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Vorticity equation for incompressible inviscid flows

We consider in R3 the vorticity equation

∂tω + u · ∇ω = ω · ∇u,

u = ∇× (−∆)−1ω

where

ω(t, ·) : R3 → R3, u(t, ·) : R3 → R3

denote the vorticity and velocity of an incompressible inviscid flow
occupying R3 at time t.



Axisymmetric flows without swirl

A special class of solutions is given by

ω = ωθ(t, r , z) eθ, u = ur (t, r , z) er + uz(t, r , z) ez

in the cylindrical coordinates (r , θ, z).

The vorticity equation
reduces to

∂tω
θ + [ur∂r + uz∂z ]ω

θ =
ur

r
ωθ.

Smooth initial data have unique global in time solutions, but the
vorticity may grow with time, unlike the 2D case.

Question: optimal rate of vortex stretching

How fast can ∥ωθ(t, ·)∥L∞(R3) grow with time?
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Vortex confinement to vortex stretching

The relative vorticity satisfies

∂t
ωθ

r
+ u · ∇ ωθ

r
= 0

and gives ∥∥∥∥ωθ(t, ·)
r

∥∥∥∥
L∞(R3)

=

∥∥∥∥ωθ
0

r

∥∥∥∥
L∞(R3)

where the RHS is bounded for smooth ω = ωθeθ, say C 1(R3).
For compactly supported vorticity, we have that

∥ωθ(t, ·)∥L∞ ≤ R(t)

∥∥∥∥ωθ
0

r

∥∥∥∥
L∞(R3)

where R(t) := diamr supp(ω
θ(t, ·)).
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Upper bounds on vorticity growth

▶ Classical works of Majda (’94), Danchin (’00) gives

∥ωθ(t, ·)∥L∞ ≤ C exp(Ct).

▶ Childress (’07), Feng–Sverak (’15) gives

∥ωθ(t, ·)∥L∞ ≤ C (1 + t2)

and Childress (’08) conjectures that the optimal rate is t4/3.

▶ Several numerical works verify the rate t4/3.

▶ Lim–J. (preprint): proves upper bound of t4/3.
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Outline of the talk

▶ Experimental/Numerical works on vortex stretching

▶ Classical upper bounds on vortex stretching: exp(Ct)

▶ Childress’ circulation conserving dipole model: t2 bound

▶ Childress’ eroding dipole model: t4/3 conjecture

▶ Feng–Sverak inequality: t2 bound

▶ A first variation of Feng–Sverak inequality: t3/2 bound

▶ Another variation of Feng–Sverak inequality: t4/3 bound
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Colliding vortex rings

The simplest setup for vortex stretching:

Figure: Two symmetric rings with opposite signs “anti-parallel”



Head-on collision of vortex rings
Extensive experimental works: Oshima (78), Kambe–Minota (83),

Peace–Riley (83), Lim–Nickels (92), Chu–Wang–Chang–Chang–Chang (95), ...

Modeled by odd symmetry and sign assumptions

ωθ(r , z) = −ωθ(r ,−z), ωθ ≤ 0 on R3
+ = {z > 0}.

In this geometry, one has monotonicity:

d

dt
∥rωθ(t, ·)∥L1(R3) =

d

dt

∫∫
|r2ωθ(t, r , z)|drdz > 0.
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Exponential upper bounds

▶ Various experiments and numerical computations clearly show
large vortex stretching, and the question is the rate in time.

▶ From the axisymmetric Euler equations, we get

d

dt
∥ωθ∥L∞ ≤

∥∥∥∥urωθ

r

∥∥∥∥
L∞

,

and how should we bound the RHS in time?
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Exponential upper bounds

▶ Majda’s estimate ’94: use |supp R3(ωθ(t, ·))| ∼ L3 and

∥u∥L∞ ≲ sup
x∈R3

∫
R3

1

|x − y |2
|ωθ(y)|dy ≲ L∥ωθ∥L∞ ,

and bound

d

dt
∥ωθ∥L∞ ≤ ∥u∥L∞∥ωθ/r∥L∞ ≲ ∥ωθ∥L∞ .

▶ Danchin’s estimate ’00: use weighted Lebesgue inequality

∥u/r∥L∞ ≲ ∥ωθ/r∥L3,1

to bound

d

dt
∥ωθ∥L∞ ≤ ∥u/r∥L∞∥ωθ∥L∞ ≲ ∥ωθ∥L∞ .

▶ Both estimates give exponential upper bound.
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Childress’ t2 argument using circulation ’07
▶ Assume: ωθ(t, ·) is a “blob” centered at (r , z) = (R(t), 0)

with radius L(t), where R(t) ≫ L(t). Then:

∥ωθ/r∥L1(R3) = 2π

∫∫
|ωθ(t, r , z)|drdz ≳ R(t)L2(t).

▶ This dictates L(t) ≲ R− 1
2 (t) and then

|u(R(t), 0)| ∼ ∥ωθ∥L∞L(t) ∼ R(t)L(t) ≲ R
1
2 (t).

▶ This gives d
dtR(t) ≲ R

1
2 (t), i.e. R(t) ≲ 1 + t2.



Childress’ t2 argument using circulation ’07
▶ Assume: ωθ(t, ·) is a “blob” centered at (r , z) = (R(t), 0)

with radius L(t), where R(t) ≫ L(t). Then:

∥ωθ/r∥L1(R3) = 2π

∫∫
|ωθ(t, r , z)|drdz ≳ R(t)L2(t).

▶ This dictates L(t) ≲ R− 1
2 (t) and then

|u(R(t), 0)| ∼ ∥ωθ∥L∞L(t) ∼ R(t)L(t) ≲ R
1
2 (t).

▶ This gives d
dtR(t) ≲ R

1
2 (t), i.e. R(t) ≲ 1 + t2.



Childress’ t2 argument using circulation ’07
▶ Assume: ωθ(t, ·) is a “blob” centered at (r , z) = (R(t), 0)

with radius L(t), where R(t) ≫ L(t). Then:

∥ωθ/r∥L1(R3) = 2π

∫∫
|ωθ(t, r , z)|drdz ≳ R(t)L2(t).

▶ This dictates L(t) ≲ R− 1
2 (t) and then

|u(R(t), 0)| ∼ ∥ωθ∥L∞L(t) ∼ R(t)L(t) ≲ R
1
2 (t).

▶ This gives d
dtR(t) ≲ R

1
2 (t), i.e. R(t) ≲ 1 + t2.



Childress’ t4/3 conjecture ’08

▶ Childress observes that t2 growth scenario contradicts kinetic
energy conservation, namely ∥u∥2L2 .

▶ Indeed, recalling that ∥u∥L∞ ∼ ∥ωθ∥L∞L ∼ RL ∼ R1/2 and
|supp (ωθ)| ∼ RL2 ∼ 1, we have a lower bound

∥u∥2L2 ≳ ∥u∥2L∞RL2 ∼ (R
1
2 )2 → ∞ as R → ∞.

▶ But imposing energy conservation contradicts circulation
conservation. This is due to strong filamentation!
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Childress’ t4/3 conjecture ’08
▶ Now, energy conservation (with filamentation) gives

1 ∼ ∥u∥2L2 ∼ ∥u∥2L∞RL2 ∼ ∥ωθ∥2L∞RL4 ∼ R3L4

▶ This gives L ∼ R−3/4 and ∥u∥L∞ ∼ RL ∼ R1/4, suggesting

R(t) ∼ 1 + t4/3.

▶ Childress–Gilbert–Valiant ’16: numerics showing t4/3 and
convergence to Sadovskii vortex after dynamical rescaling!
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Childress’ t4/3 conjecture ’08
▶ Namely, numerics suggests that

ωθ(t, r , z) ≃ R(t)Ω(L−1(t)(r − R(t), z)), R(t) ∼ t4/3,

where Ω is a special traveling wave of the 2D Euler equations,
called the Sadovskii vortex (Huang–Tong, Choi–J.–Sim).

▶ This was already observed in Shariff–Leonard–Ferziger ’08 in
the case of patches, who also compared it with experiments
by Oshima ’78. This also shows remarkable convergence to
the Sadovskii vortex patch.



Main result

Theorem (Lim–J., preprint)

For compactly supported data with ∥r−1ωθ
0∥L∞ < ∞, we have

∥ωθ(t, ·)∥L∞(R3) ≤ C (1 + t4/3)

for the solution of axisymmetric Euler without swirl.

Remarks

▶ No extra conditions are assumed on the data.

▶ Applies to high dimension axisymmetric Euler equations
without swirl, giving global regularity without sign assumption
up to dimension 6 (Previously known: 4).

▶ For signed data, Maffei–Marchioro (’02) gives upper bound of
t1/4 log(e + t) based on the conservation of ∥rωθ∥L1 .
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Feng–Sverak Lemma ’15

Lemma (Feng–Sverak ’15)

For axisymmetric velocity u = (ur , uz),

∥u∥L∞ ≲ ∥rωθ∥
1
4

L1
∥ωθ/r∥

1
4

L1
∥ωθ/r∥

1
2
L∞ . (1)

▶ The t2 bound is immediate from (1): Rewriting

∥rωθ∥
1
4

L1
= ∥r2 · ωθ/r∥

1
4

L1
≤ R

1
2 (t)∥ωθ/r∥

1
4

L1
,

where R(t) is the maximal support radius in r , we get

∥u∥L∞ ≲ R
1
2 (t)∥ωθ/r∥

1
2

L1
∥ωθ/r∥

1
2
L∞ =⇒ R(t) ≲ 1 + t2.

▶ Q. How are the exponents determined in this inequality?
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▶ Q. How are the exponents determined in this inequality?



Feng–Sverak Lemma ’15

Lemma (Feng–Sverak ’15)
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Understanding Feng–Sverak inequality

▶ To have

∥u∥L∞ ≲ ∥rωθ∥αL1∥ω
θ/r∥β

L1
∥ωθ/r∥γL∞ ,

we need

▶ α+ β + γ = 1 (homogeneity)

▶ −3α− β + 2γ = 0 (3D scaling)

▶ Two-dimensionalization: for ωθ localized near (1, 0), the
velocity kernel is well approximated by 2D Biot–Savart law.

∥u∥L∞ ≲ ∥ωθ∥α+β
L1

∥ωθ∥γL∞

and this forces α+ β = 1
2 = γ (2D scaling).
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Two-dimensional velocity estimate

Lemma

For ω2D : R2 → R, u2D = ∇⊥∆−1ω2D satisfies

∥u2D∥L∞ ≤ C∥ω2D∥
1/2
L1

∥ω2D∥
1/2
L∞ .

▶ We recall that

u2D(0) =

∫
R2

y⊥

2π|y |2
ω2D(y)dy =⇒ |u2D(0)| ≲

∫
R2

|ω2D(y)|
|y |

dy .

▶ We divide the integral using a cutoff length K∫
|y |<K

|ω2D(y)|
|y |

dy ≲ K∥ω2D∥L∞ ,

∫
|y |≥K

|ω2D(y)|
|y |

dy ≲
∥ω2D∥L1

K
.

▶ Optimizing in K gives the bound.
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Understanding Feng–Sverak inequality further

▶ Need a pointwise estimate for

u(r̄ , z̄) =

∫∫
{r>0,z∈R}

F [r̄ , r , z − z̄ ]ωθ(r , z)drdz ,

where F is the axisymmetric velocity kernel.

▶ Split the domain and optimize :

(r̄, z̄)

∥∥∥r−1ωθ
∥∥∥
L∞

r

z

∥∥∥rωθ
∥∥∥
L1

∥∥∥r−1ωθ
∥∥∥
L1
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First variant of Feng–Sverak inequality and t3/2 bound

▶ Observe: Childress’ t2 proof and Feng–Sverak inequality both
uses ∥ωθ/r∥L1 : “circulation”.

Then, Childress’ t4/3 conjecture
involves the kinetic energy.

▶ Goal: find the inequality involving conserved quantities
including ∥u∥L2 , having the smallest exponent on ∥rωθ∥L1 .

▶ We could get in the end, by replacing circulation with energy,

∥u∥L∞ ≲ ∥rωθ∥1/6
L1

∥ωθ/r∥1/2L∞∥u∥1/3
L2

.

▶ This only gives the upper bound of t3/2, and did not seem
possible to lower the exponent 1/6.

▶ This is wasteful since we just need the velocity estimate on
the maximal support (Marchioro ’94). However, is there any
reason to believe that we get a better estimate there?
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Strong versus weak filamentation

▶ Due to strong filamentation, the velocity maximum may not
be achieved around the maximum support.

▶ This is genuinely different from 2D under odd symmetry.

r

z

r

z



Splitting the regions: axial and two-dimensional
▶ New idea: estimate the velocity on (R, z̄) and decompose the

integral into “axial” and “two-dimensional” regions.

(R, z̄)

∥∥∥r−1ωθ
∥∥∥
L∞

r

z

∥∥∥r−1ωθ
∥∥∥
Lp

∥u∥L2

R/2

▶ Contribution from the axial region (R+ × R)\B(R,z̄)(R/2):

∥ωθ/r∥1/3L∞∥ωθ/r∥2/3
L1

.

▶ Contribution from the 2D region B(R,z̄)(R/2):

R1/4∥ωθ/r∥1/2L∞∥u∥1/2
L2

.
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Understanding the final estimate

Lemma

In the “2D region” B = B(R,z̄)(R/2), we have∣∣∣∣∫∫
B
F [R, r , z − z̄ ]ωθ(r , z)drdz

∣∣∣∣ ≲ R1/4∥ωθ/r∥1/2L∞∥u∥1/2
L2

.

▶ Key observation: in 2D vorticity equation,

∥u2D∥L∞(R2) ≲ ∥ω2D∥
1/2
L∞(R2)

∥u2D∥
1/2
L2(R2)

.

▶ Incorporating the metric factor 2D 7→ 3D:

∥u2D∥L2(R2) 7→ R−1/2∥u∥L2(B), ∥ω2D∥L∞(R2) 7→ R∥ωθ/r∥L∞(B),

∥ω2D∥
1/2
L∞(R2)

∥u2D∥
1/2
L2(R2)

7→ R1/4∥ωθ/r∥1/2L∞∥u∥1/2
L2

.
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Second inequality in the 2D case

We want a proof of ∥u2D∥L∞(R2) ≲ ∥ω2D∥
1/2
L∞(R2)

∥u2D∥
1/2
L2(R2)

which

generalizes to the 3D axisymmetric case.

▶ Split the 2D kernel as before and recall∣∣∣∣∣
∫
|y |<K

y⊥

|y |2
ω2D(y)dy

∣∣∣∣∣ ≲ K∥ω2D∥L∞ .

▶ In the far field region, we now integrate by parts:∣∣∣∣∣
∫
|y |≥K

y⊥

|y |2
ω2D(y)dy

∣∣∣∣∣ =
∣∣∣∣∣
∫
|y |≥K

y⊥

|y |2
∇y × u2D(y)dy

∣∣∣∣∣
≃

∣∣∣∣∣
∫
|y |≥K

∇y × (
y⊥

|y |2
)u2D(y)dy

∣∣∣∣∣ ≲ 1

K
∥u2D∥L2 .
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Summary and Final Remarks

▶ We proved the upper bound t4/3, and there is numerical
evidence for its sharpness (with rescaled Sadovskii vortex).

▶ Without compact support assumption, the growth rate might
be faster, possibly t3/2.

▶ The best lower bound so far is sublinear : t3/8−ε (Choi–J.,
Gustafson–Miller–Tsai preprint). This actually shows the
growth of the “average” of the vortex.

▶ With signed vorticity, the best upper bound is t1/4 log(e + t)
but no evidence for any infinite growth in infinite time.

Thank you for your attention!


	Introduction

