Classification of \mathcal{C}^*-algebras and \mathcal{W}^*-algebras

Classification theorems for amenable \mathcal{C}^*-algebras and Connes' fundamental work for injective factors

Yasuhiko Sato

08, Aug. 2014. Cheongpung, Korea
The fundamental result for AFD

- 1976, A. Connes showed that any injective factor with a separable predual is AFD, and gave a classification for injective factors of type II and type III\(\lambda\), \(\lambda \neq 1\).
The fundamental result for AFD

- **1976, A. Connes**
 showed that any injective factor with a separable predual is AFD, and gave a classification for injective factors of type II and type III\(\lambda\), \(\lambda \neq 1\).

- **1985, U. Haagerup**
 showed a new proof for Connes’ fundamental result (injectivity \(\Rightarrow\) AFD), and completed the case of typeIII\(_1\).
The fundamental result for AFD

- 1976, A. Connes
 showed that any injective factor with a separable predual is AFD, and gave a classification for injective factors of type II and type III_λ, λ ≠ 1.

- 1985, U. Haagerup
 showed a new proof for Connes’ fundamental result (injectivity ⇒ AFD), and completed the case of type III_1.

- 1986, S. Popa
 gave a short proof for Connes’ fundamental result (in the case of type II_1),

↓ H. Lin introduced the definition of Tracial AF algebra.
Sketch of the proof by Connes and Haagerup

Let M be an injective II$_1$-factor with a separable predual.

By using his previous results of automorphisms, Connes showed that M^ω has an outer automorphism, $M^\omega \supset M_2(\mathbb{C})$ unitally.
Sketch of the proof by Connes and Haagerup

Let M be an injective II$_1$-factor with a separable predual.

By using his previous results of automorphisms, Connes showed that M^ω has an outer automorphism, $M^\omega \supset M_2(\mathbb{C})$ unitally.

\[\therefore M \hat{\otimes} \mathcal{R} \cong M, \quad \mathcal{R}: \text{the AFD II}_1 \text{ factor.}\]
Sketch of the proof by Connes and Haagerup

Let M be an injective II_1-factor with a separable predual.

By using his previous results of automorphisms, Connes showed that M^ω has an outer automorphism, $M^\omega \supset M_2(\mathbb{C})$ unitally.

$\therefore M \bar{\otimes} R \cong M, \quad R$: the AFD II_1 factor.

Now, there are two unital embeddings.

$\iota : M \hookrightarrow M \bar{\otimes} R \subset (M \bar{\otimes} R)^\omega, \quad x \mapsto x \otimes 1_R.\quad \varphi : M \hookrightarrow R^\omega \subset (M \bar{\otimes} R)^\omega.$
Sketch of the proof by Connes and Haagerup

In the alternative proof given by Haagerup, he showed the following condition:
for any $\varepsilon > 0$, $\exists N \in \mathbb{N}$ and $\exists a_i \in (M \tilde{\otimes} \mathcal{R})^\omega$, $i = 0, 1, \ldots, N$ such that

$$\iota(x)a_i = a_i \varphi(x) \text{ for all } x \in M, \quad \sum_i a_i^*a_i \approx_\varepsilon 1 \approx_\varepsilon \sum_i a_ia_i^*.$$

Define, $\mathcal{M}_0 := (M \tilde{\otimes} \mathcal{R})^\omega \otimes M_2$,

$$\pi(x) := \begin{bmatrix} \varphi(x) & 0 \\ 0 & \iota(x) \end{bmatrix} \in \mathcal{M}_0, \quad A_i := \begin{bmatrix} 0 & 0 \\ a_i & 0 \end{bmatrix} \in \mathcal{M}_0,$$

$$p := \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \in \mathcal{M}_0, \quad q := \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \in \mathcal{M}_0.$$

$$(\iota : M \hookrightarrow M \tilde{\otimes} \mathcal{R} \subset (M \tilde{\otimes} \mathcal{R})^\omega, \quad \varphi : M \hookrightarrow \mathcal{R}^\omega \subset (M \tilde{\otimes} \mathcal{R})^\omega).$$
Classifications of C^*-algebras and W^*-algebras

Sketch of the proof by Connes and Haagerup

Let $\mathcal{N}_0 := \pi(M)' \cap M_0$. It follows that $p, q \in \mathcal{N}_0$. By the condition of a_i, we also have $A_i \in \mathcal{N}_0$. Then for any normal tracial state τ on \mathcal{N}_0,

$$\tau(p) \approx_\varepsilon \tau \left(\sum_{i=0}^{N} A_i^* A_i \right) = \tau \left(\sum_{i=0}^{N} A_i A_i^* \right) \approx_\varepsilon \tau(q).$$

which implies that $\tau(p) = \tau(q)$. Then p and q are Murray-von Neumann equivalent, there exist $\nu \in \mathcal{N}_0$ and $u \in (M \otimes R)^\omega$ such that $\nu^* \nu = p$, $\nu \nu^* = q$,

$$\nu = \begin{bmatrix} 0 & 0 \\ u & 0 \end{bmatrix} \in M_0, \quad u^* u = 1_{(M \otimes R)^\omega} = uu^*.$$

Since $\nu \in \pi(M)'$ we conclude that

$$\iota(x) = \text{Ad} u(\varphi(x)), \quad \text{for any } x \in M.$$
A brief survey of C^*-algebra classification result

- **1989, G. A. Elliott**: showed a classification of amenable C^*-algebras called AT algebra of real rank zero by their K-groups, and initiated a program to classify amenable C^*-algebras via K-theoretic invariants.
A brief survey of C^*-algebra classification result

- 1989, G. A. Elliott showed a classification of amenable C^*-algebras called AT algebra of real rank zero by their K-groups, and initiated a program to classify amenable C^*-algebras via K-theoretic invariants.

- 2003, 2005, J. Villadsen, M. Rørdam, A. Toms constructed amenable C^*-algebras which have rather pathological property, i.e., can’t be classified by K-theoretic invariants.

It is necessary to determine regularity properties for classifiable C^*-algebras.
Toms-Winter Conjecture

Conjecture (Toms-Winter, 2008)

Let A be a unital separable simple amenable C^*-algebra with $\dim(A) = \infty$. Then the following conditions are equivalent.

(i) A has strict comparison,

(ii) $A \otimes \mathbb{Z} \cong A$,

(iii) $\dim_{\text{nuc}}(A) < \infty$ (resp. $\text{dr}(A) < \infty$ for stably finite cases).

(i) \iff for positive elements $a, b \in A \otimes M_k$ satisfying that

$$\lim_n \tau(a^{1/n}) < \lim_n \tau(b^{1/n})$$

for any tracial state τ on A, there exists $v_n \in A \otimes M_k$ such that $\|v_n b v_n^* - a\| \to 0$, 1982, 2004, Blackadar, Rørdam.
Let A be a unital separable simple amenable C*-algebra with $\dim(A) = \infty$. Then the following conditions are equivalent.

(i) A has strict comparison,

(ii) $A \otimes \mathbb{Z} \cong A$,

(i) \iff for positive elements $a, b \in A \otimes M_k$ satisfying that

$$\lim_n \tau(a^{1/n}) < \lim_n \tau(b^{1/n})$$

for any tracial state τ on A, there exists $v_n \in A \otimes M_k$ such that $\|v_nbv_n^* - a\| \to 0$, 1982, 2004, Blackadar, Rørdam.
Toms-Winter Conjecture

Conjecture (Toms-Winter, 2008)

Let A be a unital separable simple amenable C*-algebra with $\dim(A) = \infty$. Then the following conditions are equivalent.

(i) A has strict comparison,

(ii) $A \otimes \mathbb{Z} \cong A$,

(iii) $\dim_{\text{nuc}}(A) < \infty$, (resp. $\text{dr}(A) < \infty$ for stably finite cases).

- **(i)** \iff for positive elements $a, b \in A \otimes M_k$ satisfying that
 \[
 \lim_n \tau(a^{1/n}) < \lim_n \tau(b^{1/n})
 \]
 for any tracial state τ on A, there exists $v_n \in A \otimes M_k$ such that $\|v_n b v_n^* - a\| \to 0$, 1982, 2004, Blackadar, Rørdam.

- **(iii)** $\dim_{\text{nuc}}(A)$ (resp. $\text{dr}(A)$) is the smallest number $N \in \mathbb{Z}_+$ satisfying that;
 \[\exists F_{i,n} : \text{finite dim. C*-algebras}, i = 0, 1, \ldots, N, \exists \varphi_n : A \to \bigoplus_{i=0}^N F_{i,n} : \text{c.p.c}, \]
 \[\exists \psi_{i,n} : F_{i,n} \to A : \text{order zero (disjointness preserving) c.p.c, s.t.} \]
 \[
 \| (\sum_{i=0}^N \psi_{i,n}) \circ \varphi_n(a) - a \| \to 0, \forall a \in A, \quad (\text{and } \| \sum_{i=0}^N \psi_{i,n} \| \leq 1),
 \]
Previous results for TW conjecture

- 2004, M. Rørdam, \((ii) \Rightarrow (i)\).
Previous results for TW conjecture

- 2004, M. Rørdam, (ii) \Rightarrow (i).
- 2008, W. Winter, (iii) \Rightarrow (ii).
Previous results for TW conjecture

- 2004, M. Rørdam, (ii) \Rightarrow (i).

- 2008, W. Winter, (iii) \Rightarrow (ii).

- Under the assumption of unique tracial state,
 2013, Matui-S., (i) + QD \Rightarrow (iii) ($\text{dr}(A) \leq 3$).

 2014, White-Winter-S., (i) \Rightarrow (iii) ($\text{dim}_{\text{nuc}}(A) \leq 3$).
Classification of unital simple \(\mathcal{Z} \) absorbing \(\mathbb{C}^* \)-algebras

The following classification is a direct consequence of the above partial answer to TW-conjecture and Lin-Niu and Winter’s classification theorems.

Theorem (Matui-S., Lin-Niu, Winter)

Let \(A, B \) be unital separable simple amenable \(\mathbb{C}^* \)-algebras, with a unique tracial state. Assume that \(A, B \) satisfy (i), QD, UCT. Then \(A \cong B \) if and only if

\[
(K_0(A), K_0(A)_+, [1_A]_0, K_1(A)) \cong (K_0(B), K_0(B)_+, [1_B]_0, K_1(B)).
\]
Applications

Application 1, (2013, Matui-S.)

We obtain a counter example to the Powers-Sakai conjecture.

Application 2, (2014, Ozawa-Rørdam-S.)

The Rosenberg conjecture has an affirmative answer in the class of elementary amenable groups.