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Dynamic channel assignment (DCA) has been a topic of intense research for 
many years, and a variety of DCA algorithms have been proposed. Nonetheless, 
some important issues have been neglected because of the complexity involved 
in their study. In particular, the impact of user motion on the performance of 
DCA systems has not received enough attention. In this paper, we quantify the 
impact of motion on the capacity and cost—in terms of average number of 
reassignments per call—of a variety of representative distributed fixed-power 
DCA algorithms. A novel adaptive algorithm especially suited for mobility 
environments is proposed, which achieves high capacity while controlling the 
reassignment rate. We also prove that most of this capacity can be effectively 
realized with a reduced number of radio transceivers per base station. Finally, 
we evaluate the degradation associated with the use of estimates of local-mean 
signal and interference levels—obtained by averaging instantaneous 
measurements—in-stead of the actual local-mean values. 

2014, AJCSIT, All Right Reserved. 

I. INTRODUCTION
DYNAMIC channel assignment (DCA) for frequency- 

and time-division multiple-access (FDMA/TDMA) systems 
has been a topic of intense research for many years [1]–[4]. 
As a result, a variety of algorithms have been proposed to the 
extent that low-tier systems such as CT-2 [5], Personal handy 
phone System [6], and Digital Enhanced Cordless 
Telecommunications [7] implement simple DCA algorithms. 
DCA allows for a much more efficient use of the available 
spectrum—an increasingly scarce and expensive resource—
and eliminates the burden of costly frequency planning, 
which becomes a formidable task in systems with a very 
large number of base stations (BSs). De-spite the effort 
devoted to investigating DCA algorithms, some important 
issues have been neglected because of the complexity 
involved in their study. In particular, the impact of user 
motion and the effects of imperfect signal and interference 
averaging are topics that have not received enough attention. 
These questions, not critical in fixed channel assignment 
(FCA) systems, have a direct impact on the performance of 
DCA schemes. Without their inclusion, any comparison 
between DCA and FCA might be distorted. In this 
contribution, we address these issues by means of large-scale 
computer simulations. 

II.THE CHANNEL ASSIGNMENT PROBLEM
The problem of finding the assignment that can 

serve a certain distribution of users with the least number of 
channels for a given set of constraints has received a great 
deal of attention [10], [11]. Unfortunately, this general 
problem is NP-complete. Mathematical approaches have to 
either make simplifying assumptions or focus on solutions 
that can be computed in a reasonable time [12]–[15]. As a 
result, these methods generally make no distinction between 
users within a given cell. One would expect that total or 
partial knowledge of the position of every user within its cell 
could be exploited to achieve much tighter packing [16]. 

With DCA, all channels are placed in a common pool 
and dynamically assigned according to some strategy. Traffic-
adaptive DCA algorithms assign channels to different cells 
depending on their respective loads and hence can alleviate 
traffic hot spots, but they fall short of exploiting user location 
[19]. Reuse distances are still fixed a priori. Interference-
adaptive algorithms, on the other hand, collect signal and 
interference measurements that relate to the position of 
users. By adjusting their reuse distances according to that 
information, they can push capacity to higher levels. With 
interference-adaptive DCA, reuse distances are variable, and 
thus the channel assignment algorithms them-selves have to 
protect active users from new assignments. There-fore, the 

pl
ag
ia
ri
sm

http://dx.doi.org/10.15520/ajcsit.v4i9.10
http://dx.doi.org/10.15520/ajcsit.v4i9.10


Durga et. al/Distributed Dynamic Channel in TDMA Mobile Communication Services 

77 

problem of finding the most appropriate channel for a new 
user can be broken down into two distinct problems. 

Admission control problem: The system has to 
determine the subset of idle channels on which the new user 
can coexist with the users already on those channels. To do 
so, the mutual path gains for the entire set of co-channel 
users including the new candidate user have to be known for 
every channel. This problem can only be resolved by 
centralized algorithms, which are impractical [20]–[22].  

Selection problem: The system has to select—based 
on some strategy—a channel from those, if any, that meet the 
admission criterion. Knowledge of signal and interference 
levels at the new user’s location suffices, and hence 
distributed approaches are feasible.  
III. DCA CHANNEL MANAGEMENT

A control channel (CCH) facilitates the 
implementation of DCA and becomes a reference resource for 
the entire system [3]. It also allows mobiles to locate BSs for 
initial access and handoff. Therefore, we construct our 
algorithms with the assumption that a CCH exists. In addition, 
system-wide synchronization is desirable with DCA, for it 
simplifies the structuring of the CCH [3]. Accordingly, 
synchronization to the slot level is assumed throughout this 
paper.3 With that, our analysis holds for both time- and 
frequency-division duplexes systems, and a traffic channel 
(TCH) corresponds to a pair of specific carrier/slot 
combinations for uplink and downlink 

To determine whether a given user meets the 
required up-link and downlink threshold for initial access, 
reassignment, or handoff, interference measurements are 
performed by BS and mobile on the specific TCH and 
compared against the signal level. As the signal level is 
obviously unavailable on the TCH before the assignment, it 
has to be mapped from the CCH.5 The thresholds chosen for 
our implementation were obtained by an iterative process 
and are summarized in Table I. Although the absolute 
performance of the various algorithms we discuss shows 
some sensitivity to the threshold choices, the relative 
performance is quite robust. 
IV. UPLINK DOWNLINK BALANCE

Since the quality of a link is basically conditioned by 
its weakest component, a key aspect of any channel 
assignment algorithm is the balancing of uplink and 
downlink. With a few exceptions [3], [28], the issue of 
achieving balanced link performance has been overlooked in 
much of the DCA litera-ture—where the algorithms usually 
operate on either uplink or downlink exclusively—and even 
in the first systems that have implemented DCA. Besides 
differences in receiver sensitivity, transmit power, antenna 
diversity, etc., the factors contributing to link imbalance are 
as follows. 

A proposed implementation of such an algorithm is 
one where each BS maintains a database with the state of all 
idle channels. Every time a channel has to be assigned, a 
shortlist containing the  best candidates—according to the 
uplink—is passed on to the mobile, which makes the final 
selection according to the downlink [3].6 With this approach, 
the link balance is controlled by the shortlist size. Good 
results are obtained with –  channels [3], with shorter 
lists tending to favor the uplink and longer ones favoring the 
downlink. 

Although user motion tends to destroy the balance 
so painstakingly obtained, balance is restored at every 
channel reassignment and handoff. 
Table I Simulation Parameters And Data 

V. MODELS
A. System Model

Antennas are unidirectional with two-branch 
selection diversity (all thresholds are pre-diversity). BSs do 
not transmit on idle channels. Good orthogonality between 
carriers is assumed, and thus adjacent channel interference is 
not considered. Initially, no limitation in the number of radio 
transceivers per BS is considered either.7 The local-mean 
CINR is defined as 
(1) 

with  the carrier power,  the in-band thermal noise, and 
 the co channel interference. Mobiles and BSs have equal 

receiver and transmitter performance, with the ratio 
between transmit power and noise floor such that the 
average carrier-to-noise ratio at a cell corner—with no 
interference—is 35 dB. Offered traffic has a uniform spatial 
distribution with Poisson arrival rates and exponentially 
distributed holding times with a mean of 100 s. 
B. Propagation Model

The local-mean path gain between two stations 
(identical for uplink and downlink) is modeled [17], [29] as 
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(2) 

where is a calibrated constant for the particular 
environment, is the distance,  is the propagation 
exponent, and is a shad-owing log-normal term with 
standard deviation  dB. The spatial autocorrelation 
function for the shadowing process is a polynomial 
approximation to an exponential function [30] with a 
correlation distance  m. 
C. Mobility Model

The mobility model is a random walk controlled by a 
“directionality” parameter , which determines how often the 
mobile makes a turn. When a call is originated, the user speed 
is as-signed, the directionality  is selected with uniform 
probability in the range 0–0.5, and an initial direction is 
randomly chosen. The speed is maintained throughout the 
entire call. Every 10 s, there is a turning opportunity, and 
thus the user changes direction or not with probability . 
When a change of direction occurs, the new direction is 
chosen from a triangular distribution centered on the old 
direction. This way, small angle turns are more probable than 
large ones. Three categories of users are defined according to 
their speed. 
Stationary users: No motion.  
Pedestrian users: Speed uniformly distributed within 0-5 
km/h.  
Slow vehicles: Speed sampled from a truncated Gaussian with 
a maximum of 60 km/h.  
Using these categories, in turn, we define three classes of 
traffic. 
Stationary: For applications such as wireless local loop.  
Pure pedestrian: Shopping centers, campus environments, 
etc.  
Hybrid: 80% pedestrians, 20% vehicles (urban and sub-
urban areas).  
Computer Simulations  

Simulations are performed on a wrapped-around 
universe consisting of a 16  16 square grid of BSs with the 
parameters summarized in Table I. The universe is created 
prior to the simulations, and thus the different algorithms are 
compared on the exact same scenario. In any given 
simulation, data collection does not start until the system has 
been brought to steady state. The confidence interval for all 
blocking and dropping rates is approximately 0.1  at 3% 
with 99% reliability. 
VI.PERFORMANCE OF DISTRIBUTED DCA ALGORITHMS
WITH USER MOTION

Using an FCA scheme with a reuse factor of 1/16 as a 
reference, we compare the performance of four 
representative distributed DCA algorithms when exposed to 
the three classes of traffic defined in Section V-C. Although 
many other schemes have been proposed [4], [31], most of 
them are in fact variations or combinations of the schemes 
we are about to analyze, which are chosen to portray distinct 
types of strategies. 
A. Channel Segregation

In a channel segregation algorithm (CSA), each BS 
stores a table with a priority value for every channel [32]. 
Upon an ad-mission request, the BS evaluates the channel 
with the highest priority. If it does not meet the admission 
threshold, the priority of that channel is decreased and the 

next highest priority channel is examined. If it does meet the 
threshold, the channel is selected and its priority increased. 
The priority of a channel is also de-creased when a user 
occupying that channel is dropped. With this method, each BS 
acquires its favorite channels by learning how they are used 
by the other BSs. 

Fig. 1.   Blocking and dropping performance of CSA at 
different levels of mobility. 

The performance of CSA—originally analyzed in [32] 
for stationary traffic only—is presented in Fig. 1. The 
blocking performance does not degrade with increasing 
mobility because every BS is able to resort to channels lower 
in the priority table. As a result, nonetheless, the segregation 
reuse structure is progressively destroyed, rendering users 
increasingly vulnerable to interference. Consequently, 
dropping increases so rapidly that, in fact, there is a slight 
reduction in blocking as busy channels become available 

B  Interference Minimization 
Least interference algorithms (LIAs) are based on 

selecting always the most quiet channel [31]. Since they can 
be regarded as “greedy,” they are particularly appropriate for 
open-access spectrum-sharing, with several operators using 
a common pool of channels. With motion factored in, 
however, blocking affects handoff users seeking a new BS as 
well as new users. Consequently, the dropping rate 
degradation caused by motion (Fig. 2) is even more dramatic 
than in CSA. Clearly, the system is unable to handle the 
increase in effective traffic associated with mobility as 
reassignment and handoff failure rates grow abruptly. Again, 
blocking actually decreases on account of the large number of 
dropped users. 
C. Interference Maximization (Below Threshold)
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The highest interference algorithm (HIA) tries to 
utilize the spectrum more compactly by selecting the most 
interfered channel below some level determined by the 
admission thresh-olds [31]. Evidently, one would expect this 
strategy to be poorly suited to high-speed users because of 
the need to continuously reassign them as they move. That is 
indeed the case, as seen in 
Fig. 2. Blocking and dropping performance of LIA at 
different levels of mobility. 

 
Fig. 3. Blocking and dropping performance of HIA at 
different levels of mobility. 
Fig. 3, with significant increases in both blocking and 
dropping as mobility grows. Also, since all shortlist channels 

are chosen with an uplink CINR very close to the threshold, 
there is a no negligible probability that the downlink CINRs 
for all of them fall short of it. To minimize this probability, the 
shortlist is extended to . If the mobile is unable to 
select any channel within the first set of , a second set of 

 is requested. 

 

 

 
Fig. 4. Average channel interference upon initial assignment with ARP at 10 erlangs/cell 
 
D.  Autonomous Reuse Partitioning 

The concept of reuse partitioning described in 
Section II, so effective with FCA, was extended to distributed 
systems in [33]. In the so-called autonomous reuse 
partitioning (ARP) algorithm, the channels are tested 
according to an ordering common to all cells, and the first 
idle one to meet the required threshold for both uplink and 
downlink is selected. They are assigned to users with weak 
signals, typically far from their BS. As the partitioning is 
achieved, the coverage area of every BS is divided into 
concentric rings—irregular in shape because of shadowing—
each assigned to a distinct channel. 

As traffic increases, idle channels are progressively 
activated until every channel is used. This point can be easily 
identified in Fig. 5, at any level of mobility, by a slope change 
in the blocking response as well as a sudden increase in 
dropping. Beyond that critical point, the system has serious 
difficulties allocating additional users, and thus performance 
degrades rapidly. User motion causes re-assignments and 

forces the system to activate additional channels earlier, so 
the critical point slides down.8 although, like 

 
Fig. 5. Blocking and dropping performance of ARP at 
different levels of mobility. 
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  HIA, ARP would not appear to be very well suited to 
high-speed users, it is in fact more robust because of the 
partitioning structure. Here, as users move, they roam into 
immediately adjacent ring areas corresponding to others 
channels whose levels of interference are only slightly 
different. 
Since, as in HIA, the channels contained in the shortlist have 
an uplink CINR very close to the admission threshold, the 
short-list is also extended to . 
E.  Performance Comparison 

The comparative blocking and dropping 
performances—in a pedestrian environment—of the 
algorithms described in the previous sections are depicted in 
Fig. 6 along with the FCA-16 reference. Uplink CINR 
cumulative distributions are shown in Fig. 7—downlink 
values show a similar trend—for a load of 10erlangs/cell. 
Notice how capacity can be directly related to the CINR 
distribution: high-capacity DCA algorithms are able to 
accommodate more users by arranging them so that their 
CINR is as close as possible to some target value (chosen to 
provide a comfortable margin above ). This process is 
usually referred to as CINR balancing. Users above target do 
not experience any significant advantage, yet they diminish 
the system capacity by occupying channels that could have 
been assigned to other users in a more detrimental situation. 
Not surprisingly, its capacity falls even below that of CSA. 
Both HIA and ARP, on the other hand, achieve good CINR 
balance as expected. ARP, however, shows a much larger 
capacity, especially in terms of dropping. That is a direct 
result of the structured manner in which ARP packs users, 
which greatly reduces the probability that incoming users 
create excessive interference to active users [35]. Altogether, 
ARP outperforms all other algorithms presented, especially 
in terms of dropping. 

 
Fig. 6.   Algorithm comparison in a pedestrian 
environment. 

Shown in Table II is the average number of 
reassignments per call in a pedestrian environment. With 
LIA, the reassignment rate is very low. With CSA, the rate is 
also low, although it shows fast growth with traffic, 
confirming that the established segregation structure is being 
increasingly violated. HIA requires multiple re-assignments 
per call to sustain its non structured CINR balance, whereas 
ARP shows a moderate stable rate of reassignments. 
VII.ADAPTIVE DISTRIBUTED REUSE PARTITIONING 

ARP and related distributed reuse partitioning 
algorithms had previously been studied only in stationary 
environments [33]–[36], and their superior performance in 
those conditions has been reported [37]. In the previous 
section, it was shown that these techniques are robust and 
behave well also in mobility environments. In those 
conditions, however, it may be possible to further improve 
their performance. 

 
Fig. 7. Uplink CINR cumulatives at 10 erlangs/cell in a 
pedestrian environment. 
TABLE II Average number of reassignments per call in a 
pedestrian environment. For adrp, the adaptive threshold is 
also shown. For all others,  = 18 db 

 
With motion, the pattern distortion is much more 

severe, and users are likely to roam out of the partitioning 
ring corresponding to their channel. Reassignments, 
however, are only triggered when , that is, when the 
CINR drifts toward too low a value. A more aggressive 
channel management policy could preserve the partitioning 
patterns by reassigning users every time they roam onto an 
adjacent ring regardless of whether that corresponds to a 
CINR drift toward too low or too high a value.  

On the other hand, it has been shown that when ARP 
operates below its critical point—at low or moderate traffic 
values—it only utilizes a portion of the available channels. 
According to Fig. 4, the usage is 82% at 10 erlangs/cell in a 
pedestrian environment. With more channels in use, the 
same amount of interference is distributed over a broader 
bandwidth.9 In our ADRP algorithm, every BS periodically 
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adjusts its own admission thresh-olds by monitoring the 
activity on the lowest channel in the set as follows. 
1) If no interference is detected on that lowest channel, the 
admission and readmission thresholds are increased by 

 dB; otherwise, they are decreased by  dB. 
2)A maximum excursion of 6 dB is allowed (  2  dB,  

 dB).  
The performance of the ADRP algorithm is displayed 

in Fig. 6 and in Table II along with the other algorithms. 
Besides some additional capacity gain with respect to ARP 
(7–8% at 3% blocking), the algorithm shows a reassignment 
rate more logically related to the system load: at low traffic 
values, reassignments are occasional (0.34 reassignments per 
call at 6 erlangs/cell), whereas in more congested conditions, 
reassignments are more frequent (0.87 at 14 erlangs/cell). 
Also shown in Table II is the adaptive admission threshold 

 used by ADRP to control the reassignment rate. Also recall 
that by tightening the upper threshold , more capacity 
could be obtained in trade for an overall higher reassignment 
rate. 

At the same time, DCA algorithms rely entirely on 
signal, interference, and CINR local-mean levels, which have 
to be estimated by low-pass filtering their instantaneous 
values. The quality of these estimates depends on the mobile 
speed and the dimension of the averaging window. This 
window must be long enough to average out fast-fading 
fluctuations, yet sufficiently short to track the shadowing 
variations. Interestingly, the shape of the averaging window 
is not a primary factor [38], and thus we choose to employ a 
simple rectangular window. The optimum spatial window 
length depends basically on  measured in wavelengths and 
on  [38]. Unfortunately, the correspondence between this 
optimum length and the averaging time window is 
determined by the mobile speed, which is a parameter that is 
very difficult to evaluate. Measuring and tracking the velocity 
of mobiles in real time constitutes a topic of active re-search 
[39]. If such information were available, the estimation 

 
Fig. 8. Blocking performance of ADRP versus number of 
radio transceivers in a pedestrian environment. 

 
Fig. 9. ADRP performance degradation when exact local-
mean levels are replaced by local-mean estimates with 
Rayleigh fades and a 500-ms averaging window at 1.9 
GHz. No limit on transceivers. 

In Fig. 9, we quantify the performance degradation of 
the ADRP algorithm in a 1.9-GHz pedestrian system with 
Rayleigh fading and local-mean estimates used instead of the 
actual local-mean values. At 3% blocking, the capacity loss is 
only 6%. Dropping, on the other hand, is basically unaffected 
because, when a reassignment fails because of erroneous 
estimates, the system simply triggers a new attempt. The 
reassignment rates, on the other hand, increase by about 
18%. 

CONCLUSION 
This paper has quantified the impact of user motion 

on the capacity and cost—in terms of average number of 
reassignments per call—of a variety of distributed fixed-
power DCA algorithms. Comparative performance analysis of 
these algorithms has shown that the concept of CINR balance 
is essential in order to exploit the instantaneous position of 
users to achieve tight reuse distances and high capacity [34]. 
Distributed reuse partitioning algorithms are very effective 
at achieving a good degree of CINR balance. Within this class 
of algorithms, we have pro-posed a novel adaptive algorithm 
(ADRP) that further increases capacity by about 7–8% while 
significantly reducing the reassignment rate at low and 
moderate load levels. With respect to a conventional FCA 
system with a reuse factor of 1/16, a capacity 3.7 times 
higher (at 3% blocking) can be achieved with ADRP in 
pedestrian environments. 

It has also been shown that most of this capacity can 
be realized effectively with a reduced number of radio 
transceivers per BS, despite the fact that local-mean 
estimates of signal and interference levels obtained by 
averaging instantaneous measurements are constrained by 
necessarily short temporal estimation windows and thus 
deviate from their actual local-mean values. 
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