Twisting in Hamiltonian Flows with Applications to Fluids

In-Jee Jeong Seoul National University

New Trends in Hyperbolic Conservation Laws and Related Models June 27, 2024

• Given smooth $\Psi:[0,\infty)\times\Omega\to\mathbb{R}$, we consider the ODE

$$\begin{cases} \dot{X}(t) = -\partial_{y} \Psi(t, X(t), Y(t)), \\ \dot{Y}(t) = \partial_{x} \Psi(t, X(t), Y(t)) \end{cases}$$

• Given smooth $\Psi:[0,\infty)\times\Omega\to\mathbb{R}$, we consider the ODE

$$\begin{cases} \dot{X}(t) = -\partial_y \Psi(t, X(t), Y(t)), \\ \dot{Y}(t) = \partial_x \Psi(t, X(t), Y(t)) \end{cases}$$

▶ This generates a flow map $\Phi : [0, \infty) \times \Omega \to \Omega$, by

$$(t,(x,y))\mapsto (X(t),Y(t))$$

• Given smooth $\Psi:[0,\infty)\times\Omega\to\mathbb{R}$, we consider the ODE

$$\begin{cases} \dot{X}(t) = -\partial_y \Psi(t, X(t), Y(t)), \\ \dot{Y}(t) = \partial_x \Psi(t, X(t), Y(t)) \end{cases}$$

▶ This generates a flow map $\Phi : [0, \infty) \times \Omega \to \Omega$, by

$$(t,(x,y))\mapsto (X(t),Y(t))$$

 \blacktriangleright We consider scalar advection by Φ:

$$f(t, x, y) = f_0(\Phi_t^{-1}(x, y)).$$

• Given smooth $\Psi:[0,\infty)\times\Omega\to\mathbb{R}$, we consider the ODE

$$\begin{cases} \dot{X}(t) = -\partial_y \Psi(t, X(t), Y(t)), \\ \dot{Y}(t) = \partial_x \Psi(t, X(t), Y(t)) \end{cases}$$

▶ This generates a flow map $\Phi : [0, \infty) \times \Omega \to \Omega$, by

$$(t,(x,y))\mapsto (X(t),Y(t))$$

 \blacktriangleright We consider scalar advection by Φ:

$$f(t, x, y) = f_0(\Phi_t^{-1}(x, y)).$$

► Alternatively, f solves the transport equation

$$\partial_t f - \partial_v \Psi \partial_x f + \partial_x \Psi \partial_v f = 0.$$

Fix $\Omega = \mathbb{T} \times [-1, 1] = (\mathbb{R}/(2\mathbb{Z})) \times [-1, 1]$.

- Fix $\Omega = \mathbb{T} \times [-1, 1] = (\mathbb{R}/(2\mathbb{Z})) \times [-1, 1]$.
- ► Take $\Psi(t, x, y) = -y^2/2$: the ODE becomes

$$\begin{cases} \dot{X}(t) = Y(t), \\ \dot{Y}(t) = 0 \end{cases}$$

- Fix $\Omega = \mathbb{T} \times [-1, 1] = (\mathbb{R}/(2\mathbb{Z})) \times [-1, 1]$.
- ► Take $\Psi(t, x, y) = -y^2/2$: the ODE becomes

$$\begin{cases} \dot{X}(t) = Y(t), \\ \dot{Y}(t) = 0 \end{cases}$$

ightharpoonup The associated flow map Φ and its inverse are:

$$\Phi(t, x, y) = (x + ty, y), \qquad \Phi_t^{-1}(x, y) = (x - ty, y).$$

- Fix $\Omega = \mathbb{T} \times [-1, 1] = (\mathbb{R}/(2\mathbb{Z})) \times [-1, 1]$.
- ► Take $\Psi(t, x, y) = -y^2/2$: the ODE becomes

$$\begin{cases} \dot{X}(t) = Y(t), \\ \dot{Y}(t) = 0 \end{cases}$$

The associated flow map Φ and its inverse are:

$$\Phi(t, x, y) = (x + ty, y), \qquad \Phi_t^{-1}(x, y) = (x - ty, y).$$

► The advected scalar satisfies

$$f(t,x,y)=f_0(x-ty,y).$$

► In the previous example,

$$\Phi(t, x, y) = (x + ty, y), \qquad f(t, x, y) = f_0(x - ty, y).$$

In the previous example,

$$\Phi(t, x, y) = (x + ty, y), \qquad f(t, x, y) = f_0(x - ty, y).$$

► Observe growth of spatial gradients:

$$\|
abla_{x,y} \Phi(t,\cdot) \|_{L^1(\Omega)} = C_0(1+Ct),$$
 "twisting"
 $\|
abla_{x,y} f(t,\cdot) \|_{L^1(\Omega)} = c_0(1+ct),$ "filamentation"

with $c \neq 0$ unless f_0 is independent of x.

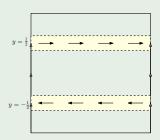


Example 2

• Assume that Ψ is only *partially* known: for a small $\delta > 0$,

$$\Psi(t,x,y) = \begin{cases} -y & \text{if } |y - \frac{1}{2}| < \delta, \\ y & \text{if } |y + \frac{1}{2}| < \delta \end{cases}$$

and is arbitrary (but smooth) elsewhere.

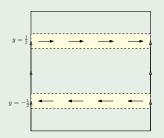


Example 2

• Assume that Ψ is only *partially* known: for a small $\delta > 0$,

$$\Psi(t, x, y) = \begin{cases} -y & \text{if } |y - \frac{1}{2}| < \delta, \\ y & \text{if } |y + \frac{1}{2}| < \delta \end{cases}$$

and is arbitrary (but smooth) elsewhere.



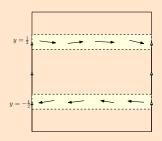
▶ Still, we have $\|\nabla_{x,y}\Phi(t,\cdot)\|_{L^1(\Omega)} \gtrsim t$, $\|\nabla_{x,y}f(t,\cdot)\|_{L^1(\Omega)} \gtrsim t$.

Question (Example 3)

ightharpoonup Assume that Ψ is partially and *perturbedly* known:

$$\Psi(t,x,y) = \begin{cases} -y + \psi(t,x,y) & \text{if } |y - \frac{1}{2}| < \delta, \\ y + \psi(t,x,y) & \text{if } |y + \frac{1}{2}| < \delta \end{cases}$$

with some ψ satisfying $\|\psi\|_{L^{\infty}([0,\infty)\times W^{1,1}(\Omega))}\leq \varepsilon_0\ll 1.$



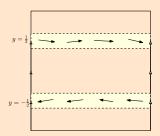
Question: can we still deduce gradient growth for Φ and f?

Question (Example 3)

ightharpoonup Assume that Ψ is partially and *perturbedly* known:

$$\Psi(t,x,y) = \begin{cases} -y + \psi(t,x,y) & \text{if } |y - \frac{1}{2}| < \delta, \\ y + \psi(t,x,y) & \text{if } |y + \frac{1}{2}| < \delta \end{cases}$$

with some ψ satisfying $\|\psi\|_{L^{\infty}([0,\infty)\times W^{1,1}(\Omega))}\leq \varepsilon_0\ll 1.$

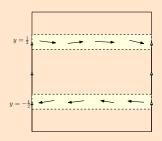


Question (Example 3)

ightharpoonup Assume that Ψ is partially and *perturbedly* known:

$$\Psi(t,x,y) = \begin{cases} -y + \psi(t,x,y) & \text{if } |y - \frac{1}{2}| < \delta, \\ y + \psi(t,x,y) & \text{if } |y + \frac{1}{2}| < \delta \end{cases}$$

with some ψ satisfying $\|\psi\|_{L^{\infty}([0,\infty)\times W^{1,1}(\Omega))}\leq \varepsilon_0\ll 1.$



Question: can we still deduce gradient growth for Φ and f?

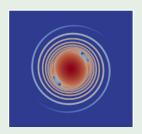
► **Filamentation** ("creation of long and thin structures") in various fluid and kinetic equations: generic phenomenon.

- ► Filamentation ("creation of long and thin structures") in various fluid and kinetic equations: generic phenomenon.
- ► **Twisting** ("differential travel speed of nearby trajectories") for the flow is generic and gives rise to filamentation.

- ► Filamentation ("creation of long and thin structures") in various fluid and kinetic equations: generic phenomenon.
- ► **Twisting** ("differential travel speed of nearby trajectories") for the flow is generic and gives rise to filamentation.
- ► Our main result: **stability of twisting** for flows generated by *stable stream function*.

- ► Filamentation ("creation of long and thin structures") in various fluid and kinetic equations: generic phenomenon.
- ► **Twisting** ("differential travel speed of nearby trajectories") for the flow is generic and gives rise to filamentation.
- ► Our main result: **stability of twisting** for flows generated by *stable stream function*.
- ▶ PDE applications: fluid, kinetic, MHD, ...

- ► Filamentation ("creation of long and thin structures") in various fluid and kinetic equations: generic phenomenon.
- ► **Twisting** ("differential travel speed of nearby trajectories") for the flow is generic and gives rise to filamentation.
- ► Our main result: **stability of twisting** for flows generated by *stable stream function*.
- ▶ PDE applications: fluid, kinetic, MHD, ...
- ▶ DS applications: Arnold diffusion, complexity growth, ...



Filamentation in fluid flows

Evolution of elliptical vortex in incompressible flows

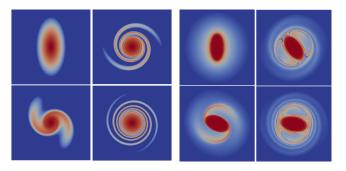


Figure: Krasny-Xu 2023

Filamentation in fluid flows

cf. Growth of $\|\nabla f\|_{L^1}$ versus $\|\nabla f\|_{L^\infty}$.

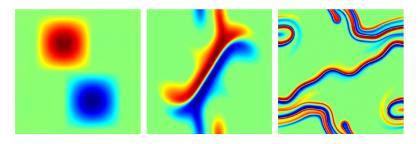


Figure: Iyer-Xu: Optimal mixing velocity field

Filamentation in plasma dynamics

Evolution of f(t, x, v) in Landau damping for 1D Vlasov-Poisson

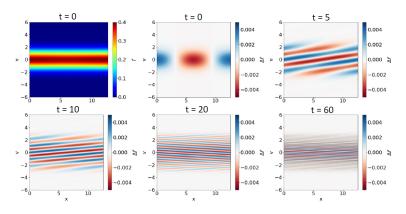


Figure: Krasny-Thomas-Sandberg 2023

Filamentation in plasma dynamics

- ▶ Two-stream instability: phase space description
- Filamentation still occurs without Landau damping.

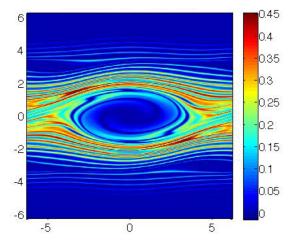
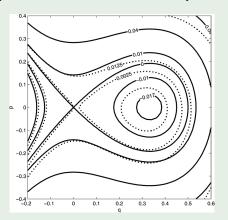


Figure: Liu-Chen-Quan-Zhou 2020

Twisting for steady Hamiltonian flows

Let $\bar{\Psi}$ be a smooth steady Hamiltonian on Ω . (Generic picture: periodic orbits separated by fix points and connecting orbits.) We say that the corresponding flow Φ is **twisting** if there is an annular region $\mathbf{A} \subset \Omega$ foliated with periodic orbits such that the two connected components of $\partial \mathbf{A}$ have **different periods**.



Model Example 1: Shear flows

- ▶ Take $\Omega = \mathbb{T} \times [-1, 1]$ and consider $\overline{\Psi}(x, y) = G(y)$.
- ► Then

$$\dot{X}=-G'(Y), \qquad \dot{Y}=0.$$

- We have $\Phi = (X, Y)$ with $X(t, x, y) = x tG'(y) \pmod{2}$ and Y(t, x, y) = y.
- ▶ In this case, Φ is **twisting** if and only if G' is nonconstant:

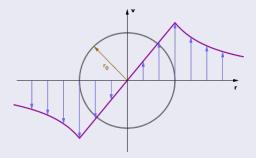
$$\|\nabla \Phi(t,\cdot)\|_{L^1(\Omega)} \geq \|\partial_y X(t,\cdot)\|_{L^1(\Omega)} = Ct.$$

Example 2: Radial flows

Domains $\Omega=\mathbb{R}^2, B_0(1), \cdots$. Consider in polar coordinates

$$\dot{\Theta} = g(R), \qquad \dot{R} = 0.$$

We have $\Theta(t) = \theta + tg(r)$. Twisting occurs if and only if $g' \not\equiv 0$.



Let $\bar{\Psi}$ be a C^2 steady Hamiltonian, whose flow map is twisting.

Let $\bar{\Psi}$ be a C^2 steady Hamiltonian, whose flow map is twisting. Then, there exists $\varepsilon_0 = \varepsilon_0(\bar{\Psi}) > 0$ such that: if $\Psi(t,\cdot)$ is a time-dependent Hamiltonian on Ω satisfying

$$\|\bar{\Psi} - \Psi\|_{L^{\infty}([0,\infty)\times W^{1,1}(\Omega))} < \varepsilon_0,$$

Let $\bar{\Psi}$ be a C^2 steady Hamiltonian, whose flow map is twisting. Then, there exists $\varepsilon_0 = \varepsilon_0(\bar{\Psi}) > 0$ such that: if $\Psi(t,\cdot)$ is a time-dependent Hamiltonian on Ω satisfying

$$\|\bar{\Psi} - \Psi\|_{L^{\infty}([0,\infty)\times W^{1,1}(\Omega))} < \varepsilon_0,$$

then the flow Φ generated by $\Psi(t,\cdot)$ is **twisting**. In particular,

$$\|\nabla \Phi(t,\cdot)\|_{L^1(\Omega)} \ge c_0 t$$
 for all $t \ge 0$.

Let $\bar{\Psi}$ be a C^2 steady Hamiltonian, whose flow map is twisting. Then, there exists $\varepsilon_0 = \varepsilon_0(\bar{\Psi}) > 0$ such that: if $\Psi(t,\cdot)$ is a time-dependent Hamiltonian on Ω satisfying

$$\|\bar{\Psi} - \Psi\|_{L^{\infty}([0,\infty)\times W^{1,1}(\Omega))} < \varepsilon_0,$$

then the flow Φ generated by $\Psi(t,\cdot)$ is **twisting**. In particular,

$$\|\nabla \Phi(t,\cdot)\|_{L^1(\Omega)} \ge c_0 t$$
 for all $t \ge 0$.

Difficulties

- ► Twisting is a local information
- ▶ No invariant regions: individual particles are free to travel

On \mathbb{T}^2 , we have that $\overline{\Psi}(x,y)=\cos(y)$ is twisting. However, consider its perturbation $\Psi(x,y)=\cos(y)+\varepsilon x$. Then

$$\dot{X} = \sin(Y), \qquad \dot{Y} = \varepsilon.$$

On \mathbb{T}^2 , we have that $\overline{\Psi}(x,y) = \cos(y)$ is twisting. However, consider its perturbation $\Psi(x,y) = \cos(y) + \varepsilon x$. Then

$$\dot{X} = \sin(Y), \qquad \dot{Y} = \varepsilon.$$

The solution is explicitly given by

$$X(t) = x + \frac{1}{\varepsilon}(\cos(y) - \cos(y + \varepsilon t)), \quad Y(t) = y + \varepsilon t \mod 2\pi.$$

On \mathbb{T}^2 , we have that $\bar{\Psi}(x,y) = \cos(y)$ is twisting. However, consider its perturbation $\Psi(x,y) = \cos(y) + \varepsilon x$. Then

$$\dot{X} = \sin(Y), \qquad \dot{Y} = \varepsilon.$$

The solution is explicitly given by

$$X(t) = x + \frac{1}{\varepsilon}(\cos(y) - \cos(y + \varepsilon t)), \quad Y(t) = y + \varepsilon t \mod 2\pi.$$

This flow is **time periodic** with period $2\pi/\varepsilon$. (no twisting)

On \mathbb{T}^2 , we have that $\bar{\Psi}(x,y) = \cos(y)$ is twisting. However, consider its perturbation $\Psi(x,y) = \cos(y) + \varepsilon x$. Then

$$\dot{X} = \sin(Y), \qquad \dot{Y} = \varepsilon.$$

The solution is explicitly given by

$$X(t) = x + \frac{1}{\varepsilon}(\cos(y) - \cos(y + \varepsilon t)), \quad Y(t) = y + \varepsilon t \mod 2\pi.$$

This flow is **time periodic** with period $2\pi/\varepsilon$. (no twisting)

Note that Ψ is actually not smooth on \mathbb{T}^2 .

Counterexample?

On \mathbb{T}^2 , we have that $\overline{\Psi}(x,y) = \cos(y)$ is twisting. However, consider its perturbation $\Psi(x,y) = \cos(y) + \varepsilon x$. Then

$$\dot{X} = \sin(Y), \qquad \dot{Y} = \varepsilon.$$

The solution is explicitly given by

$$X(t) = x + \frac{1}{\varepsilon}(\cos(y) - \cos(y + \varepsilon t)), \quad Y(t) = y + \varepsilon t \mod 2\pi.$$

This flow is **time periodic** with period $2\pi/\varepsilon$. (no twisting)

Note that Ψ is actually not smooth on \mathbb{T}^2 .

Indeed
$$\bar{\Psi} - \Psi \notin W^{1,1}(\mathbb{T}^2)$$
.

Theorem (From twisting to filamentation)

In the same setting, there is filamentation of advected scalars for an L^{∞} open set of initial data; that is

$$\|\nabla f(t,\cdot)\|_{L^1(\Omega)} \ge ct, \quad \text{as} \quad t \to \infty.$$

Theorem (From twisting to filamentation)

In the same setting, there is filamentation of advected scalars for an L^{∞} open set of initial data; that is

$$\|\nabla f(t,\cdot)\|_{L^1(\Omega)} \ge ct$$
, as $t \to \infty$.

Applications to PDE

Consider the PDEs of the form

$$\dot{\Phi}(t) =
abla^\perp \Psi(t), \quad f(t) = f_0 \circ \Phi^{-1}(t)$$

and $f(t) \mapsto \Psi(t)$ by a functional relation. We need a steady solution $(\bar{f}, \bar{\Psi})$ which is **stable** just in the $W^{1,1}$ norm of $\bar{\Psi}$.

Key PDE Examples

Incompressible 2D Euler equations:

$$\begin{split} \dot{\Phi} &= \nabla^{\perp} \Psi, \\ \Psi &= - (-\Delta)^{-1} \omega, \\ \omega \circ \Phi &= \omega_0. \end{split}$$

► Vlasov–Poisson equations:

$$\dot{\Phi} = -
abla_{x,v}^{\perp}(rac{1}{2}|v|^2 + U(x)),$$
 $U = \pm(-\Delta_x)^{-1}\int_{\mathbb{R}}f(t,x,v)dv,$
 $f\circ\Phi = f_0.$

► SQG, Vlasov-Riesz, ideal MHD, MRE, ...

Stablility of incompressible 2D Euler

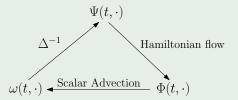
There are many known L^p stable steady vortex $\bar{\omega}$: i.e. for any $\varepsilon > 0$, there exists $\delta > 0$ such that for all ω_0 satisfying

$$\|\omega_0 - \bar{\omega}\|_{L^p} < \delta,$$

we have that the solution $\omega(t,\cdot)$ with initial data ω_0 satisfies

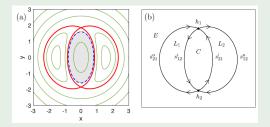
$$\|\omega(t,\cdot)-\bar{\omega}\|_{L^p}<\varepsilon,\quad \text{for all}\quad t\geq 0.$$

This guarantees $\|\Psi(t,\cdot)-\bar{\Psi}\|_{W^{1,1}}\ll 1$.



A collection of stable Euler flows

- Rankine vortex and any monotone radial vortex.
- ► Kirchhoff Ellipses with aspect ratio < 3.
- First eigenfunctions on \mathbb{T}^2 under a symmetry.
- ▶ Second eigenfunctions on \mathbb{T}^2 under two symmetries.
- ► Lamb dipole / Hill's vortex / ...

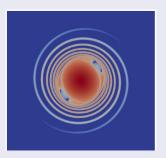


Application to incompressible 2D Euler

Theorem (A sample theorem)

Let $\bar{\omega}$ be an L^p stable 2D Euler solution, whose associated flow map is twisting. Then, for an open set of perturbations ω_0 , we have

$$\|\nabla \omega(t)\|_{L^1} \ge c_0 t$$
 for all $t \ge 0$.

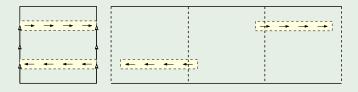


cf. A similar result applies to inviscid SQG in \mathbb{T}^2 .

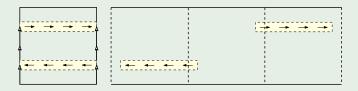
 $\hbox{$\blacktriangleright$ Recall the case 2: it is natural to "unfold" the dynamics to the universal cover $\tilde{\Omega}=\mathbb{R}\times[-1,1]$ and consider $\tilde{\Phi}$ on $\tilde{\Omega}$ }$

- $\hbox{$\blacktriangleright$ Recall the case 2: it is natural to "unfold" the dynamics to the universal cover $\tilde{\Omega}=\mathbb{R}\times[-1,1]$ and consider $\tilde{\Phi}$ on $\tilde{\Omega}$ }$
- ightharpoonup The first coordinate \tilde{X} gives winding number

- ▶ Recall the case 2: it is natural to "unfold" the dynamics to the universal cover $\tilde{\Omega} = \mathbb{R} \times [-1,1]$ and consider $\tilde{\Phi}$ on $\tilde{\Omega}$
- ▶ The first coordinate \tilde{X} gives winding number
- ► The *differential* of winding numbers gives gradient growth.



- ▶ Recall the case 2: it is natural to "unfold" the dynamics to the universal cover $\tilde{\Omega} = \mathbb{R} \times [-1,1]$ and consider $\tilde{\Phi}$ on $\tilde{\Omega}$
- lacktriangle The first coordinate \tilde{X} gives winding number
- ► The differential of winding numbers gives gradient growth.



Recall the difficulties

- ► Twisting is a local information
- ▶ No invariant regions: individual particles are free to travel

Introduction of twisting quantity

Define localized and averaged winding number:

$$\mathcal{I}_i(t) := \iint_{\mathbb{T} \times [-1,1]} \tilde{X}(t,x,y) F_i(Y(t,x,y)) \, \mathrm{d}x \mathrm{d}y, \quad i = 1,2$$

where $F_i(y)$ is sharply concentrated at $y_i = (-1)^i/2$.

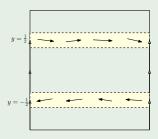
Introduction of twisting quantity

► Define localized and averaged winding number:

$$\mathcal{I}_i(t) := \iint_{\mathbb{T} \times [-1,1]} \tilde{X}(t,x,y) F_i(Y(t,x,y)) \, \mathrm{d}x \mathrm{d}y, \quad i = 1,2$$

where $F_i(y)$ is sharply concentrated at $y_i = (-1)^i/2$.

▶ Steady case: $\tilde{X} = x + tV(y) \implies \mathcal{I}_i(t) \simeq \mathcal{I}_i(0) + tV(y)$, which immediately gives $|\mathcal{I}_1(t) - \mathcal{I}_2(t)| \gtrsim |t|$.



▶ Interpretation of $\mathcal{I}_i(t)$: counting of all "winding numbers" of particles at time t passing through the segment $\{y = y_i\}$.

- ▶ Interpretation of $\mathcal{I}_i(t)$: counting of all "winding numbers" of particles at time t passing through the segment $\{y = y_i\}$.
- ► We compute:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathcal{I}_{i}(t) = \iint_{\mathbb{T}\times[-1,1]} \left(\frac{\mathrm{d}}{\mathrm{d}t}\tilde{X}(t,x,y)\right) F_{i}(Y(t,x,y)) \,\mathrm{d}x\mathrm{d}y + \iint_{\mathbb{T}\times[-1,1]} \tilde{X}(t,x,y) \left(\frac{\mathrm{d}}{\mathrm{d}t}F_{i}(Y(t,x,y))\right) \,\mathrm{d}x\mathrm{d}y.$$

▶ The first term gives linear growth as in the steady case.

- ▶ Interpretation of $\mathcal{I}_i(t)$: counting of all "winding numbers" of particles at time t passing through the segment $\{y = y_i\}$.
- ► We compute:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathcal{I}_{i}(t) = \iint_{\mathbb{T}\times[-1,1]} \left(\frac{\mathrm{d}}{\mathrm{d}t}\tilde{X}(t,x,y)\right) F_{i}(Y(t,x,y)) \,\mathrm{d}x\mathrm{d}y + \iint_{\mathbb{T}\times[-1,1]} \tilde{X}(t,x,y) \left(\frac{\mathrm{d}}{\mathrm{d}t}F_{i}(Y(t,x,y))\right) \,\mathrm{d}x\mathrm{d}y.$$

- ▶ The first term gives linear growth as in the steady case.
- ► **Key inequality**: after *combinatorial cancellations*, the second term is bounded by $C\|\bar{\Psi} \Psi\|_{L^{\infty}W^{1,1}}$.

- ▶ Interpretation of $\mathcal{I}_i(t)$: counting of all "winding numbers" of particles at time t passing through the segment $\{y = y_i\}$.
- ▶ We compute:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathcal{I}_{i}(t) = \iint_{\mathbb{T}\times[-1,1]} \left(\frac{\mathrm{d}}{\mathrm{d}t}\tilde{X}(t,x,y)\right) F_{i}(Y(t,x,y)) \,\mathrm{d}x\mathrm{d}y + \iint_{\mathbb{T}\times[-1,1]} \tilde{X}(t,x,y) \left(\frac{\mathrm{d}}{\mathrm{d}t}F_{i}(Y(t,x,y))\right) \,\mathrm{d}x\mathrm{d}y.$$

- ▶ The first term gives linear growth as in the steady case.
- ► **Key inequality**: after *combinatorial cancellations*, the second term is bounded by $C\|\bar{\Psi} \Psi\|_{L^{\infty}_{*}W^{1,1}}$.
- ▶ This gives $|\mathcal{I}_1(t) \mathcal{I}_2(t)| \gtrsim t$, which then implies twisting and filamentation.

- ▶ Interpretation of $\mathcal{I}_i(t)$: counting of all "winding numbers" of particles at time t passing through the segment $\{y = y_i\}$.
- ▶ We compute:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathcal{I}_{i}(t) = \iint_{\mathbb{T}\times[-1,1]} \left(\frac{\mathrm{d}}{\mathrm{d}t}\tilde{X}(t,x,y)\right) F_{i}(Y(t,x,y)) \,\mathrm{d}x\mathrm{d}y + \iint_{\mathbb{T}\times[-1,1]} \tilde{X}(t,x,y) \left(\frac{\mathrm{d}}{\mathrm{d}t}F_{i}(Y(t,x,y))\right) \,\mathrm{d}x\mathrm{d}y.$$

- ▶ The first term gives linear growth as in the steady case.
- ► **Key inequality**: after *combinatorial cancellations*, the second term is bounded by $C\|\bar{\Psi} \Psi\|_{L^{\infty}_{*}W^{1,1}}$.
- ▶ This gives $|\mathcal{I}_1(t) \mathcal{I}_2(t)| \gtrsim t$, which then implies twisting and filamentation.

Summary

- ► Filamentation is very common in advection equations
- ► Twisting for the flow map gives filamentation
- ► Main result: stability of twisting in the time-dependent case
- ightharpoonup Weak requirement $W^{1,1}$ facilitates PDE applications

Thank you for your attention!