Recent progress on the distillability problem

Lin Chen

School of Mathematics and Systems Science, Beihang University, Beijing, China

Email: linchen@buaa.edu.cn

NIMS, Daejeon, Korea, February 16, 2016
The talk is based on two papers:

Collaborator:

Dragomir Z Djokovic

Department of Pure Mathematics and Institute for Quantum Computing, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
The distillability problem and entanglement distillation

$M \times N$ NPT states of rank $\max\{M, N\}$

Open problems
The distillability problem and entanglement distillation

$m \times n$ NPT states of rank $\max\{m, n\}$

- The distillability problem and entanglement distillation
- $m \times n$ NPT states of rank $\max\{m, n\}$

Open problems
Outlines

- The distillability problem and entanglement distillation
- $M \times N$ NPT states of rank $\max\{M, N\}$
- Two-qutrit NPT states of rank four and five
Outlines

- The distillability problem and entanglement distillation
- $M \times N$ NPT states of rank $\max\{M, N\}$
- Two-qutrit NPT states of rank four and five
- Open problems
Entanglement distillation

- Pure entangled states are essential resources in quantum information
Entanglement distillation

- Pure entangled states are essential resources in quantum information
- Pure entangled states become mixed entangled states by noise
Entanglement distillation

- Pure entangled states are essential resources in quantum information
- Pure entangled states become mixed entangled states by noise
Entanglement distillation

- Pure entangled states are essential resources in quantum information
- Pure entangled states become mixed entangled states by noise

Entanglement distillation. Bennett et al, 1996.

Definition

We transform N copies of an arbitrary entangled state ρ into a pure entangled state $|\psi\rangle$ asymptotically under local operations and classical communications (LOCC).
Entanglement distillation

- Pure entangled states are essential resources in quantum information
- Pure entangled states become mixed entangled states by noise

Entanglement distillation. Bennett et al, 1996.

Definition

We transform N copies of an arbitrary entangled state ρ into a pure entangled state $|\psi\rangle$ asymptotically under local operations and classical communications (LOCC).

- i.e.,

$$\rho \otimes N \rightarrow |\psi\rangle$$
Entanglement distillation

- Pure entangled states are essential resources in quantum information
- Pure entangled states become mixed entangled states by noise

Entanglement distillation. Bennett et al, 1996.

Definition

We transform N copies of an arbitrary entangled state ρ into a pure entangled state $|\psi\rangle$ asymptotically under local operations and classical communications (LOCC).

- i.e.,

$$\rho^{\otimes N} \rightarrow |\psi\rangle$$

$$\rightarrow \left(\frac{|00\rangle + |11\rangle}{\sqrt{2}}\right)^{\otimes m}$$
Entanglement distillation

- Hence
Entanglement distillation

Hence

Definition
If pure entangled states are obtained then ρ is distillable.
Entanglement distillation

- Hence

Definition

If pure entangled states are obtained then ρ is distillable.

- and
Entanglement distillation

- Hence

Definition
If pure entangled states are obtained then \(\rho \) is distillable.

- and

Definition
If no pure entangled states can be obtained, then \(\rho \) is not distillable, or equivalently \(\rho \) is undistillable.
Distillability problem

- The positive-partial-transpose (PPT) states are not distillable.
The distillability problem and entanglement distillation

$M \times N$ NPT states of rank $\max\{M, N\}$

Distilling two-qutrit NPT states

Distillability problem

- The positive-partial-transpose (PPT) states are not distillable.

Definition

Distillability problem. Is every NPT state distillable?
Distillability problem

- The positive-partial-transpose (PPT) states are not distillable.

Definition

Distillability problem. Is every NPT state distillable?

- General belief: No!
Distillability problem

- The positive-partial-transpose (PPT) states are not distillable.

Definition

Distillability problem. Is every NPT state distillable?

- General belief: No!

- Proof of the existence of undistillable NPT states: No idea yet.
Distillability problem

- The positive-partial-transpose (PPT) states are not distillable.

Definition

Distillability problem. Is every NPT state distillable?

- General belief: **No!**

- Proof of the existence of undistillable NPT states: **No idea yet.**

- Proof of the existence 2-undistillable NPT Werner states: **Not found yet.**
Distillability problem

- The positive-partial-transpose (PPT) states are not distillable.

Definition

Distillability problem. Is every NPT state distillable?

- General belief: No!

- Proof of the existence of undistillable NPT states: No idea yet.

- Proof of the existence 2-undistillable NPT Werner states: Not found yet.

- Attempts for the proof: Yes, there is something...
Attempts to solve the distillability problem

- Any NPT state is convertible to an NPT Werner state,
 Divincenzo et al, Dur et al 2000
The distillability problem and entanglement distillation

$M \times N$ NPT states of rank $\max\{M, N\}$

Distilling two-qutrit NPT states

Attempts to solve the distillability problem

- Any NPT state is convertible to an NPT Werner state,
 Divincenzo et al, Dur et al 2000

- n-undistillable but $(n + 1)$-distillable states
 Watrous, 2004
Attempts to solve the distillability problem

- Any NPT state is convertible to an NPT Werner state, Divincenzo et al, Dur et al 2000
- n-undistillable but $(n + 1)$-distillable states
 Watrous, 2004
- 2-positive map,
 Clarisse, 2005
The distillability problem and entanglement distillation

$M \times N$ NPT states of rank $\max\{M, N\}$

Distilling two-qutrit NPT states

Attempts to solve the distillability problem

- **Any NPT state is convertible to an NPT Werner state**, Divincenzo et al, Dur et al 2000
- **n-undistillable but $(n + 1)$-distillable states**
 Watrous, 2004
- **2-positive map**, Clarisse, 2005
- **Numerical test on the 2-distillability of two-qutrit Werner states**, Vianna et al, 2006
Attemps to solve the distillability problem

- Any NPT state is convertible to an NPT Werner state, Divincenzo et al, Dur et al 2000
- n-undistillable but $(n + 1)$-distillable states
 Watrous, 2004
- 2-positive map,
 Clarisse, 2005
- Numerical test on the 2-distillability of two-qutrit Werner states,
 Vianna et al, 2006
- 2-distillability of 4×4 Werner states,
 Pankowski et al, 2007
Attempts to solve the distillability problem

- Any NPT state is convertible to an NPT Werner state,
 Divincenzo et al, Dur et al 2000
- \(n\)-undistillable but \((n+1)\)-distillable states
 Watrous, 2004
- 2-positive map,
 Clarisse, 2005
- Numerical test on the 2-distillability of two-qutrit Werner states,
 Vianna et al, 2006
- 2-distillability of \(4 \times 4\) Werner states,
 Pankowski et al, 2007
- Hiroshima, 2008
 Sperling et al, 2009
Attempts to solve the distillability problem

- Any NPT state is convertible to an NPT Werner state, Divincenzo et al, Dur et al 2000
- \(n\)-undistillable but \((n + 1)\)-distillable states
 Watrous, 2004
- 2-positive map,
 Clarisse, 2005
- Numerical test on the 2-distillability of two-qutrit Werner states,
 Vianna et al, 2006
- 2-distillability of \(4 \times 4\) Werner states,
 Pankowski et al, 2007
- Hiroshima, 2008
 Sperling et al, 2009
- ???
The distillability problem and entanglement distillation

$M \times N$ NPT states of rank $\max\{M, N\}$

Distilling two-qutrit NPT states

PPT and NPT

Definition

The partial transpose of a bipartite quantum state ρ acting on $\mathcal{H}_A \otimes \mathcal{H}_B$ is computed in an orthonormal (o .n.) basis $\{|a_i\rangle\}$ of system A, is defined by

$$\rho^\Gamma := \sum_{ij} |a_i\rangle\langle a_j| \otimes \langle a_j|\rho|a_i\rangle.$$
The distillability problem and entanglement distillation

$M \times N$ NPT states of rank $\max\{M, N\}$

Distilling two-qutrit NPT states

PPT and NPT

Definition

The **partial transpose** of a bipartite quantum state ρ acting on $\mathcal{H}_A \otimes \mathcal{H}_B$ is computed in an orthonormal (o.n.) basis $\{|a_i\rangle\}$ of system A, is defined by

$$\rho^\Gamma := \sum_{ij} |a_i\rangle\langle a_j| \otimes \langle a_j|\rho|a_i\rangle.$$

Definition

ρ is **PPT** if the partial transpose of ρ is positive semidefinite. Otherwise, ρ is **NPT**.

For example, all separable states are PPT. All pure entangled states are NPT.
The distillability problem and entanglement distillation

Distilling two-qutrit NPT states of rank four

Open problems

PPT and NPT

Definition

The **partial transpose** of a bipartite quantum state \(\rho \) acting on \(\mathcal{H}_A \otimes \mathcal{H}_B \) is computed in an orthonormal (o.n.) basis \(\{|a_i\rangle\} \) of system A, is defined by

\[
\rho^\Gamma := \sum_{ij} |a_i\rangle\langle a_j| \otimes \langle a_j|\rho|a_i\rangle.
\]

Definition

\(\rho \) is **PPT** if the partial transpose of \(\rho \) is positive semidefinite. Otherwise, \(\rho \) is **NPT**.

- For example, all separable states are PPT. All pure entangled states are NPT.
Example. If

$$\rho = \begin{pmatrix} M_{11} & M_{12} & M_{13} \\ M_{21} & M_{22} & M_{23} \\ M_{31} & M_{32} & M_{33} \end{pmatrix}$$
Example. If

$$\rho = \begin{pmatrix}
M_{11} & M_{12} & M_{13} \\
M_{21} & M_{22} & M_{23} \\
M_{31} & M_{32} & M_{33}
\end{pmatrix}$$

then

$$\rho^\Gamma = \begin{pmatrix}
M_{11} & M_{21} & M_{31} \\
M_{12} & M_{22} & M_{32} \\
M_{13} & M_{23} & M_{33}
\end{pmatrix}$$
The distillability problem and entanglement distillation

$M \times N$ NPT states of rank $\max\{M, N\}$

Distilling two-qutrit NPT states of rank four

Open problems

The mathematical formulation of distillability problem

The distillability problem and entanglement distillation

\(M \times N \) NPT states of rank \(\max\{M, N\} \)

Distilling two-qutrit NPT states of rank four

Open problems

The mathematical formulation of distillability problem

<table>
<thead>
<tr>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\rho) is 1-distillable if there exists a pure bipartite state (</td>
</tr>
</tbody>
</table>

For example, PPT states are not distillable.
The distillability problem and entanglement distillation

$M \times N$ NPT states of rank $\max\{M, N\}$

Distilling two-qutrit NPT states of rank four

Open problems

The mathematical formulation of distillability problem

Definition

ρ is **1-distillable** if there exists a pure bipartite state $|\psi\rangle$ of Schmidt rank two such that $\langle \psi | \rho \Gamma | \psi \rangle < 0$.

Otherwise, ρ is **1-undistillable**.
The mathematical formulation of distillability problem

Definition

\[\rho \text{ is 1-distillable if there exists a pure bipartite state } |\psi\rangle \text{ of Schmidt rank two such that } \langle \psi | \rho^\Gamma |\psi\rangle < 0. \]

- Otherwise, \(\rho \) is 1-undistillable.

Definition

(1) \(\rho \) is \(n \)-distillable if the bipartite state \(\rho \otimes^n \) is 1-distillable.
(2) \(\rho \) is distillable if it is \(n \)-distillable for some \(n \geq 1 \), i.e.,

\[\langle \psi | (\rho \otimes^n)^\Gamma |\psi\rangle < 0, \]

for a bipartite state \(|\psi\rangle \) of Schmidt rank two.
The distillability problem and entanglement distillation

Distilling two-qutrit NPT states of rank four

Open problems

The mathematical formulation of distillability problem

Definition

ρ is 1-distillable if there exists a pure bipartite state |ψ⟩ of Schmidt rank two such that \langle ψ | ρ^Γ | ψ \rangle < 0.

- Otherwise, ρ is 1-undistillable.

Definition

(1) ρ is n-distillable if the bipartite state \(ρ^{⊗n} \) is 1-distillable.
(2) ρ is distillable if it is n-distillable for some \(n \geq 1 \), i.e.,

\[\langle ψ | (ρ^{⊗n})^Γ | ψ \rangle < 0, \]

for a bipartite state |ψ⟩ of Schmidt rank two.

- Otherwise, ρ is not distillable.
The mathematical formulation of distillability problem

Definition

\(\rho \) is 1-distillable if there exists a pure bipartite state \(|\psi\rangle\) of Schmidt rank two such that \(\langle \psi | \rho^\Gamma | \psi \rangle < 0 \).

- Otherwise, \(\rho \) is 1-undistillable.

Definition

(1) \(\rho \) is \(n \)-distillable if the bipartite state \(\rho^\otimes n \) is 1-distillable.
(2) \(\rho \) is distillable if it is \(n \)-distillable for some \(n \geq 1 \), i.e.,

\[\langle \psi | (\rho^\otimes n)^\Gamma | \psi \rangle < 0, \]

for a bipartite state \(|\psi\rangle\) of Schmidt rank two.

- Otherwise, \(\rho \) is not distillable.

- For example, PPT states are not distillable.
The distillability problem and entanglement distillation

$M \times N$ NPT states of rank $\max\{M, N\}$

Distilling two-qutrit NPT states

The math/mess of many-copy states

- $\rho^{\otimes n} = \rho_{A_1B_1} \otimes \cdots \otimes \rho_{A_nB_n} \equiv \rho_{A_1\ldots A_n:B_1\ldots B_n}$.

Example. Consider the “critical” Werner state

$$\rho_{A_1B_1} = \sum_{i,j} \left(|i,j\rangle \langle i,j| - \frac{1}{2} |j,i\rangle \langle j,i| \right)$$

$$\rho_{A_2B_2} = \sum_{m,n} \left(|m,n\rangle \langle m,n| - \frac{1}{2} |n,m\rangle \langle n,m| \right)$$

Then

$$\rho^{\otimes 2} = \rho_{A_1B_1} \otimes \rho_{A_2B_2} = \sum_{i,j,m,n} \left(|im,jn\rangle \langle im,jn| - \frac{1}{2} |im,jn\rangle \langle jn,im| + \frac{1}{4} |im,jn\rangle \langle jn,im| \right)$$
The distillability problem and entanglement distillation

The math/mess of many-copy states

- \(\rho \otimes^n = \rho_{A_1B_1} \otimes \cdots \otimes \rho_{A_nB_n} := \rho_{A_1\cdots A_n:B_1\cdots B_n} \).

Example. Consider the “critical” Werner state

\[
\rho_{A_1B_1} = \sum_{i,j} (|i,j\rangle\langle i,j| - \frac{1}{2} |i,j\rangle\langle j,i|)_{A_1B_1}
\]

\[
\rho_{A_2B_2} = \sum_{m,n} (|m,n\rangle\langle m,n| - \frac{1}{2} |m,n\rangle\langle n,m|)_{A_2B_2}
\]
The math/mess of many-copy states

- \(\rho^{\otimes n} = \rho_{A_1B_1} \otimes \cdots \otimes \rho_{A_nB_n} \equiv \rho_{A_1 \cdots A_n : B_1 \cdots B_n} \).

- **Example.** Consider the “critical” Werner state

\[
\rho_{A_1B_1} = \sum_{i,j} (|i,j\rangle\langle i,j| - \frac{1}{2}|i,j\rangle\langle j,i|)_{A_1B_1}
\]

\[
\rho_{A_2B_2} = \sum_{m,n} (|m,n\rangle\langle m,n| - \frac{1}{2}|m,n\rangle\langle n,m|)_{A_2B_2}
\]

- Then

\[
\rho^{\otimes 2} = \rho_{A_1B_1} \otimes \rho_{A_2B_2}
\]

\[
= \sum_{i,j,m,n} \left(|im,jn\rangle\langle im,jn| - \frac{1}{2}|im,jn\rangle\langle jm,in| - \frac{1}{2}|im,jn\rangle\langle in,jm| + \frac{1}{4}|im,jn\rangle\langle nj,im| \right)_{A_1A_2,B_1B_2}
\]
List of 1-distillable NPT states

- We say a bipartite state ρ_{AB} is $M \times N$ if $\text{rank} \rho_A = M$ and $\text{rank} \rho_B = N$.
List of 1-distillable NPT states

- We say a bipartite state ρ_{AB} is $M \times N$ if $\text{rank } \rho_A = M$ and $\text{rank } \rho_B = N$.

- Two-qubit states
List of 1-distillable NPT states

- We say a bipartite state ρ_{AB} is $M \times N$ if $\text{rank} \rho_A = M$ and $\text{rank} \rho_B = N$.

- Two-qubit states

- $2 \times N$ states
List of 1-distillable NPT states

- We say a bipartite state ρ_{AB} is $M \times N$ if $\text{rank} \rho_A = M$ and $\text{rank} \rho_B = N$.

- Two-qubit states

- $2 \times N$ states

- $M \times N$ states of rank $\max\{M, N\}$
 - Horodecki et al, 1999
 - LC and Yi-Xin Chen, 2008
 - LC and DZ, 2011
List of 1-distillable NPT states

- We say a bipartite state ρ_{AB} is $M \times N$ if $\text{rank} \rho_A = M$ and $\text{rank} \rho_B = N$.

- Two-qubit states

- $2 \times N$ states

- $M \times N$ states of rank $\max\{M, N\}$
 Horodecki et al, 1999
 LC and Yi-Xin Chen, 2008
 LC and DZ, 2011

- Two-qutrit states of rank four
 LC and DZ, 2016
The strategy of entanglement distillation

- Convert the target state ρ or $\rho \otimes^n$ to a distillable state by LOCC.
The strategy of entanglement distillation

- Convert the target state ρ or $\rho \otimes^n$ to a distillable state by LOCC.
- Experience: $n = 2$ is hard!
The strategy of entanglement distillation

- Convert the target state ρ or $\rho^\otimes n$ to a distillable state by LOCC.
- Experience: $n = 2$ is hard!
- The normalization factors of quantum states are often ignored in entanglement distillation because it does not affect the distillability of quantum states.
The strategy of entanglement distillation

- Convert the target state ρ or $\rho^\otimes n$ to a distillable state by LOCC.
- Experience: $n = 2$ is hard!
- The normalization factors of quantum states are often ignored in entanglement distillation because it does not affect the distillability of quantum states.

Example 1. If

$$P = |1\rangle\langle 1| + |2\rangle\langle 2|,$$
$$\rho = (|11\rangle + |22\rangle)(\langle 11| + \langle 22|) + |33\rangle\langle 33|,$$
The strategy of entanglement distillation

- Convert the target state ρ or $\rho \otimes n$ to a distillable state by LOCC.
- Experience: $n = 2$ is hard!

- The normalization factors of quantum states are often ignored in entanglement distillation because it does not affect the distillability of quantum states.

- Example 1. If

$$P = |1\rangle\langle 1| + |2\rangle\langle 2|,$$

$$\rho = (|11\rangle + |22\rangle)(\langle 11| + \langle 22|) + |33\rangle\langle 33|,$$

then

$$(P \otimes I_B)\rho(P \otimes I_B) = (|11\rangle + |22\rangle)(\langle 11| + \langle 22|)$$

is a Bell state.
The strategy of entanglement distillation

- Convert the target state \(\rho \) or \(\rho \otimes^n \) to a distillable state by LOCC.

- Experience: \(n = 2 \) is hard!

- The normalization factors of quantum states are often ignored in entanglement distillation because it does not affect the distillability of quantum states.

- Example 1. If

 \[
 P = |1\rangle\langle 1| + |2\rangle\langle 2|,
 \]
 \[
 \rho = (|11\rangle + |22\rangle)(\langle 11| + \langle 22|) + |33\rangle\langle 33|,
 \]
 then

 \[
 (P \otimes I_B)\rho(P \otimes I_B) = (|11\rangle + |22\rangle)(\langle 11| + \langle 22|)
 \]
 is a Bell state.

- So \(\rho \) is 1-distillable.
The strategy of entanglement distillation

Example 2. If

\[P = |1\rangle\langle 1| + |2\rangle\langle 2|, \]
\[\rho = (|11\rangle + |22\rangle + |33\rangle)(\langle 11| + \langle 22| + \langle 33|) + |22\rangle + |33\rangle)(\langle 22| + \langle 33|) + |33\rangle\langle 33|, \]
Example 2. If

\[P = |1\rangle\langle 1| + |2\rangle\langle 2|, \]

\[\rho = (|11\rangle + |22\rangle + |33\rangle)(\langle 11| + \langle 22| + \langle 33|) \]

\[+ (|22\rangle + |33\rangle)(\langle 22| + \langle 33|) + |33\rangle\langle 33|, \]

then

\[(P \otimes I_B)\rho(P \otimes I_B) \]

is a two-qubit mixed entangled state. So \(\rho \) is also distillable.
The difficulty of entanglement distillation

- Finding a good P is hard, although P belongs to LOCC.
The difficulty of entanglement distillation

- Finding a good P is hard, although P belongs to LOCC.

- When is $(P \otimes I_B)\rho(P \otimes I_B)$ entangled?
The difficulty of entanglement distillation

- Finding a good P is hard, although P belongs to LOCC.
- When is $(P \otimes I_B)\rho(P \otimes I_B)$ entangled?
- What if $(P \otimes I_B)\rho(P \otimes I_B)$ is PPT?
The difficulty of entanglement distillation

- Finding a good P is hard, although P belongs to LOCC.

- When is $(P \otimes I_B)\rho(P \otimes I_B)$ entangled?

- What if $(P \otimes I_B)\rho(P \otimes I_B)$ is PPT?

- A popular trick: let $(P \otimes I_B)\rho(P \otimes I_B)$ be a $2 \times N$ state then it has to be PPT, or some entries have to be zero.
The distillability problem and entanglement distillation

$M \times N$ NPT states of rank $\max\{M, N\}$

- Distilling two-qutrit NPT states of rank four

Open problems
Distilling $M \times N$ NPT states of rank $\max\{M, N\}$

Distilling $M \times N$ NPT states of rank $\max\{M, N\}$

Lemma

$M \times N$ NPT states of rank smaller than $\max\{M, N\}$ is 1-distillable.
Distilling $M \times N$ NPT states of rank $\max\{M, N\}$

Lemma

$M \times N$ NPT states of rank smaller than $\max\{M, N\}$ is 1-distillable.

- LC and DZ, 2011.
Distilling $M \times N$ NPT states of rank $\max\{M, N\}$

Lemma

$M \times N$ NPT states of rank **smaller than** $\max\{M, N\}$ is 1-distillable.

- LC and DZ, 2011.

Lemma

$M \times N$ NPT states of rank **equal to** $\max\{M, N\}$ is 1-distillable.
Distilling $M \times N$ NPT states of rank $\max\{M, N\}$

- **LFRP.** Let ρ_{AB} be an $M \times N$ NPT states of rank $\max\{M, N\}$. We say ρ_{AB} has left full-rank property (LFRP) if there is some state $|x\rangle$ such that $\langle x|B\rho_{AB}|x\rangle_B$ is invertible.
Distilling \(M \times N \) NPT states of rank \(\max\{M, N\} \)

- **LFRP.** Let \(\rho_{AB} \) be an \(M \times N \) NPT states of rank \(\max\{M, N\} \). We say \(\rho_{AB} \) has left full-rank property (LFRP) if there is some state \(|x\rangle \) such that \(\langle x | B \rho_{AB} | x \rangle_B \) is invertible.

- **Example.** If

\[
\rho_{AB} = (|11\rangle + |22\rangle)(\langle 11 | + \langle 22 |) + |33\rangle\langle 33 |
\]

\[
\sigma_{AB} = (|11\rangle + |22\rangle)(\langle 11 | + \langle 22 |) + |22\rangle\langle 22 | + |33\rangle\langle 33 |
\]
Distilling $M \times N$ NPT states of rank $\max\{M, N\}$

- **LFRP.** Let ρ_{AB} be an $M \times N$ NPT states of rank $\max\{M, N\}$. We say ρ_{AB} has left full-rank property (LFRP) if there is some state $|x\rangle$ such that $\langle x|_B \rho_{AB} |x\rangle_B$ is invertible.

- **Example.** If

 $$\rho_{AB} = (|11\rangle + |22\rangle)(\langle 11| + \langle 22|) + |33\rangle\langle 33|$$

 $$\sigma_{AB} = (|11\rangle + |22\rangle)(\langle 11| + \langle 22|) + |22\rangle\langle 22| + |33\rangle\langle 33|$$

 then

 $$\max_x \left(\text{rank}(\langle x|_B \rho_{AB} |x\rangle_B) \right) = 2 < \text{rank} \rho_A = 3.$$

 $$\max_x \left(\text{rank}(\langle x|_B \sigma_{AB} |x\rangle_B) \right) = 3 = \text{rank} \rho_A = 3.$$
So ρ_{AB} has no LFRP, and σ_{AB} has LFRP.
Distilling $M \times N$ NPT states of rank $\max\{M, N\}$

- So ρ_{AB} has no LFRP, and σ_{AB} has LFRP.

- The right full-rank property (RFRP) can be similarly defined.
Distilling $M \times N$ NPT states of rank $\max\{M, N\}$

- So ρ_{AB} has no LFRP, and σ_{AB} has LFRP.

- The right full-rank property (RFRP) can be similarly defined.

- **Strategy of proof.** Prove that ρ_{AB} is 1-distillable when
 (1) ρ_{AB} has no LFRP or RFRP, and
 (2) ρ_{AB} has LFRP and RFRP.
Distilling $M \times N$ NPT states of rank $\max\{M, N\}$

- (1) ρ_{AB} has no LFRP or RFRP.
 Using the matrix decomposition of semidefinite positive matrix $\rho = C^\dagger C$, where

 $$C = (C_1, \ldots, C_i, \ldots, C_M)$$

 and each matrix C_i is of size $(\text{rank } \rho) \times N$.

When $M \times N$ NPT states of rank $\max\{M, N\}$
(1) \(\rho_{AB} \) has no LFRP or RFRP.

Using the matrix decomposition of semidefinite positive matrix \(\rho = C^\dagger C \), where

\[
C = (C_1, \ldots, C_i, \ldots, C_M)
\]

and each matrix \(C_i \) is of size \((\text{rank } \rho) \times N\).

Project \(\rho \) to the following state by using the projector

\[
P = |1\rangle\langle 1| + |i\rangle\langle i|
\]

\[
\rho_{1,i} = (P \otimes I_B)\rho(P \otimes I_B)
\]

\[
= (C_1, C_i)^\dagger \cdot (C_1, C_i) = \begin{pmatrix}
C_1^\dagger C_1 & C_1^\dagger C_i \\
C_i^\dagger C_1 & C_i^\dagger C_i
\end{pmatrix}
\]
Distilling $M \times N$ NPT states of rank $\max\{M, N\}$

- We split each C_i into four blocks $C_i = \begin{pmatrix} C_{i1} & C_{i2} \\ C_{i3} & C_{i4} \end{pmatrix}$ with C_{i1} square of size r_1, where $C_1 = I_{r_1} \oplus 0$ because of ρ has no LFRP or RFRP. We have

$$\rho_{1,i} = \begin{pmatrix} I_{r_1} & 0 & \cdots & C_{i1} & C_{i2} \\ 0 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ C_{i1}^\dagger & 0 & \cdots & * & * \\ C_{i2}^\dagger & 0 & \cdots & * & * \end{pmatrix},$$

where $i > 1$ and the asterisk stands for an unspecified block.
Distilling $M \times N$ NPT states of rank $\max\{M, N\}$

- We split each C_i into four blocks $C_i = \begin{pmatrix} C_{i1} & C_{i2} \\ C_{i3} & C_{i4} \end{pmatrix}$ with C_{i1} square of size r_1, where $C_1 = I_{r_1} \oplus 0$ because of ρ has no LFRP or RFRP. We have

$$\rho_{1,i} = \begin{pmatrix} I_{r_1} & 0 & \vdots & C_{i1} & C_{i2} \\ 0 & 0 & \vdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ C_{i1} & 0 & \vdots & * & * \\ C_{i2} & 0 & \vdots & * & * \end{pmatrix}$$

, where $i > 1$ and the asterisk stands for an unspecified block.

- If some $C_{i2} \neq 0$, then ρ is 1-distillable. Thus we may assume that all $C_{i2} = 0$.

...
Distilling $M \times N$ NPT states of rank $\max\{M, N\}$

Now $\rho = C^\dagger C$ where

$$C = \begin{bmatrix}
(I_{r_1} & 0) , & (C_{21} & 0) , & \cdots , & (C_{M1} & 0) \\
0 & 0 \\
C_{23} & C_{24} \\
C_{M3} & C_{M4}
\end{bmatrix}$$
Distilling $M \times N$ NPT states of rank $\max\{M, N\}$

- Now $\rho = C^\dagger C$ where

\[
C = \begin{bmatrix}
\left(I_{r_1} \ 0 \right), \left(C_{21} \ 0 \right), \ldots, \left(C_{M1} \ 0 \right)
\end{bmatrix}
\]

- Since ρ has no LFRP or RFRP, the linear combination of C_{21}, \ldots, C_{N1} is of deficient rank. We may assume

\[
C_{24} = \begin{pmatrix} I_{r_2} & 0 \\ 0 & 0 \end{pmatrix}
\]

and

\[
C_{i4} = \begin{pmatrix} C_{i41} & C_{i42} \\ C_{i43} & C_{i44} \end{pmatrix}
\]
Distilling $M \times N$ NPT states of rank $\max\{M, N\}$

- Project ρ to the state $(C')^\dagger C'$ where

$$C' = \begin{bmatrix}
 \left(I_r \quad 0 \right), \\
 \left(C_{341} \quad C_{342} \right), \ldots, \\
 \left(C_{M41} \quad C_{M42} \right)
\end{bmatrix}$$
Distilling $M \times N$ NPT states of rank $\max\{M, N\}$

- Project ρ to the state $(C')^\dagger C'$ where

$$C' = \begin{bmatrix}
 \begin{pmatrix}
 I_r & 0 \\
 0 & 0
 \end{pmatrix},
 \begin{pmatrix}
 C_{341} & C_{342} \\
 C_{343} & C_{344}
 \end{pmatrix},
 \ldots,
 \begin{pmatrix}
 C_{M41} & C_{M42} \\
 C_{M43} & C_{M44}
 \end{pmatrix}
\end{bmatrix}$$

- Repeating the above argument one can show the blocks $C_{i42} = 0$.
Distilling $M \times N$ NPT states of rank $\max\{M, N\}$

- Project ρ to the state $(C')^\dagger C'$ where

$$C' = \begin{bmatrix}
(I_{r_2} & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0
\end{bmatrix}, \begin{bmatrix}
C_{341} & C_{342} \\
C_{343} & C_{344}
\end{bmatrix}, \ldots, \begin{bmatrix}
C_{M41} & C_{M42} \\
C_{M43} & C_{M44}
\end{bmatrix}\]$$

- Repeating the above argument one can show the blocks $C_{i42} = 0$.

- Then we have $\rho = C^\dagger C$ where C is

$$\begin{bmatrix}
(I_{r_1} & 0 & 0) \\
0 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}, \begin{bmatrix}
C_{21} & 0 & 0 \\
C_{221} & I_{r_2} & 0 \\
C_{223} & 0 & 0
\end{bmatrix}, \begin{bmatrix}
C_{31} & 0 & 0 \\
C_{321} & C_{341} & 0 \\
C_{323} & C_{343} & C_{344}
\end{bmatrix}, \ldots, \begin{bmatrix}
C_{M1} & 0 & 0 \\
C_{M21} & C_{M41} & 0 \\
C_{M23} & C_{M43} & C_{M44}
\end{bmatrix}\]
Distilling $M \times N$ NPT states of rank $\max\{M, N\}$

- The process continues and the facts $C_{i2} = C_{i42} = \cdots = 0$ implies that ρ has RFRP. It is a contradiction and we obtain that the process must terminate.
The process continues and the facts $C_{i2} = C_{i42} = \cdots = 0$ implies that \(\rho \) has RFRP. It is a contradiction and we obtain that the process must terminate.

So \(\rho \) is distillable when it has no LFRP or RFRP.
Distilling $M \times N$ NPT states of rank $\max\{M, N\}$

- (2) ρ_{AB} has LFRP and RFRP.

 Using the matrix decomposition of semidefinite positive matrix $\rho = C^\dagger C$, we have

 $$\rho = (C_1, \ldots, C_{M-1}, I_N)^\dagger \cdot (C_1, \ldots, C_{M-1}, I_N)$$
Distilling $M \times N$ NPT states of rank $\max\{M, N\}$

- (2) ρ_{AB} has LFRP and RFRP.
 Using the matrix decomposition of semidefinite positive matrix $\rho = C^\dagger C$, we have
 $$\rho = (C_1, \ldots, C_{M-1}, I_N)^\dagger \cdot (C_1, \ldots, C_{M-1}, I_N)$$

- Project ρ to $(C_i, I_N)^\dagger \cdot (C_i, I_N)$ and assume it is PPT.
Distilling $M \times N$ NPT states of rank $\max\{M, N\}$

- (2) ρ_{AB} has LFRP and RFRP.

 Using the matrix decomposition of semidefinite positive matrix $\rho = C^\dagger C$, we have

 $$\rho = (C_1, \ldots, C_{M-1}, I_N)^\dagger \cdot (C_1, \ldots, C_{M-1}, I_N)$$

- Project ρ to $(C_i, I_N)^\dagger \cdot (C_i, I_N)$ and assume it is PPT.

- So each C_i is a normal matrix by
(2) ρ_{AB} has LFRP and RFRP.

Using the matrix decomposition of semidefinite positive matrix $\rho = C^\dagger C$, we have

$$\rho = (C_1, \ldots, C_{M-1}, I_N)^\dagger \cdot (C_1, \ldots, C_{M-1}, I_N)$$

Project ρ to $(C_i, I_N)^\dagger \cdot (C_i, I_N)$ and assume it is PPT.

So each C_i is a normal matrix by

Since ρ is NPT, there exist i, j such that $[C_i, C_j] \neq 0$.

Distilling $M \times N$ NPT states of rank $\max\{M, N\}$

- (2) ρ_{AB} has LFRP and RFRP.

 Using the matrix decomposition of semidefinite positive matrix $\rho = C^\dagger C$, we have

 $$\rho = (C_1, \ldots, C_{M-1}, I_N)^\dagger \cdot (C_1, \ldots, C_{M-1}, I_N)$$

- Project ρ to $(C_i, I_N)^\dagger \cdot (C_i, I_N)$ and assume it is PPT.
- So each C_i is a normal matrix by

- Since ρ is NPT, there exist i, j such that $[C_i, C_j] \neq 0$.
- One can show that $(xC_i + C_j, I_N)^\dagger \cdot (xC_i + C_j, I_N)$ is distillable for some complex number x.
Conclusion 1: the LFRP (RFRP) is a key property for the distillation.
Distilling $M \times N$ NPT states of rank $\max\{M, N\}$

- Conclusion 1: the LFRP (RFRP) is a key property for the distillation.
- Conclusion 2: the matrix decomposition $\rho = C^\dagger C$ also applies to $M \times N$ NPT states of rank bigger than $\max\{M, N\}$.
Distilling $M \times N$ NPT states of rank $\max\{M, N\}$

- Conclusion 1: the LFRP (RFRP) is a key property for the distillation.
- Conclusion 2: the matrix decomposition $\rho = C^\dagger C$ also applies to $M \times N$ NPT states of rank bigger than $\max\{M, N\}$.
- Since any state lacking LFRP or RFRP is distillable, we have
Distilling $M \times N$ NPT states of rank $\max\{M, N\}$

- Conclusion 1: the LFRP (RFRP) is a key property for the distillation.
- Conclusion 2: the matrix decomposition $\rho = C^\dagger C$ also applies to $M \times N$ NPT states of rank bigger than $\max\{M, N\}$.
- Since any state lacking LFRP or RFRP is distillable, we have

Corollary

All non-distillable states, e.g., bipartite PPT states possess LFRP and RFRP.
Distilling $M \times N$ NPT states of rank $\max\{M, N\}$

- **Conclusion 1:** the LFRP (RFRP) is a key property for the distillation.
- **Conclusion 2:** the matrix decomposition $\rho = C^\dagger C$ also applies to $M \times N$ NPT states of rank bigger than $\max\{M, N\}$.
- **Since** any state lacking LFRP or RFRP is distillable, we have

Corollary

All non-distillable states, e.g., bipartite PPT states possess LFRP and RFRP.

Corollary

The bipartite state of rank four is separable if and only if it is PPT and its range contains at least one product state.
Distilling $M \times N$ NPT states of rank $\max\{M, N\}$

- Application 1:
Distilling $M \times N$ NPT states of rank $\max\{M, N\}$

- Application 1:

Lemma

For a tripartite pure state $\rho = |\psi\rangle\langle\psi|$, the bipartite reduced density operators ρ_{AB} and ρ_{AC} are PPT if and only if $|\psi\rangle = \sum_{i} |a_{i}\rangle|i\rangle$ up to local unitary operations.
Distilling $M \times N$ NPT states of rank $\max\{M, N\}$

- Application 1:

Lemma

For a tripartite pure state $\rho = |\psi\rangle\langle\psi|$, the bipartite reduced density operators ρ_{AB} and ρ_{AC} are PPT if and only if $|\psi\rangle = \sum_i |a_i\rangle|ii\rangle$ up to local unitary operations.

- So

$$\rho_{AB} = \rho_{AC} = \sum_i |a_i, i\rangle\langle a_i, i|$$

are both separable states.
Distilling $M \times N$ NPT states of rank $\max\{M, N\}$

- Application 2: In quantum information, the following six criteria are extensively useful for studying bipartite states ρ_{AB} in the space $\mathcal{H}_A \otimes \mathcal{H}_B$.

1. Separability.
2. PPT condition.
4. Reduction criterion: $\rho_{A \otimes I} \geq \rho_{AB}$ and $I_{A} \otimes \rho_{B} \geq \rho_{AB}$, Horodecki et al, 1999.
5. Majorization criterion: $\rho_A \succ \rho_{AB}$ and $\rho_B \succ \rho_{AB}$, Hiroshima, 2003.
6. Conditional entropy criterion: $H(\rho_B | A) = H(\rho_{AB}) - H(\rho_A) \geq 0$ and $H(\rho_A | B) = H(\rho_{AB}) - H(\rho_B) \geq 0$, where H is the von Neumann entropy.
Distilling $M \times N$ NPT states of rank $\max\{M, N\}$

- Application 2: In quantum information, the following six criteria are extensively useful for studying bipartite states ρ_{AB} in the space $\mathcal{H}_A \otimes \mathcal{H}_B$.

 (1) Separability.
Distilling $M \times N$ NPT states of rank $\max\{M, N\}$

Application 2: In quantum information, the following six criteria are extensively useful for studying bipartite states ρ_{AB} in the space $\mathcal{H}_A \otimes \mathcal{H}_B$.

1. Separability.
2. PPT condition.
Distilling $M \times N$ NPT states of rank $\max\{M, N\}$

- Application 2: In quantum information, the following six criteria are extensively useful for studying bipartite states ρ_{AB} in the space $\mathcal{H}_A \otimes \mathcal{H}_B$.

 (1) Separability.
 (2) PPT condition.
 (3) Non-distillability.
Distilling $M \times N$ NPT states of rank $\max\{M, N\}$

- **Application 2:** In quantum information, the following six criteria are extensively useful for studying bipartite states ρ_{AB} in the space $\mathcal{H}_A \otimes \mathcal{H}_B$.
 1. Separability.
 2. PPT condition.
 4. Reduction criterion: $\rho_A \otimes I_B \geq \rho_{AB}$ and $I_A \otimes \rho_B \geq \rho_{AB}$.
 5. Majorization criterion: $\rho_A \succ \rho_{AB}$ and $\rho_B \succ \rho_{AB}$, Hiroshima, 2003.
 6. Conditional entropy criterion: $H_{\rho}(B|A) = H(\rho_{AB}) - H(\rho_A) \geq 0$ and $H_{\rho}(A|B) = H(\rho_{AB}) - H(\rho_B) \geq 0$, where H is the von Neumann entropy.

Horodecki et al, 1999.
Distilling $M \times N$ NPT states of rank $\max\{M, N\}$

- Application 2: In quantum information, the following six criteria are extensively useful for studying bipartite states ρ_{AB} in the space $\mathcal{H}_A \otimes \mathcal{H}_B$.
 1. Separability.
 2. PPT condition.
 4. Reduction criterion: $\rho_A \otimes I_B \succeq \rho_{AB}$ and $I_A \otimes \rho_B \succeq \rho_{AB}$, Horodecki et al, 1999.
 5. Majorization criterion: $\rho_A \succ \rho_{AB}$ and $\rho_B \succ \rho_{AB}$ Hiroshima, 2003.
Distilling $M \times N$ NPT states of rank $\max\{M, N\}$

- Application 2: In quantum information, the following six criteria are extensively useful for studying bipartite states ρ_{AB} in the space $\mathcal{H}_A \otimes \mathcal{H}_B$.

(1) Separability.
(2) PPT condition.
(3) Non-distillability.
(4) Reduction criterion: $\rho_A \otimes I_B \geq \rho_{AB}$ and $I_A \otimes \rho_B \geq \rho_{AB}$.

(5) Majorization criterion: $\rho_A \succ \rho_{AB}$ and $\rho_B \succ \rho_{AB}$.

(6) Conditional entropy criterion:

$H_\rho(B|A) = H(\rho_{AB}) - H(\rho_A) \geq 0$ and

$H_\rho(A|B) = H(\rho_{AB}) - H(\rho_B) \geq 0$, where H is the von Neumann entropy.
Distilling $M \times N$ NPT states of rank $\max\{M, N\}$

- Masahito Hayashi and LC, 2011.
Distilling $M \times N$ NPT states of rank $\max\{M, N\}$

- Masahito Hayashi and LC, 2011.

Theorem

*For a tripartite state $|\psi\rangle_{ABC}$ with a non-distillable reduced state ρ_{BC} namely condition (3), then conditions (1)-(6) are equivalent for ρ_{AB}.***
Distilling $M \times N$ NPT states of rank $\max\{M, N\}$

- Masahito Hayashi and LC, 2011.

Theorem

For a tripartite state $|\psi\rangle_{ABC}$ with a non-distillable reduced state ρ_{BC} namely condition (3), then conditions (1)-(6) are equivalent for ρ_{AB}.

- It is a way of unifying the six well-known conditions.
The distillability problem and entanglement distillation

$M \times N$ NPT states of rank $\max\{M, N\}$

Two-qutrit NPT states of rank four and five

Open problems
Distilling two-qutrit NPT states of rank four

- Entanglement distillation of $M \times N$ states ρ of rank bigger than $\max\{M, N\}$ turns out to be much harder.
Distilling two-qutrit NPT states of rank four

- Entanglement distillation of $M \times N$ states ρ of rank bigger than $\max\{M, N\}$ turns out to be much harder.

- For example ρ can be the Werner state.
Distilling two-qutrit NPT states of rank four

- Entanglement distillation of $M \times N$ states ρ of rank bigger than $\max\{M, N\}$ turns out to be much harder.

- For example ρ can be the Werner state.

- **Facts:** $2 \times N$ NPT states are distillable, and $M \times N$ NPT states of rank $\max\{M, N\}$ are distillable.
Distilling two-qutrit NPT states of rank four

- Entanglement distillation of $M \times N$ states ρ of rank bigger than $\max\{M, N\}$ turns out to be much harder.

- For example ρ can be the Werner state.

- **Facts:** $2 \times N$ NPT states are distillable, and $M \times N$ NPT states of rank $\max\{M, N\}$ are distillable.

- Hence, the first unsolved problem is to distill 3×3 NPT states of rank four.
Distilling two-qutrit NPT states of rank four

- LC and DZ, 2016.
Distilling two-qutrit NPT states of rank four

- LC and DZ, 2016.

Theorem

If \(\rho \) is a two-qutrit NPT state and \(\rho^\Gamma \) has at least two non-positive eigenvalues counting multiplicities, then \(\rho \) is 1-distillable.
Distilling two-qutrit NPT states of rank four

- LC and DZ, 2016.

Theorem

If ρ is a two-qutrit NPT state and ρΓ has at least two non-positive eigenvalues counting multiplicities, then ρ is 1-distillable.

Proof.

By the hypothesis, there exist two eigenvectors of ρΓ, say |α⟩ and |β⟩ with matrices A and B, such that ρΓ|α⟩ = λ|α⟩, λ < 0, ρΓ|β⟩ = µ|β⟩, µ ≤ 0, and ⟨α|β⟩ = 0. If A is not invertible, then its rank is 2 and so ρ is 1-distillable.

If $N := A^{-1}B$ is not nilpotent, then det$(I_3 + tN)$ is a nonconstant polynomial in t and we can choose t so that this determinant is 0. Thus $A + tB$ is singular, and $|φ⟩ := |α⟩ + t|β⟩$ satisfies

$⟨φ|ρΓ|φ⟩ = λ∥α∥^2 + µ|t|^2∥β∥^2 < 0$. Hence ρ is 1-distillable. The case that N is nilpotent is similar. □
Distilling two-qutrit NPT states of rank four

- From the theorem we have
Distilling two-qutrit NPT states of rank four

From the theorem we have

Corollary

If the kernel of a two-qutrit NPT state ρ contains a product state, then ρ is 1-distillable.
Distilling two-qutrit NPT states of rank four

- From the theorem we have

Corollary

If the kernel of a two-qutrit NPT state \(\rho \) contains a product state, then \(\rho \) is 1-distillable.

Proof.

We can assume that \(|0, 0\rangle \in \ker \rho \). Consequently, the first diagonal entry of \(\rho \) is 0, and the same is true for \(\rho^\Gamma \). If the first column of \(\rho^\Gamma \) is not 0, then \(\rho \) is 1-distillable by projecting to a \(2 \times 3 \) NPT state. Otherwise \(|0, 0\rangle \in \ker \rho^\Gamma \) and \(\rho \) is 1-distillable by last Theorem. \(\square \)
The distillability problem and entanglement distillation

\[M \times N \text{ NPT states of rank } \max\{M, N\} \]

Distilling two-qutrit NPT states of rank four

Theorem

Any bipartite NPT state of rank at most four is 1-distillable.
Distilling two-qutrit NPT states of rank four

Theorem

Any bipartite NPT state of rank at most four is 1-distillable.

Corollary

If ρ is a 1-undistillable two-qutrit NPT state, then $\ker \rho$ is a completely entangled space, and ρ^Γ has exactly one negative and eight positive eigenvalues. Consequently, $\text{rank } \rho > 4$ and $\det \rho^\Gamma \neq 0$.
The distillability problem and entanglement distillation

$M \times N$ NPT states of rank $\max\{M, N\}$

Distilling two-qutrit NPT states of rank four

Theorem

Any bipartite NPT state of rank at most four is 1-distillable.

Corollary

If ρ is a 1-undistillable two-qutrit NPT state, then $\ker \rho$ is a completely entangled space, and ρ^Γ has exactly one negative and eight positive eigenvalues. Consequently, $\text{rank} \rho > 4$ and $\det \rho^\Gamma \neq 0$.

- So the minimum rank of 1-undistillable NPT states is at least five.
Distilling two-qutrit NPT states of rank four

Theorem
Any bipartite NPT state of rank at most four is 1-distillable.

Corollary
If \(\rho \) is a 1-undistillable two-qutrit NPT state, then \(\ker \rho \) is a completely entangled space, and \(\rho^\Gamma \) has exactly one negative and eight positive eigenvalues. Consequently, \(\text{rank} \rho > 4 \) and \(\det \rho^\Gamma \neq 0 \).

- So the minimum rank of 1-undistillable NPT states is at least five.
- We construct an example below.
The following state σ is an edge PPT entangled state of birank $(5, 8)$ constructed by Kye and Osaka, 2012.

\[
\begin{bmatrix}
2 \cos \theta & 0 & 0 & 0 & -\cos \theta & 0 & 0 & 0 & -\cos \theta \\
0 & \frac{1}{b} & 0 & -e^{-i\theta} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & b & 0 & 0 & 0 & -e^{i\theta} & 0 & 0 \\
0 & -e^{i\theta} & 0 & b & 0 & 0 & 0 & 0 & 0 \\
-\cos \theta & 0 & 0 & 0 & 2 \cos \theta & 0 & 0 & 0 & -\cos \theta \\
0 & 0 & 0 & 0 & 0 & \frac{1}{b} & 0 & -e^{-i\theta} & 0 \\
0 & 0 & -e^{-i\theta} & 0 & 0 & 0 & \frac{1}{b} & 0 & 0 \\
0 & 0 & 0 & 0 & -e^{i\theta} & 0 & b & 0 & 0 \\
-\cos \theta & 0 & 0 & 0 & -e^{i\theta} & 0 & 0 & 0 & 2 \cos \theta \\
\end{bmatrix},
\]
Distilling two-qutrit NPT states of rank four

The following state σ is an edge PPT entangled state of birank $(5, 8)$ constructed by Kye and Osaka, 2012.

\[
\frac{1}{N} \begin{bmatrix}
2\cos \theta & 0 & 0 & 0 & -\cos \theta & 0 & 0 & 0 & -\cos \theta \\
0 & \frac{1}{b} & 0 & -e^{-i\theta} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & b & 0 & 0 & 0 & -e^{i\theta} & 0 & 0 \\
0 & -e^{i\theta} & 0 & b & 0 & 0 & 0 & 0 & 0 \\
-\cos \theta & 0 & 0 & 0 & 2\cos \theta & 0 & 0 & 0 & -\cos \theta \\
0 & 0 & 0 & 0 & 0 & \frac{1}{b} & 0 & -e^{-i\theta} & 0 \\
0 & 0 & -e^{-i\theta} & 0 & 0 & 0 & \frac{1}{b} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -e^{i\theta} & 0 & b & 0 \\
-\cos \theta & 0 & 0 & 0 & -\cos \theta & 0 & 0 & 0 & 2\cos \theta
\end{bmatrix},
\]

where

\[N = 3(2\cos \theta + b + 1/b),\]

and the two parameters $b > 0$ and $0 < |\theta| < \pi/3.$
Distilling two-qutrit NPT states of rank four

- Since $\text{rank } \sigma = 5$ and σ is an edge state, $\mathcal{R}(\sigma)$ contains a product state $|f, g\rangle$ such that $|f^*, g\rangle \notin \mathcal{R}(\sigma^\Gamma)$.
Distilling two-qutrit NPT states of rank four

- Since rank $\sigma = 5$ and σ is an edge state, $\mathcal{R}(\sigma)$ contains a product state $|f, g\rangle$ such that $|f^*, g\rangle \notin \mathcal{R}(\sigma^\Gamma)$.
- For sufficiently small $\epsilon > 0$, the matrix

$$\rho = \frac{1}{1 - \epsilon}(\sigma - \epsilon|f, g\rangle\langle f, g|)$$

is a two-qutrit NPT state of rank five.
Distilling two-qutrit NPT states of rank four

- Since \(\text{rank } \sigma = 5 \) and \(\sigma \) is an edge state, \(\mathcal{R}(\sigma) \) contains a product state \(|f, g\rangle \) such that \(|f^*, g\rangle \notin \mathcal{R}(\sigma^\Gamma) \).
- For sufficiently small \(\epsilon > 0 \), the matrix
 \[
 \rho = \frac{1}{1 - \epsilon} (\sigma - \epsilon |f, g\rangle\langle f, g|)
 \]
 is a two-qutrit NPT state of rank five.
- The kernel of \(\sigma^\Gamma \) is spanned by the two-qutrit maximally entangled state \(|\Psi\rangle \). Let \(p \) be the minimum positive eigenvalue of \(\sigma^\Gamma \).
Distilling two-qutrit NPT states of rank four

- Since rank $\sigma = 5$ and σ is an edge state, $\mathcal{R}(\sigma)$ contains a product state $|f, g\rangle$ such that $|f^*, g\rangle \notin \mathcal{R}(\sigma^\Gamma)$.
- For sufficiently small $\epsilon > 0$, the matrix

$$\rho = \frac{1}{1 - \epsilon} (\sigma - \epsilon |f, g\rangle\langle f, g|)$$

is a two-qutrit NPT state of rank five.

- The kernel of σ^Γ is spanned by the two-qutrit maximally entangled state $|\Psi\rangle$. Let p be the minimum positive eigenvalue of σ^Γ.
- For any pure state $|\psi\rangle$ of Schmidt rank two, we have

$$\langle \psi | \rho^\Gamma | \psi \rangle \propto \langle \psi | (\sigma^\Gamma - \epsilon |f^*, g\rangle\langle f^*, g|) | \psi \rangle > p/3 - \epsilon \geq 0.$$
Distilling two-qutrit NPT states of rank four

- Since \(\text{rank} \sigma = 5 \) and \(\sigma \) is an edge state, \(\mathcal{R}(\sigma) \) contains a product state \(|f, g\rangle \) such that \(|f^*, g\rangle \notin \mathcal{R}(\sigma^\Gamma) \).
- For sufficiently small \(\epsilon > 0 \), the matrix
 \[
 \rho = \frac{1}{1 - \epsilon} (\sigma - \epsilon |f, g\rangle \langle f, g|)
 \]
 is a two-qutrit NPT state of rank five.
- The kernel of \(\sigma^\Gamma \) is spanned by the two-qutrit maximally entangled state \(|\Psi\rangle \). Let \(p \) be the minimum positive eigenvalue of \(\sigma^\Gamma \).
- For any pure state \(|\psi\rangle \) of Schmidt rank two, we have
 \[
 \langle \psi | \rho^\Gamma | \psi \rangle \propto \langle \psi | (\sigma^\Gamma - \epsilon |f^*, g\rangle \langle f^*, g|) | \psi \rangle > p/3 - \epsilon \geq 0.
 \]
- Hence \(\rho \) is 1-undistillable.
Distilling two-qutrit NPT states of rank four

Lemma
For any integer n, and sufficiently small $\epsilon = \epsilon(n) > 0$, the two-qutrit NPT state

$$\rho = 1 - \epsilon (\sigma \otimes \mathbf{1}_n - |f, g\rangle \langle f, g|)$$

is n-undistillable.

Proof.
For any pure state $|\psi\rangle$ of Schmidt rank two, we have

$$(1 - \epsilon) \langle \psi | \rho^{\otimes n} | \psi \rangle := \langle \psi | (\sigma \otimes \mathbf{1}_n) \otimes \mathbf{1}_n | \psi \rangle + n \sum_{k=1}^{c_k \epsilon_k} \geq \langle \psi | (\mathbf{1}_n - |\Psi\rangle \langle \Psi|) \otimes \mathbf{1}_n | \psi \rangle + n \sum_{k=1}^{c_k \epsilon_k}$$

where c_k are complex numbers and p is the minimum positive eigenvalue of $\sigma \otimes \mathbf{1}_n$. Since the first summand is positive and has nothing to do with ϵ, the assertion holds.

\Box
The distillability problem and entanglement distillation

$M \times N$ NPT states of rank $\max\{M, N\}$

Distilling two-qutrit NPT states of rank four

Lemma

For any integer n, and sufficiently small $\epsilon = \epsilon(n) > 0$, the two-qutrit NPT state $\rho = \frac{1}{1-\epsilon}(\sigma - \epsilon|f, g\rangle\langle f, g|)$ is n-undistillable.
Distilling two-qutrit NPT states of rank four

Lemma

For any integer \(n \), and sufficiently small \(\epsilon = \epsilon(n) > 0 \), the two-qutrit NPT state \(\rho = \frac{1}{1-\epsilon}(\sigma - \epsilon|f, g\rangle\langle f, g|) \) is \(n \)-undistillable.

Proof.

For any pure state \(|\psi\rangle \) of Schmidt rank two, we have

\[
(1 - \epsilon)^n \langle \psi | (\rho^\Gamma)^\otimes n |\psi\rangle := \langle \psi | (\sigma^\Gamma)^\otimes n |\psi\rangle + \sum_{k=1}^{n} c_k \epsilon^k
\]

\[
\geq p^n \langle \psi | (I_9 - |\Psi\rangle\langle \Psi|)^\otimes n |\psi\rangle + \sum_{k=1}^{n} c_k \epsilon^k
\]

where \(c_k \) are complex numbers and \(p \) is the minimum positive eigenvalue of \(\sigma^\Gamma \). Since the first summand is positive and has nothing to do with \(\epsilon \), the assertion holds. \(\square \)
Distilling two-qutrit NPT states of rank four

- The following auxiliary lemma is used in the previous proof.
Distilling two-qutrit NPT states of rank four

- The following auxiliary lemma is used in the previous proof.

Lemma

\[
\min_{\psi \in \mathcal{S}_{2}} \langle \psi | (I_9 - |\Psi\rangle\langle \Psi|)^{\otimes n} |\psi\rangle \geq \frac{1}{3^n},
\]

where \(\mathcal{S}_{2} \) is the set of bipartite pure states of Schmidt rank two, and \(|\Psi\rangle \) is the two-qutrit maximally entangled state.
The comparison between our suspicious two-qutrit NPT states ρ of rank five and the “critical” NPT Werner states $\rho_w = \frac{2}{15} \left(I_9 - \frac{1}{2} \sum_{i,j=1}^{3} |ij\rangle\langle ji| \right)$.

<table>
<thead>
<tr>
<th></th>
<th>ρ</th>
<th>ρ_w</th>
</tr>
</thead>
<tbody>
<tr>
<td>rank</td>
<td>5</td>
<td>9</td>
</tr>
<tr>
<td>rank of partial transpose</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>parameters</td>
<td>b, θ, ϵ, n</td>
<td>n</td>
</tr>
<tr>
<td>construction</td>
<td>edge PPT states</td>
<td>$U \otimes U$-invariant</td>
</tr>
</tbody>
</table>
Comparing with Werner states

- The comparison between our suspicious two-qutrit NPT states \(\rho \) of rank five and the “critical” NPT Werner states
 \(\rho_w = \frac{2}{15} (I_9 - \frac{1}{2} \sum_{i,j=1}^{3} |ij\rangle \langle ji|) \).

<table>
<thead>
<tr>
<th></th>
<th>(\rho)</th>
<th>(\rho_w)</th>
</tr>
</thead>
<tbody>
<tr>
<td>rank</td>
<td>5</td>
<td>9</td>
</tr>
<tr>
<td>rank of partial transpose</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>parameters</td>
<td>(b, \theta, \epsilon, n)</td>
<td>(n)</td>
</tr>
<tr>
<td>construction</td>
<td>edge PPT states</td>
<td>(U \otimes U)-invariant</td>
</tr>
</tbody>
</table>

- Whether there is a “critical” \(\rho \) is unknown.
Comparing with Werner states

- The comparison between our suspicious two-qutrit NPT states ρ of rank five and the “critical” NPT Werner states $\rho_w = \frac{2}{15}(I_9 - \frac{1}{2} \sum_{i,j=1}^{3} |ij\rangle\langle ji|)$.

<table>
<thead>
<tr>
<th></th>
<th>ρ</th>
<th>ρ_w</th>
</tr>
</thead>
<tbody>
<tr>
<td>rank</td>
<td>5</td>
<td>9</td>
</tr>
<tr>
<td>rank of partial transpose</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>parameters</td>
<td>b, θ, ϵ, n</td>
<td>n</td>
</tr>
<tr>
<td>construction</td>
<td>edge PPT states</td>
<td>$U \otimes U$-invariant</td>
</tr>
</tbody>
</table>

- Whether there is a “critical” ρ is unknown.
- The condition of rank nine prevents the further investigation in both cases.
Open problems

- Can we distill more NPT states satisfying LFRP and RFRP?
Open problems

- Can we distill more NPT states satisfying LFRP and RFRP?
- Distill $3 \times N$ NPT states of rank $N + 1$ for $N \geq 4$.
Open problems

- Can we distill more NPT states satisfying LFRP and RFRP?

- Distill $3 \times N$ NPT states of rank $N + 1$ for $N \geq 4$.

- Is there an undistillable suspicious two-qutrit NPT state

 $\rho = \frac{1}{1-\epsilon}(\sigma - \epsilon |f, g\rangle\langle f, g|)$

 by a constant $\epsilon > 0$?
The distillability problem and entanglement distillation $M \times N$ NPT states of rank $\max\{M, N\}$

Distilling two-qutrit NPT states

End

Thanks for your attention!