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Abstract

There are several directions of generalizing the famous
Four Square Theorem of Lagrange that every positive integer
is a sum of four integer squares. Among them we consider
the followings:
(1) Ramanujan’s universal forms
(2) Mordell’s five square thereom
(3) Maass’ three square theorem

In the talk, I will introduce a brief history regarding the
three directions, and then discuss recent developments and
some open problems.
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0. NOTATIONS AND TERMINOLOGIES

(∗) F : a totally real (number) field

F+ : the set of all (totally) positive elements of F

O = OF : the ring of algebraic integers of F

U = UF : the group of units of O

O+ := O ∩ F+

U+ := U ∩ F+

(∗) Q( x1, . . . , xm) =
∑

1≤i,j≤m aijxixj : an integral
quadratic form in m variables (aij = aji ∈ O)

M = MQ = (aij) ∈ Mm×m(O) : an integral symmetric
m×m matrix such that tXMX = Q( x1, . . . , xm)

for X =





x1
...

xm



 ∈ Mm×1(O)

L = LQ = Ov1 + · · ·+Ovm : an m-ary O-lattice, i.e.,
a free O-module of rank m equipped with a
symmetric bilinear form B(vi, vj) = aij such that
Q(v) = Q( x1, . . . , xm), where Q(v) := B(v, v) for
v = x1v1 + · · ·+ xmvm ∈ L

(∗) We write L ' M in the basis v1, . . . , vm, or simply
L ' M in the above case

dL := det M : the determinant of L, which is
well defined up to U2
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L = L1 ⊥ L2 if L = L1 ⊕ L2 and B(L1, L2) = 0

(∗) L : positive (definite) if Q(v) is positive for all v ∈ L×

L : diagonal if M is a diagonal matrix, and we write
L ' 〈 a1〉 ⊥ · · · ⊥ 〈 am〉 ' 〈 a1, . . . , am〉, where
ai := Q(vi)

L represents K (K is represented by L) :
∃ an isometry σ : FK → FL such that σ(K) ⊂ L,
i.e., ∃ X ∈ Mm×k(O) such that N = tXMX,
where L (K, resp.) is a m-ary (k-ary, resp.)
O-lattice with L ' M (K ' N , resp.)
and we write K → L in this case

L ' K (L and K are isometric) if σ(K) = L
The class of L, denoted by cls(L), is the set of

all K’s isometric to L
The genus of L, denoted by gen(L), is the set of

all K’s isometric to L locally everywhere

L : k-universal if L is positive and represents every
positive k-ary O-lattice (universal = 1-universal)

(∗) Lagranges four square theorem (1770/72) :
I4 = 〈 1, 1, 1, 1〉 is universal, i.e., 〈 n 〉 → I4 for every
positive integer n, i.e., x2

1 + x2
2 + x2

3 + x2
4 = n is

solvable in integers for all positive integers n
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1. BRIEF HISTORY

(1-1) Ramanujan’s universal forms

(∗) Liouville (1856) found all pairs (a, b) of positive integers
with 0 < a ≤ b for which 〈1, a, b, ab〉 are universal :
(1,1) (1,2) (1,3) (2,2) (2,3) (2,4) (2,5)

Pepin (1890) added six more to the list :
〈1, 1, 1, 2〉 〈1, 2, 2, 2〉 〈1, 1, 1, 4〉
〈1, 1, 2, 4〉 〈1, 2, 4, 4〉 〈1, 1, 2, 8〉

(∗) Ramanujan (1917) claimed : ∃ exactly 55 universal
quaternary diagonal Z-lattices up to isometry

〈 1, 1, 1, 1 〉 〈 1, 1, 1, 2 〉 〈 1, 1, 2, 2 〉 〈 1, 2, 2, 2 〉
〈 1, 1, 1, 3 〉 〈 1, 1, 2, 3 〉 〈 1, 2, 2, 3 〉 〈 1, 1, 3, 3 〉
〈 1, 2, 3, 3 〉 〈 1, 1, 1, 4 〉 〈 1, 1, 2, 4 〉 〈 1, 2, 2, 4 〉
〈 1, 1, 3, 4 〉 〈 1, 2, 3, 4 〉 〈 1, 2, 4, 4 〉 〈 1, 1, 1, 5 〉
〈 1, 1, 2, 5 〉 〈 1, 2, 2, 5 〉 〈 1, 1, 3, 5 〉 〈 1, 2, 3, 5 〉
〈 1, 2, 4, 5 〉 〈 1, 1, 1, 6 〉 〈 1, 1, 2, 6 〉 〈 1, 2, 2, 6 〉
〈 1, 1, 3, 6 〉 〈 1, 2, 3, 6 〉 〈 1, 2, 4, 6 〉 〈 1, 2, 5, 6 〉
〈 1, 1, 1, 7 〉 〈 1, 1, 2, 7 〉 〈 1, 2, 2, 7 〉 〈 1, 2, 3, 7 〉
〈 1, 2, 4, 7 〉 〈 1, 2, 5, 7 〉 〈 1, 1, 2, 8 〉 〈 1, 2, 3, 8 〉
〈 1, 2, 4, 8 〉 〈 1, 2, 5, 8 〉 〈 1, 1, 2, 9 〉 〈 1, 2, 3, 9 〉
〈 1, 2, 4, 9 〉 〈 1, 1, 5, 9 〉 〈1, 1, 2, 10〉 〈1, 2, 3, 10〉
〈1, 2, 4, 10〉 〈1, 2, 5, 10〉 〈1, 1, 2, 11〉 〈1, 2, 4, 11〉
〈1, 1, 2, 12〉 〈1, 2, 4, 12〉 〈1, 1, 2, 13〉 〈1, 2, 4, 13〉
〈1, 1, 2, 14〉 〈1, 2, 4, 14〉 〈1, 2, 5, 5〉∗

(∗) Dickson (1927) confirmed Ramanujan’s claim except
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〈1, 2, 5, 5〉, which fails to represent 15, and hence :
∃ exactly 54 such Z-lattices

He and Morrow (1927/28) extended Ramanujan’s
result to the non-diagonal case

Willerding (1947) found all 124 universal quaternary
non-diagonal Z-lattices up to isometry and hence :
∃ exactly 178 universal quaternary Z-lattices

There exists no universal ternary Z-lattice
Proof
Suppose L is a positive universal ternary Z-lattice
Then 〈1〉 splits L, and hence L = 〈1〉 ⊥ K
for some binary sublattice K of L

Let K =
(

a b
b c

)

s.t. a = min(K) ≤ 2

D = d(K) = d(L) = ac− b2

We may assume La ⊂ 〈a, 1, D〉,
where La is the scaling of L by a
So, 〈a, 1, D〉 represents all the multiples of a
Let am be the smallest mutiple of a that is not
represented by 〈a, 1〉 so that D ≤ am
If a = 1 then m = 3, and if a = 2 then m = 5
So, D ≤ 10 and hence no positive ternary
Z-lattice of with d(L) > 10 can be universal
For those finitely many positive ternary
Z-lattices with d(L) ≤ 10, one can check their
non-universality by using, for example,
the table of Brandt-Intrau �
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(∗) Kloosterman (1926) determined all quadruples
(a, b, c, d) of positive integers with
0 < a ≤ b ≤ c ≤ d for which 〈a, b, c, d〉 are
almost universal, i.e., 〈n〉 → 〈a, b, c, d〉 ∀ n � 0,
i.e., 〈a, b, c, d〉 represents all but finitely many
positive integers

He left the following four Z-lattices undetermined :
〈1, 2, 11, 38〉 〈1, 2, 17, 33〉 〈1, 2, 19, 22〉 〈1, 2, 19, 38〉

Pall (1946) showed the almost universality for the
remaining Z-lattices above

Pall and Ross (1946) extended Kloosterman’s result
to the non-diagonal case

Halmos (1938) found all 88 quaternay diagonal
Z-lattices that represent all positive integers
except exacltly one
The largest exception is 15
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(1-2) Mordell’s five square thereom

(∗) Waring’s Problem - Waring (1782) asked :
In order to represent every positive integer as
a sum of k-th powers of non-negative integers,
how many k-th powers are necessary ?

(∗) Hilbert (1909) proved : ∀ k, ∃ g s.t.
xk

1 + · · ·+ xk
g = n is solvable in non-negative

integers for all positive integers n

(∗) g(k) : the smallest such g for a given k

G(k) : the smallest g for a given k s.t.
xk

1 + · · ·+ xk
g = n is solvable in non-negative

integers for all positive integers n � 0

g(1) = 1, g(2) = 4 (Lagrange)
g(3) = 9 (Wieferich, 1909)
g(4) = 19 (Balasubramanian et. al., 1986)
g(5) = 37 (Chen, 1964)
g(6) = 73 (Pillai, 1940)
g(k) = [(3/2)k] + 2k − 2 holds for almost all k ≥ 7

(Dickson, Rubugunday, Niven, Mahler, 1936-57)

G(k) ≤ g(k) for all k ∈ Z+

No value of G(k) other than
G(1) = 1, G(2) = 4, G(4) = 16 is yet known

4 ≤ G(3) ≤ 7, 6 ≤ G(5) ≤ 21, 9 ≤ G(6) ≤ 31, . . .
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(∗) New Waring’s Problem

Mordell proved the five square theorem :
I5 is 2-universal, i.e.,
I5 represents all positive binary Z-lattices

Ko (1937) proved : Ik+3 is k-universal for 3 ≤ k ≤ 5

Thus, Mordell and Ko naturally expected :
Ik+3 is k-universal for all k ∈ Z+

But Mordell (1937) found E6 cannot be represented
by IN for any positive integer N

So, the question for k ≥ 6 should be modified :
Is every positive k-ary Z-lattice that can be
represented by a sum of squares represented by
Ik+3 ?

Ko (1939) conjectured :

(1) Every positive senary Z-lattice that can be
represented by a sum of squares is represented by
the sum of nine squares I9 (wrong!)

(2) Every positive senary Z-lattice that cannot be
represented by a sum of squares is represented by
E6 ⊥ I3 ( ? )
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(1-3) Maass’ three square thereom

(∗) Maass (1941) proved the following remarkable theorem :
I3 is a universal O-lattice, where F = Q(

√
5), i.e.,

every element of O+ can be written as a sum of three
squares (of elements of O)

(∗) Siegel (1945) proved : For a totally real field F , every
element of O+ can be written as a sum of squares if
and only if F = Q or Q(

√
5)

(∗) Note that there exists no totally real field F that
admits binary universal O-lattice

(∗) (Integral) Pythagoras numbers g{F} :
F : a totally real field
P := PF is the subset of O consisting of all elements
that can be written as sums of squares

g{F} : the smallest positive integer g s.t. every
element of P can be written as a sum of g squares

g{Q} = 4 (Lagrange), g{Q(
√

5)} = 3 (Maass)

Cohn (1960-61) proved :
g{Q(

√
2)} = 3, g{Q(

√
3)} = 3 or 4

Cohn and Pall (1962), and Peters (1973) independently
proved : g{F} ≤ 5, ∀ totally real quadratic field F

Peters (1974) further conjectured :
g{F} ≤ 5 for any totally real field F
But this turns out to be wrong (Scharlau, 1980)
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2. RECENT RESULTS AND OPEN QUESTIONS

(2-1) k-universal Z-lattices

(∗) 2-universal Z-lattices :

Kim-K-Raghavan : There exist exactly five 2-universal
quinary diagonal Z-lattices up to isometry :

I3 ⊥ 〈a, b〉

for (a, b) = (1, 1), (1, 2), (1, 3), (2, 2), (2, 3)

The five Z-lattices above coincide with those O-lattices,
introduced by Peters, that represent all elements of P
for any real quadratic field F

Kim-K : There exist exactly six 2-universal
quinary non-diagonal Z-lattices up to isometry :

I2 ⊥





a b 0
b 2 1
0 1 c





for (a, b, c) = (1, 0, 2), (1, 0, 3), (2, 0, 2)∗

(3, 0, 2), (2, 1, 2), (2, 1, 3)

So, there are eleven 2-universal quinary Z-lattices

I2 ⊥





2 0 0
0 2 1
0 1 2



 is of class number two

There exists no quaternary 2-universal Z-lattice
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(∗) A positive Z-lattice L is called k-regular if L
represents all positive k-ary Z-lattices that
are represented by L locally everywhere

Recently, Earnest proved that there are only finitely
many primitive positive quaternary Z-lattices,
up to isometry, which are 2-regular.

See Hsia’s paper for more about regular Z-lattices

(∗) k-universal diagonal Z-lattices (k ≥ 3) :

Kim-K : 3-universal senary Z-lattices are

I4 ⊥ 〈a, b〉
for (a, b) = (1, 1), (1, 2), (1, 3), (2, 2), (2, 3)∗,

4-universal septanary Z-lattices are

I5 ⊥ 〈a, b〉 for (a, b) = (1, 1), (1, 2),

and 5-universal octanary Z-lattices are

I6 ⊥ 〈a, b〉 for (a, b) = (1, 1), (1, 2)∗

The two Z-lattices with (∗) are of class number two

There exists no k-universal (k + 2)-ary Z-lattice, ∀ k

There exists no k-universal diagonal Z-lattice ∀ k ≥ 6

(∗) k-universal non-diagonal Z-lattices (k ≥ 3) ?
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(2-2) almost k-universal Z-lattices

(∗) ∃ only three positive quinary diagonal Z-lattices
that represent all but one positive binary Z-lattice :

〈1, 1, 1, 2, 4〉, 〈1, 1, 1, 2, 5〉, 〈1, 1, 2, 2, 3〉

and the exceptions are 〈3, 3〉, 〈3, 3〉,
(

2 1
1 2

)

, resp.

In order for a positive quinary diagonal Z-lattice
L to be almost 2-universal, L should be one of
the following forms :
〈1, 1, 1, 1, a〉 〈1, 1, 1, 2, a〉 〈1, 1, 1, 3, a〉 〈1, 1, 2, 2, a〉
〈1, 1, 2, 3, a〉 〈1, 1, 2, 4, a〉 〈1, 1, 2, 5, a〉
a’s are yet to be determined

(∗) Almost k-universal (k + 3)-ary Z-lattices for k ≥ 2 ?

(∗) Recall Halmos’ 88 positive quaternary diagonal
Z-lattices that represent all but one positive integer
The largest exception was 15 by 〈1, 2, 5, 5〉

Conway and Schneebeger recently proved so called
the 15-Theorem, which says : If a positive Z-lattice
L represents 1, 2, . . . , 15, then L is universal

They also conjectured the 290-Theorem, which is for
the universality of non-classic positive Z-lattices

See also a very interesting article in Notices by Duke

(∗) Can we obtain a similar criterion for the k-universality
when k ≥ 2 ?
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(2-3) New Waring’s Problem

(∗) Icaza (1992) proved : ∀ k, ∃ g s.t. K → Ig

for all positive k-ary Z-lattices K (that can be
represented by IN for some positive integer N)

The condition in the parenthesis is for k ≥ 6

(∗) g[k] : the smallest such g for a given k

G[k] : the smallest g for a given k s.t. K → Ig for all
positive k-ary Z-lattices K with min(K) � 0

g[1] = 4 (Lagrange), g[2] = 5 (Mordell)
g[3] = 6, g[4] = 7, g[5] = 8 (Ko)

k + 3 ≤ G[k] ≤ g[k] for all k ∈ Z+

G[k] = g[k] = k + 3 for 1 ≤ k ≤ 5

Hsia-Kitaoka-Kneser’s result (1978) can be applied
to show : G[k] ≤ 2k + 3 for all k ∈ Z+

(∗) K-Oh : g[k] ≥
[

3k
2

]

+ 1, ∀ k ∈ Z+

In particular, g[k] > k + 3 for all k ≥ 6,
which disproves Ko’s conjecture

Proof

Let K = Am(2, 2) ⊥ A(2, 3), where A(a, b) =
(

a 1
1 b

)

and Am(a, b) is the orthogonal sum of m copies of it
Then the result follows from K → I3m+4, K → I3m+3

and K ⊥ 〈1〉 → I3m+5, K ⊥ 〈1〉 → I3m+4 �
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(∗) Baeza and Icaza(1992-1996) provided explicit upper
bounds for g[k]

(∗) K-Oh : g[6] = 10, i.e., every positive senary Z-lattice
that can be represented by a sum of squares is
represented by I10, the sum of ten squares, no less

Proof

K : a positive senary Z-lattice

(1) dK : even ⇒ K → I9

(2) dK : odd

(2-1) Q(K) * 2Z, K → IN ⇒ K → I10

(2-2) Q(K) ⊆ 2Z implies dK ≡ 7, 3 (mod 8)

(2-2-1) dK ≡ 7 (mod 8) ⇒ K → I9

(2-2-2) dK ≡ 3 (mod 8), K → IN ⇒ K → I11

From these and the previous lower bound follows
10 ≤ g[6] ≤ 11

Improve (2-2-2) to obtain K → I10 for the case when
dK ≡ 3 (mod 8), Q(K) ⊆ 2Z, and K → IN , which
is the hard part, and then conclude g[6] = 10 �

sketchy proof of (1) : dK ≡ 0 (mod 2)

By a suitable change of basis, we may write
K = Zv1 + Zv2 + · · ·+ Zv6, B(v1,K) ⊆ 2Z

gen(I9) = cls(I9) ∪ cls(Φ8 ⊥ 〈1〉) (disjoint union)
If K → I9, then K → Φ8 ⊥ 〈1〉
because K is represented by I9 locally everywhere,
(i.e., K → gen(I9))

14



So, ∃ a1, a2, · · · , a6 ∈ Z s.t. K̃ → Φ8, where K̃ is a
semi-positive Z-lattice corresponding to the integral
quadratic form Q̃ := Q− (a1x1 + a2x2 + · · ·+ a6x6)2

B(v1,K) ⊆ 2Z, Q(Φ8) ⊆ 2Z imply dK̃ ≡ 0 (mod 2)
So, K̃2 is not unimodular and hence K̃2 → (I8)2
(Φ8)p ' (I8)p implie K̃p → (I8)p for all p 6= 2

Since gen(I8) = cls(I8), we have K̃ → I8

From this follows K → I9, as desired �

(∗) The proof for the fact that g[k] = k + 3 for 1 ≤ k ≤ 5 is
quite simple because gen(Ik+3) = cls(Ik+3) for those k

The most important ingredient for the g[6] case is that

gen(I9) = cls(I8 ⊥ 〈1〉) ∪ cls(Φ8 ⊥ 〈1〉)
gen(I8) = cls(I8), gen(Φ8) = cls(Φ8)

Such a property, however, is not available for k ≥ 7

(∗) g[k] for k ≥ 7 ?

(∗) The minimal rank of k-universal Z-lattices for k ≥ 6 ?
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(2-4) universal O-lattices

(∗) Chan-K-Raghavan : ∃ only five universal ternary
O-lattices for F = Q(

√
5) (three diagonal ones

and two non-diagonal ones)
〈1, 1, 1〉 〈1, 1, 2〉 〈1, 1, 2 + ε〉

〈1〉 ⊥
(

2 1
1 2 + ε

)

〈1〉 ⊥
(

2 1
1 2 + ε′

)

where ε = (1 +
√

5)/2 is the fundamental unit
of Q(

√
5) and ε′ is its conjugate

We further proved that there are exactly three real
quadratic fields F that admit universal ternary
O-lattices, namely, F = Q(

√
2),Q(

√
3),Q(

√
5)

Q(
√

2) admits four such :

〈1, 1, 1 + ε〉 〈1〉 ⊥
(

1 + ε 1
1 1 + ε′

)

〈1〉 ⊥
(

1 + ε 1
1 3

)

〈1〉 ⊥
(

1 + ε′ 1
1 3

)

where ε = 1 +
√

2 is the fundamental unit of Q(
√

2)

Q(
√

3) admits two such : 〈1, 1, ε〉 〈1, ε, ε〉
where ε = 2 +

√
3 is the fundamental unit of Q(

√
3)

(∗) For a totally real field F , K → IN for some N for every
positve binary O-lattice K if and only if F = Q

(∵) For F = Q(
√

5), the binary O-lattice
(

2 1
1 4 + 3ε

)

cannot be represented by IN for any N �
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(∗) We briefly indroduce the strategy of our proof for
the universality in C-K-R, K-K-R, and K-K :

(1) Eliminate others except the listed O-lattices
by norm and trace comparison, etc

(2) Show the listed are locally universal at all places
by O’Meara and Riehm’s local representation theory

(3) Compute the class numbers of the listed by using
Siegel’s mass formula

If the class number is one, we are lucky
Otherwise, we need more time and better idea
See, for example, Duke and Schulze-Pillot’s result

(∗) Kitaoka suggested that there may be only finitely
many totally real fields F that admit universal
ternary O-lattices (?)

This is true if one restricts F to real quadratic fields
by C-K-R

If [F : Q] is odd, then F admits no universal ternary
O-lattice

Kim recently proved the followings :

(1) For a fixed n, ∃ finitely many totally real
fields F with [F : Q] = n s.t. F admits universal
ternary O-lattices

(2) If n = 2 or odd, then ∃ finitely many totally real
fields F with [F : Q] = n s.t. F admits universal
quaternary O-lattices
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(∗) He also observed : ∃ infinitely many real quadratic fields
that admit universal octanary O-lattices

For every square-free m, F = Q(
√

m2 − 1) admits the
universal octanary O-lattice 〈1, 1, 1, 1, ε, ε, ε, ε〉, where
ε = m +

√
m2 − 1 is the fundamental unit of F

This is very interesting since it seems that there are
only finitely many real quadratic fields that admit
universal O-lattices of rank up to 7

(∗) Pythagoras numbers for real quadratic fields :

g{Q(
√

2)} = 3 (Cohn)
g{Q(

√
3)} = 3 (Cohn)

g{Q(
√

5)} = 3 (Maass)
g{Q(

√
6)} = g{Q(

√
7)} = 4 (Cohn-Pall)

g{Q(
√

m)} = 5 for all square-free m ≥ 10 (Kim)∗

Proof m ≥ 10

For m ≡ 2, 3 (mod 4), suppose that (m + 8) + 2
√

m
can be written as a sum of four squares
Since m + 8 < 2m, we may write (m + 8) + 2

√
m

= (a1 + b1
√

m)2 + a2
2 + a2

3 + a2
4 and hence | a1| = | b1|

= 1 and a2
2 + a2

3 + a2
4 = 7, which is impossible

m ≡ 1 (mod 4) case can be treated similarly

(∗) Can we obtain an analogy of Conway-Schneeberger’s
15-Theorem for the universality of positive O-lattices
when F is a totally real field ?
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