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Hamiltonian flows in a 2D domain Ω

▶ Given smooth Ψ : [0,∞)× Ω → R, we consider the ODE{
Ẋ (t) = −∂yΨ(t,X (t),Y (t)),

Ẏ (t) = ∂xΨ(t,X (t),Y (t))

▶ This generates a flow map Φ : [0,∞)× Ω → Ω, by

(t, (x , y)) 7→ (X (t),Y (t))

▶ We consider scalar advection by Φ:

f (t, x , y) = f0(Φ
−1
t (x , y)).

▶ Alternatively, f solves the transport equation

∂t f − ∂yΨ∂x f + ∂xΨ∂y f = 0.
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Example: shear flow in a periodic channel

▶ Fix Ω = T× [−1, 1] = (R/(2Z))× [−1, 1].

▶ Take Ψ(t, x , y) = −y2/2: the ODE becomes{
Ẋ (t) = Y (t),

Ẏ (t) = 0

▶ The associated flow map Φ and its inverse are:

Φ(t, x , y) = (x + ty , y), Φ−1
t (x , y) = (x − ty , y).

▶ The advected scalar satisfies

f (t, x , y) = f0(x − ty , y).
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Ẋ (t) = Y (t),
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Example: shear flow in a periodic channel

▶ In the previous example,

Φ(t, x , y) = (x + ty , y), f (t, x , y) = f0(x − ty , y).

▶ Observe growth of spatial gradients:

∥∇x ,yΦ(t, ·)∥L1(Ω) = C0(1 + Ct), “twisting”

∥∇x ,y f (t, ·)∥L1(Ω) = c0(1 + ct), “filamentation”

with c ̸= 0 unless f0 is independent of x .
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Example 2

▶ Assume that Ψ is only partially known: for a small δ > 0,

Ψ(t, x , y) =

{
−y if |y − 1

2 | < δ,

y if |y + 1
2 | < δ

and is arbitrary (but smooth) elsewhere.

y = 1
2

y = −1
2

▶ Still, we have ∥∇x ,yΦ(t, ·)∥L1(Ω) ≳ t, ∥∇x ,y f (t, ·)∥L1(Ω) ≳ t.
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Question (Example 3)

▶ Assume that Ψ is partially and perturbedly known:

Ψ(t, x , y) =

{
−y + ψ(t, x , y) if |y − 1

2 | < δ,

y + ψ(t, x , y) if |y + 1
2 | < δ

with some ψ satisfying ∥ψ∥L∞([0,∞)×W 1,1(Ω)) ≤ ε0 ≪ 1.

y = 1
2

y = −1
2

▶ Question: can we still deduce gradient growth for Φ and f ?
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Outline

▶ Filamentation (“creation of long and thin structures”) in
various fluid and kinetic equations: generic phenomenon.

▶ Twisting (“differential travel speed of nearby trajectories”)
for the flow is generic and gives rise to filamentation.

▶ Our main result: stability of twisting for flows generated by
stable stream function.

▶ PDE applications: fluid, kinetic, MHD, ...

▶ DS applications: Arnold diffusion, complexity growth, ...
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Filamentation in fluid flows

Evolution of elliptical vortex in incompressible flows

Figure: Krasny–Xu 2023



Filamentation in fluid flows

cf. Growth of ∥∇f ∥L1 versus ∥∇f ∥L∞ .

Figure: Iyer–Xu: Optimal mixing velocity field



Filamentation in plasma dynamics

Evolution of f (t, x , v) in Landau damping for 1D Vlasov–Poisson

Figure: Krasny–Thomas–Sandberg 2023



Filamentation in plasma dynamics
▶ Two-stream instability: phase space description
▶ Filamentation still occurs without Landau damping.

Figure: Liu–Chen–Quan–Zhou 2020



Twisting for steady Hamiltonian flows

Let Ψ̄ be a smooth steady Hamiltonian on Ω. (Generic picture:
periodic orbits separated by fix points and connecting orbits.) We
say that the corresponding flow Φ is twisting if there is an annular
region A ⊂ Ω foliated with periodic orbits such that the two
connected components of ∂A have different periods.



Model Example 1: Shear flows

▶ Take Ω = T× [−1, 1] and consider Ψ̄(x , y) = G (y).

▶ Then

Ẋ = −G ′(Y ), Ẏ = 0.

▶ We have Φ = (X ,Y ) with X (t, x , y) = x − tG ′(y) (mod 2)
and Y (t, x , y) = y .

▶ In this case, Φ is twisting if and only if G ′ is nonconstant:

∥∇Φ(t, ·)∥L1(Ω) ≥ ∥∂yX (t, ·)∥L1(Ω) = Ct.



Example 2: Radial flows

Domains Ω = R2,B0(1), · · · . Consider in polar coordinates

Θ̇ = g(R), Ṙ = 0.

We have Θ(t) = θ + tg(r). Twisting occurs if and only if g ′ ̸≡ 0.



Theorem (Drivas–Elgindi–J., preprint ’23)

Let Ψ̄ be a C 2 steady Hamiltonian, whose flow map is twisting.

Then, there exists ε0 = ε0(Ψ̄) > 0 such that:
if Ψ(t, ·) is a time-dependent Hamiltonian on Ω satisfying

∥Ψ̄−Ψ∥L∞([0,∞)×W 1,1(Ω)) < ε0,

then the flow Φ generated by Ψ(t, ·) is twisting. In particular,

∥∇Φ(t, ·)∥L1(Ω) ≥ c0t for all t ≥ 0.

Difficulties

▶ Twisting is a local information

▶ No invariant regions: individual particles are free to travel
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Counterexample?

On T2, we have that Ψ̄(x , y) = cos(y) is twisting. However,
consider its perturbation Ψ(x , y) = cos(y) + εx . Then

Ẋ = sin(Y ), Ẏ = ε.

The solution is explicitly given by

X (t) = x +
1

ε
(cos(y)− cos(y + εt)), Y (t) = y + εt mod 2π.

This flow is time periodic with period 2π/ε. (no twisting)

Note that Ψ is actually not smooth on T2.

Indeed Ψ̄−Ψ /∈ W 1,1(T2).
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Ẋ = sin(Y ), Ẏ = ε.
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Theorem (From twisting to filamentation)

In the same setting, there is filamentation of advected scalars for
an L∞ open set of initial data; that is

∥∇f (t, ·)∥L1(Ω) ≥ ct, as t → ∞.

Applications to PDE

Consider the PDEs of the form

Φ̇(t) = ∇⊥Ψ(t), f (t) = f0 ◦ Φ−1(t)

and f (t) 7→ Ψ(t) by a functional relation. We need a steady
solution (f̄ , Ψ̄) which is stable just in the W 1,1 norm of Ψ̄.
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Key PDE Examples

▶ Incompressible 2D Euler equations:

Φ̇ = ∇⊥Ψ,

Ψ = −(−∆)−1ω,

ω ◦ Φ = ω0.

▶ Vlasov–Poisson equations:

Φ̇ = −∇⊥
x ,v (

1

2
|v |2 + U(x)),

U = ±(−∆x)
−1

∫
R
f (t, x , v)dv ,

f ◦ Φ = f0.

▶ SQG, Vlasov–Riesz, ideal MHD, MRE, ...



Stablility of incompressible 2D Euler

There are many known Lp stable steady vortex ω̄: i.e. for any
ε > 0, there exists δ > 0 such that for all ω0 satisfying

∥ω0 − ω̄∥Lp < δ,

we have that the solution ω(t, ·) with initial data ω0 satisfies

∥ω(t, ·)− ω̄∥Lp < ε, for all t ≥ 0.

This guarantees ∥Ψ(t, ·)− Ψ̄∥W 1,1 ≪ 1.

Ψ(t, ·)

ω(t, ·) Φ(t, ·)

Hamiltonian flow

Scalar Advection

∆−1



A collection of stable Euler flows

▶ Rankine vortex and any monotone radial vortex.

▶ Kirchhoff Ellipses with aspect ratio < 3.

▶ First eigenfunctions on T2 under a symmetry.

▶ Second eigenfunctions on T2 under two symmetries.

▶ Lamb dipole / Hill’s vortex / ...



Application to incompressible 2D Euler

Theorem (A sample theorem)

Let ω̄ be an Lp stable 2D Euler solution, whose associated flow
map is twisting. Then, for an open set of perturbations ω0, we have

∥∇ω(t)∥L1 ≥ c0t for all t ≥ 0.

cf. A similar result applies to inviscid SQG in T2.



Ideas of the proof

▶ Recall the case 2: it is natural to “unfold” the dynamics to
the universal cover Ω̃ = R× [−1, 1] and consider Φ̃ on Ω̃

▶ The first coordinate X̃ gives winding number

▶ The differential of winding numbers gives gradient growth.

Recall the difficulties

▶ Twisting is a local information

▶ No invariant regions: individual particles are free to travel
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Introduction of twisting quantity

▶ Define localized and averaged winding number:

Ii (t) :=
∫∫

T×[−1,1]
X̃ (t, x , y)Fi (Y (t, x , y))dxdy , i = 1, 2

where Fi (y) is sharply concentrated at yi = (−1)i/2.

▶ Steady case: X̃ = x + tV (y) =⇒ Ii (t) ≃ Ii (0) + tV (y),
which immediately gives |I1(t)− I2(t)| ≳ |t|.

y = 1
2

y = −1
2
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Heart of the matter

▶ Interpretation of Ii (t): counting of all “winding numbers” of
particles at time t passing through the segment {y = yi}.

▶ We compute:

d

dt
Ii (t) =

∫∫
T×[−1,1]

(
d

dt
X̃ (t, x , y)

)
Fi (Y (t, x , y))dxdy

+

∫∫
T×[−1,1]

X̃ (t, x , y)(
d

dt
Fi (Y (t, x , y)))dxdy .

▶ The first term gives linear growth as in the steady case.

▶ Key inequality: after combinatorial cancellations, the second
term is bounded by C∥Ψ̄−Ψ∥L∞t W 1,1 .

▶ This gives |I1(t)−I2(t)| ≳ t, which then implies twisting and
filamentation.
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particles at time t passing through the segment {y = yi}.

▶ We compute:

d

dt
Ii (t) =

∫∫
T×[−1,1]

(
d

dt
X̃ (t, x , y)

)
Fi (Y (t, x , y))dxdy

+

∫∫
T×[−1,1]

X̃ (t, x , y)(
d

dt
Fi (Y (t, x , y)))dxdy .

▶ The first term gives linear growth as in the steady case.

▶ Key inequality: after combinatorial cancellations, the second
term is bounded by C∥Ψ̄−Ψ∥L∞t W 1,1 .

▶ This gives |I1(t)−I2(t)| ≳ t, which then implies twisting and
filamentation.



Summary

▶ Filamentation is very common in advection equations

▶ Twisting for the flow map gives filamentation

▶ Main result: stability of twisting in the time-dependent case

▶ Weak requirement W 1,1 facilitates PDE applications

Thank you for your attention!
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