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Hamiltonian flows in a 2D domain €2

» Given smooth WV : [0,00) x Q — R, we consider the ODE

{X(t) = —0,V(t, X(t), Y(1)),

Y(t) = 0 (t, X(t), Y (1))

» This generates a flow map ¢ : [0,00) X Q — Q, by
(£, (x,¥)) = (X(2), Y (1))

» \We consider scalar advection by ®:
f(t,x,y) = fo(®7(x,y)).

> Alternatively, f solves the transport equation

(9tf - ay\liaxf + 8x\|18yf = 0
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> Fix Q=T x [-1,1] = (R/(22)) x [-1,1].
» Take W(t,x,y) = —y?/2: the ODE becomes

X(t) = Y(1),
Y(t) =0

» The associated flow map ® and its inverse are:
O(t,x,y) = (x+ty,y), S N(xy) = (x—ty,y).
» The advected scalar satisfies

f(t,x,y) = fo(x — ty,y).



Example: shear flow in a periodic channel

» In the previous example,

¢(t7X;Y)=(X+tYaY)» f(taX;}/)=ﬁJ(X—tYaY)-



Example: shear flow in a periodic channel

» In the previous example,

(D(tyX;)/):(X‘i‘t)’a}/), f(taxa}/):ﬁ)(X—ty’)’)-
» Observe growth of spatial gradients:

IVy®(t, 2@ = Co(1+ Ct), “twisting”
IVxyf(t, M) = co(l + ct), “filamentation”

with ¢ # 0 unless fy is independent of x.
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» Assume that V is only partially known: for a small § > 0,

. 1
—y if |y—3|<§,

V(t,x,y) = . | f'
y if |y+3[<9d

and is arbitrary (but smooth) elsewhere.

> Still, we have ||V, ®(t,)llq) 2t [[Vey f(t )@ 2 t-



Question (Example 3)
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Filamentation ( “creation of long and thin structures”) in
various fluid and kinetic equations: generic phenomenon.

Twisting (“differential travel speed of nearby trajectories”)
for the flow is generic and gives rise to filamentation.

Our main result: stability of twisting for flows generated by
stable stream function.

PDE applications: fluid, kinetic, MHD, ...
DS applications: Arnold diffusion, complexity growth, ...




Filamentation in fluid flows

Evolution of elliptical vortex in incompressible flows

Figure: Krasny—Xu 2023



Filamentation in fluid flows
cf. Growth of ||V f]|[;1 versus |V F]|1oe.
» '

Figure: lyer—Xu: Optimal mixing velocity field
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Filamentation in plasma dynamics

Evolution of f(t,x,v) in Landau damping for 1D Vlasov—Poisson
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Filamentation in plasma dynamics

> Two-stream instability: phase space description
» Filamentation still occurs without Landau damping.

0.45
0.4

Figure: Liu—Chen—Quan—Zhou 2020




Twisting for steady Hamiltonian flows

Let W be a smooth steady Hamiltonian on Q. (Generic picture:
periodic orbits separated by fix points and connecting orbits.) We
say that the corresponding flow ® is twisting if there is an annular
region A C € foliated with periodic orbits such that the two
connected components of A have different periods.
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Model Example 1: Shear flows
> Take Q =T x [~1,1] and consider W(x,y) = G(y).
» Then
X=-G'(Y), Y=o

> We have ® = (X, Y) with X(t,x,y) = x — tG'(y) (mod 2)
and Y(t,x,y) =y.
» In this case, ® is twisting if and only if G’ is nonconstant:

IVe(t, )@ = 19y X(t, )l ) = Ct.



Example 2: Radial flows

Domains Q = R2, By(1),- - - . Consider in polar coordinates
© =g(R), R =0.

We have ©(t) = 6 + tg(r). Twisting occurs if and only if g’ # 0.
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Difficulties

» Twisting is a local information

» No invariant regions: individual particles are free to travel
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Counterexample?

On T2, we have that W(x, y) = cos(y) is twisting. However,
consider its perturbation W(x, y) = cos(y) + ex. Then

X =sin(Y), Y ==.
The solution is explicitly given by
1
X(t) =x+ g(cos(y) —cos(y +¢t)), Y(t)=y+et mod27.

This flow is time periodic with period 27 /e. (no twisting)

Note that W is actually not smooth on T?.

Indeed ¥ — W ¢ WLL(T?).
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Theorem (From twisting to filamentation)

In the same setting, there is filamentation of advected scalars for
an L*° open set of initial data; that is

IVF(t, @) > ct, as t— oo.

Applications to PDE
Consider the PDEs of the form

(t) = VIW(t), f(t)=fhod (t)

and f(t) — W(t) by a functional relation. We need a steady
solution (f, W) which is stable just in the W' norm of V.



Key PDE Examples

» Incompressible 2D Euler equations:

¢ =V,
V=—(-A)"lw,

wod = wp.
» Vlasov—Poisson equations:
. 1
& = —VE, VP + U(x)),
U= :I:(—AX)_l/ f(t,x,v)dv,
R
fod=fy.

» SQG, Vlasov—Riesz, ideal MHD, MRE, ...



Stablility of incompressible 2D Euler

There are many known LP stable steady vortex w: i.e. for any
€ > 0, there exists § > 0 such that for all wg satisfying

llwo — @||r < 4,
we have that the solution w(t,-) with initial data wq satisfies
lw(t, ) —@|[p <e, forall t>0.

This guarantees |[W(t,-) — V|11 < 1.

AL Hamiltonian flow

w(t, ) - Scalar Advection @(L )




A collection of stable Euler flows

» Rankine vortex and any monotone radial vortex.
Kirchhoff Ellipses with aspect ratio < 3.

First eigenfunctions on T2 under a symmetry.
Second eigenfunctions on T? under two symmetries.
Lamb dipole / Hill's vortex / ...
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Application to incompressible 2D Euler

Theorem (A sample theorem)

Let & be an LP stable 2D Euler solution, whose associated flow
map is twisting. Then, for an open set of perturbations wg, we have

|Vw(t)||;2 > cot for all t > 0.

cf. A similar result applies to inviscid SQG in T?.
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» Recall the case 2: it is natural to “unfold” the dynamlcs to
the universal cover Q = R x [~1,1] and consider ® on Q

> The first coordinate X gives winding number
» The differential of winding numbers gives gradient growth.
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Recall the difficulties

» Twisting is a local information
» No invariant regions: individual particles are free to travel
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Introduction of twisting quantity

» Define localized and averaged winding number:

)= [ Kexn)F( e dxdy, =12
Tx[-1,1]

where F;(y) is sharply concentrated at y; = (—1)'/2.
> Steady case: X = x + tV(y) = Zi(t) ~ Z;(0) + tV(y),
which immediately gives |Z;(t) — Zo(t)| 2 |t].
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» Filamentation is very common in advection equations

» Twisting for the flow map gives filamentation

» Main result: stability of twisting in the time-dependent case
» Weak requirement W11 facilitates PDE applications

Thank you for your attention!
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