct).
Childress ('07-08): upper bound of t? and then t*/3.
Feng—Sverak ('15): upper bound of t2.

Childress-Gilbert-Valiant ('16): t*/3 is indeed achievable, by
modulated Sadovskii vortex
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