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Vorticity equation for incompressible inviscid flows

We consider in R3 the vorticity equation
Oiw+u-Vw =w - Vu,
u=Vx(-A)lw
where
w(t,):R¥=R3 u(t,):R—-R3

denote the vorticity and velocity of an incompressible inviscid flow
occupying R3 at time t.
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Axisymmetric flows without swirl

A special class of solutions is given by

w:we(t, r,z)ee, u=u'(t,r,z)e + v*(t,r,z)e*

in the cylindrical coordinates (r, 6, z). The vorticity equation
reduces to

r
Orw? + [u" 8, + 1F9,] ¥ = e
r

Smooth initial data have unique global in time solutions, but the
vorticity may grow with time, unlike the 2D case.

Question: optimal rate of vortex stretching

How fast can ||w?(t, oo 3y grow with time?
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Vortex confinement to vortex stretching

The relative vorticity satisfies

(7 0
O +u- VL =0
r r

and gives
e,
r L (R3) Al oo (r3)

where the RHS is bounded for smooth w = w%e’, say C!(RR3).
For compactly supported vorticity, we have that

0
W
16?2, )l < R(E) ] “o

FllLeo(r3)

where R(t) := diam, supp(w/(t,-)).
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Upper bounds on vorticity growth

» Classical works of Majda ('94), Danchin ('00) gives
|0 (t, )|l < Cexp(Ct).

» Childress ('07), Feng—Sverak ('15) gives
l? (2, )lleee < C(1+ £2)

and Childress ('08) conjectures that the optimal rate is t*/3.
> Several numerical works verify the rate t4/3.
> Lim-J. (preprint): proves upper bound of t*/3,
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Another variation of Feng—Sverak inequality: t*/3 bound



Colliding vortex rings

The simplest setup for vortex stretching:

Figure: Two symmetric rings with opposite signs “anti-parallel”



Head-on collision of vortex rings

Extensive experimental works: Oshima (78), Kambe—Minota (83),
Peace—Riley (83), Lim—Nickels (92), Chu-Wang—Chang—Chang—Chang (95), ...
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Head-on collision of vortex rings

Extensive experimental works: Oshima (78), Kambe-Minota (83),
Peace—Riley (83), Lim—Nickels (92), Chu-Wang—Chang—Chang—Chang (95), ...
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Modeled by odd symmetry and sign assumptions

W(r,z) = —(r, —2), w! <0 on R:={z>0}

In this geometry, one has monotonicity:

D6 e = o [ 1P, arae o
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» Various experiments and numerical computations clearly show
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Exponential upper bounds

» Various experiments and numerical computations clearly show
large vortex stretching, and the question is the rate in time.

» From the axisymmetric Euler equations, we get

u"w?

d, o
—— oo <
dt”w ”L =

9

L oo

r

and how should we bound the RHS in time?
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Exponential upper bounds

» Majda's estimate '94: use |supp g3(w?(t,-))| ~ L3 and

1
lull= < sup / L P 0)ldy S Lo,
x€R3 JR3 ’X *}/|2

and bound
d. 9 6 < |l.,0
el e < flufleeello®/rllie S [l e

» Danchin's estimate '00: use weighted Lebesgue inequality
lu/rlleee S Ml /7]l

to bound
d. 9 0 < |l,.,0
el e < flu/rlleeello®lleee S fle”l e

> Both estimates give exponential upper bound.
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Childress’ t? argument using circulation '07

> Assume: w/(t,-) is a “blob” centered at (r,z) = (R(t),0)
with radius L(t), where R(t) > L(t). Then:

16/l 1 gy = 2 // WO(t, r,2)|drdz > R(£)L2(¢).

T
» This dictates L(t) < Rf%(t) and then
[u(R(2), 0)] ~ |’ [ L(£) ~ R(£)L(£) S R (1).

> This gives LR(t) S R2(t), ie. R(t) S 1+ t2.
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Childress’ t*/3 conjecture '08

» Childress observes that t? growth scenario contradicts kinetic
energy conservation, namely | u||2,.

» Indeed, recalling that ||ul|f~ ~ HWGHLOOL ~ RL ~ RY/2 and
|supp (w?)| ~ RL? ~ 1, we have a lower bound

lul22 > ||ul3 RL2 ~ (RZ)? = 00 as R — oo.

> But imposing energy conservation contradicts circulation
conservation. This is due to strong filamentation!
l i
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Childress’ t*/3 conjecture '08
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Childress’ t*/3 conjecture '08

» Now, energy conservation (with filamentation) gives
L Ul ~ (02 RE2 ~ [l B RS ~ RPLY
> This gives L ~ R=3/* and ||ul| =~ ~ RL ~ R'/*, suggesting
R(t) ~ 1+ t*/3

» Childress—Gilbert—Valiant '16: numerics showing t*/3 and
convergence to Sadovskii vortex after dynamical rescaling!
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Childress’ t*/3 conjecture '08

» Namely, numerics suggests that
W(t,r,2) = REOQLH(E)(r = R(t),2)),  R(t) ~ t*3,

where € is a special traveling wave of the 2D Euler equations,
called the Sadovskii vortex (Huang—Tong, Choi-J.—Sim).

» This was already observed in Shariff-Leonard—Ferziger '08 in
the case of patches, who also compared it with experiments
by Oshima '78. This also shows remarkable convergence to
the Sadovskii vortex patch.
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Main result

Theorem (Lim—J., preprint)

For compactly supported data with ||r=w§| 1~ < oo, we have
lw(t, M ioomsy < C(1+ t4/3)

for the solution of axisymmetric Euler without swirl.

» No extra conditions are assumed on the data.

> Applies to high dimension axisymmetric Euler equations
without swirl, giving global regularity without sign assumption
up to dimension 6 (Previously known: 4).

» For signed data, Maffei-Marchioro ('02) gives upper bound of
t1/4log(e + t) based on the conservation of ||rw?||:.



Feng—Sverak Lemma '15

Lemma (Feng—Sverak '15)

For axisymmetric velocity u = (u", u?),
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Lemma (Feng—Sverak '15)

For axisymmetric velocity u = (u", u?),

1 1 1
02 0 7 0 2
lull oo S [[re” [l llw®/ il lle”/ rl foe- (1)

» The t2 bound is immediate from (1): Rewriting
o) 2 0, 4 1 6.4
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Feng—Sverak Lemma '15

Lemma (Feng—Sverak '15)

For axisymmetric velocity u = (u", u?),

1 1 1
02 0 7 0 2
lull oo S [[re” [l llw®/ il lle”/ rl foe- (1)

» The t2 bound is immediate from (1): Rewriting

1 1 1
0% 0,4 1 0,4
lre”lf = [1r? - /rll s < R2(8)]lw” /1l

where R(t) is the maximal support radius in r, we get

1 0 /.13 11 0/,3 2
ulleee S R2(E)[["/rl|fillw”/rllfe = R(t) S 1+t

» Q. How are the exponents determined in this inequality?



Understanding Feng—Sverak inequality

» To have
lull e S Nre? I8 1w/l llw? /7] e

we need



Understanding Feng—Sverak inequality

» To have
lullpo < Nre?)$lle? /el D llw? /e oo

we need
» a+ [+ v =1 (homogeneity)
» —3a— [+ 2y =0 (3D scaling)



Understanding Feng—Sverak inequality

» To have

lullpo < Nre?)$lle? /el D llw? /e oo

we need

» a+ [+ v =1 (homogeneity)

» —3a— [+ 2y =0 (3D scaling)

» Two-dimensionalization: for w’ localized near (1,0), the
velocity kernel is well approximated by 2D Biot—Savart law.

0o+ 0
lulleso S NI w? 17

and this forces a + 8 = 5 = v (2D scaling).
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Two-dimensional velocity estimate

Lemma

For wop : R?2 5 R, upp = VEA"1w,p satisfies

1/2 1/2
luzp oo < Cllwanll}42 lwan |12

» We recall that

1
y wa2n(y)|
wo(0) = [ 3 uanr)dy — Jp(0)] 5 [ 220ay.

> We divide the integral using a cutoff length K

wW2ply woply wap ||t
[0y g, [ ol ol
i<k 1yl el K

» Optimizing in K gives the bound.
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Understanding Feng—Sverak inequality further

» Need a pointwise estimate for

u(r,z) = // FI7, r,z — 2] %(r, z)drdz,
{r>0,zeR}

where F is the axisymmetric velocity kernel.

» Split the domain and optimize :
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First variant of Feng—Sverak inequality and t3/2 bound

>

Observe: Childress’ t? proof and Feng—Sverak inequality both
uses ||w?/r||;1: “circulation”. Then, Childress’ t*/3 conjecture
involves the kinetic energy.

Goal: find the inequality involving conserved quantities
including || u||;2, having the smallest exponent on [[rw/||;:.
We could get in the end, by replacing circulation with energy,

9,11/6 2] 1/2 1/3
lullieo S [lre? (1281w /el 2] ull 123

This only gives the upper bound of t3/2, and did not seem
possible to lower the exponent 1/6.

This is wasteful since we just need the velocity estimate on
the maximal support (Marchioro '94). However, is there any
reason to believe that we get a better estimate there?



Strong versus weak filamentation
» Due to strong filamentation, the velocity maximum may not

be achieved around the maximum support.
» This is genuinely different from 2D under odd symmetry.
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Splitting the regions: axial and two-dimensional

» New idea: estimate the velocity on (R, Z) and decompose the
integral into “axial” and “two-dimensional” regions.
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Splitting the regions: axial and two-dimensional

» New idea: estimate the velocity on (R, Z) and decompose the
integral into “axial” and “two-dimensional” regions.
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Splitting the regions: axial and two-dimensional

» New idea: estimate the velocity on (R, Z) and decompose the

integral into “axial” and “two-dimensional” regions.
» R !
ol il 3o’
ol e g
\ \ ]
N b .
R/2 ° ' r

» Contribution from the axial region (R x R)\B(r 3 (R/2):

1w /121 /122,

» Contribution from the 2D region B z)(R/2):

1/2 1/2
RY4 1w /|2 w122
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Understanding the final estimate

In the “2D region” B = B(r 3)(R/2), we have

’/ FIR,ryz—Zz]w (r z)drdz| < R1/4||w0/r\|1/2|| ||1/2.

> Key observation: in 2D vorticity equation,
1/2 1/2
lunll o) S w2l g |20l oGy
» Incorporating the metric factor 2D +— 3D:

luzoll2rzy = R |ulli2g),  lwepliso(rey — Rllw’/rllis(s),

1/2 1/2 1/2 1/2
e e [ e e e e [



Second inequality in the 2D case
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1/2 1/2 :
We want a proof of |[uzp||jec(re) < HW2DHL£0(R2)H“2DHL£(R2) which
generalizes to the 3D axisymmetric case.
» Split the 2D kernel as before and recall
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Second inequality in the 2D case
1/2 1/2 :
We want a proof of |[uzp||jec(re) < HW2DHL£0(R2)H“2DHL£(R2) which
generalizes to the 3D axisymmetric case.
» Split the 2D kernel as before and recall

yJ_
/ Y an(y)dy
ly|l<K ‘Y|

» In the far field region, we now integrate by parts:

S Kl|wap|| Lo

1
/I Y wan(y)dy

yI>K ’y|2

yL
= />K va X U2D(Y)dy
y|>

~

1
—/ Y, x (X Yuan(y)dy
ly|>K
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Summary and Final Remarks

> We proved the upper bound t*/3, and there is numerical
evidence for its sharpness (with rescaled Sadovskii vortex).

» Without compact support assumption, the growth rate might
be faster, possibly t3/2.

» The best lower bound so far is sublinear: t3/8—¢ (Choi—J.,
Gustafson—Miller—Tsai preprint). This actually shows the
growth of the “average” of the vortex.

> With signed vorticity, the best upper bound is t'/*log(e + t)
but no evidence for any infinite growth in infinite time.

Thank you for your attention!
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