Constructing the duals of quantum groups and semigroups without the Haar weight

Yulia Kuznetsova

Université de Franche-Comté, Besançon, France

Cheongpung, Korea, August 10, 2014
Pontryagin’s duality: $G \simeq \hat{G}$

where G is a locally compact abelian group and \hat{G} is the dual group

If G is non-commutative: \hat{G} is no more a group
so we pass to group algebras: $C_0(G)$ and $C^*(G)$,
 or $L^\infty(G)$ and $L(G)$, or another pair

Kac algebras (1970s: Vainerman, Kac, Enock, Schwartz)
Locally compact quantum groups (LCQG) 2000s, Kustermans, Vaes
I am not giving a historical overview!
Duality for locally compact quantum groups

Von Neumann algebraic LCQG is a von Neumann algebra M with a comultiplication $\Delta : M \to M \otimes M$, which is a normal unital *-homomorphism such that $(\mathbb{I} \otimes \Delta)\Delta = (\Delta \otimes \mathbb{I})\Delta$; and a pair of Haar (invariant) weights ϕ, ψ

Classical example: $M = L^\infty(G), \hat{M} = \mathcal{L}(G)$

Duality (Kustermans–Vaes)

If M is a von Neumann algebraic LCQG, then the following diagram commutes:

\[
\begin{array}{ccc}
 M & \xrightarrow{\text{predual}} & M_* \\
 \lambda_\phi & \downarrow & \lambda_\phi \\
 \hat{M}_* & \xleftarrow{\text{predual}} & \hat{M}
\end{array}
\]

The weight ϕ is used both to define the dual algebra and to guarantee the duality: $\hat{M} \simeq M$
Definition of algebras we are working with

\(M \) is a \textbf{VN bialgebra with antipode (VNBA)} if:

1. \(M \) is a von Neumann algebra;
2. there exists a comultiplication and an antipode \(S : D(S) \subset M \to M \) such that
 - \(S : D(S) \to M \) is an anti-homomorphism;
 - \((\ast S)^2 = \mathbb{I} \);
 - \(D(S) \) is \(\sigma \)-weakly dense in \(M \);
3. \(S \) is a “coalgebra morphism”: if \(\mu, \nu \in M_* \) are such that \(\mu \circ S, \nu \circ S \in M \), then for \(x \in D(S) \)
 \[
 (\Delta(x))(\nu \circ S \otimes \mu \circ S) = (\Delta S(x))(\mu \otimes \nu).
 \]

Example: LCQG, but also quantum semigroups
If \(S \) is bounded, \(M \) is a coinvolutive Hopf-VNA, a class which includes Kac algebras
Duality without the Haar measure

Multiplicative unitaries:
Baaj, Skandalis: regular multiplicative unitaries
Woronowicz: manageable multiplicative unitaries

Recall that for a LCQG, both M and \hat{M} are generated by a unitary $W \in M \tilde{\otimes} \hat{M}$:

\[
M = \{ \omega \otimes \text{id})(W) : \omega \in \hat{M}* \}
\]

\[
\hat{M} = \{ \omega \otimes \text{id})(W) : \omega \in M* \}
\]

One can start with a W and define M, \hat{M} as above. If W is "good" then these are Hopf algebras

but how to construct such unitaries?
Representations of M_*

Let M be a von Neumann bialgebra with an antipode. Recall that M_* is a Banach algebra, with

$$(\mu \ast \nu)(x) = (\mu \otimes \nu)(\Delta(x))$$

for $\mu, \nu \in M_*, x \in M$

The natural involution is defined by $\mu^*(x) = \overline{\mu((Sx)^*)}$, and is defined only for a subset $M^{**} \subset M_*$.

Kustermans, 2000: if $M = L^\infty(G)$ is a LCQG, then $M^{**} = L^1(G)^\#$ is dense in M_*.

In general, M^{**} might not be dense in M_*, but one can pass to $M^r = M/(M^{**})^\perp$, then $M^r_* = [M^{**}]$ and M^r is still a VNBA.

A *-representation of M_* is by definition repn which is involutive on M^{**}. We consider only representations $\pi : M_* \to B(H)$ which are completely bounded, and this is equivalent to the existence of $U \in M \widehat{\otimes} B(H)$ (generator) such that

$U(\mu, \omega) = \omega(\pi(\mu))$ for all $\mu \in M_*, \omega \in B(H)^\ast$.
Unitary representations

Definition

Call a *-representation π of M_* on a Hilbert space H unitary if (i) or (ii) holds:

(i) the generator U is unitary; (ii), equivalently, in some basis (e_α) of H, with $\pi_{\alpha \beta}(\mu) = \langle \pi(\mu)e_\beta, e_\alpha \rangle$,

$$
\sum_\gamma \pi^*_{\gamma \alpha} \cdot \pi_{\gamma \beta} = \sum_\gamma \pi_{\alpha \gamma} \cdot \pi^*_{\beta \gamma} = \begin{cases}
1, & \alpha = \beta \\
0, & \alpha \neq \beta
\end{cases}
$$

for every α, β, the series converging absolutely in the M_*-weak topology of M.
If M_* is commutative, then its irreducible representations are characters;

π is unitary \iff it is a unitary element in M:

$\pi^* \pi = \pi \pi^* = 1$

Consider $M_* = B(G) = C^*(G)$, the Fourier–Stieltjes algebra of G.
$M = B(G)^* = W^*(G) = C^*(G)^*$, the “big group algebra” of J. Ernest

Theorem (M. Walter)

For a character u of $B(G)$ TFAE:

- u is unitary in $W^*(G)$
- $u(f) = f(t)$ for some $t \in G$
- $u|_{A(G)} \not\equiv 0$.
Representations of the measure algebra

Theorem
An irreducible representation π of $M(G)$ is unitary if and only if it is generated by a continuous unitary representation $\tilde{\pi}$ of G by the integral formula

$$\pi(\mu) = \int_G \tilde{\pi}(t) d\mu(t), \quad (*)$$
The unitary dual and the universal C^*-algebra

Theorem (E. Kirchberg, 1977)

There is a functor $M \mapsto W^* U(M)$ on the category of CHvNA such that

\[\{ \text{normal reps of } W^* U(M) \} \leftrightarrow \{ \text{unitary reps of } M_* \} \]

If M has a Haar weight, then $\hat{M} = W^* (M_*)$ and $\hat{M} \simeq \hat{\hat{M}}$.

C^*-version : Ch.-K. Ng (2002)

Theorem (J. Kustermans, 2000)

Let G be a LCQG. Then there exists a C^*-algebra $C_u^*(\widehat{G})$ whose *-representations are in bijection with unitary *-representations of $L_1(G)$.
Absolutely continuous ideal

Definition

\[M^0_\ast = \bigcap \{ \ker \pi : \pi \text{ is irreducible and non-unitary} \} \]

By definition, if an irrep \(\pi \not\equiv 0 \) on \(M^0_\ast \) then \(\pi \) is unitary.

If \(M \) is weakly separable, by disintegration one can show this for general \(\pi \) which is non-degenerate on \(M^0_\ast \).

We need more:

if \(\pi \) is unitary (on \(M_\ast \)) then it is non-degenerate on \(M^0_\ast \) (*)

Solution: reset \(M^0_\ast = 0 \) if this does not hold; then either (*) or \(M^0_\ast = 0 \).

In fact: set \(M^0_\ast = 0 \) if the ideal generated by \((M^0_\ast)\perp\) equals \(M \).

Finally: if \(M^0_\ast \neq 0 \) then

\(\pi \) is unitary iff \(\pi \) is non-degenerate on \(M^0_\ast \)

If \(M \) is a LCQG: \(M^0_\ast = M_\ast \)

If \(M = L^\infty(S) \) for a semigroup \(S \) with only \(e \) invertible, then \(M^0_\ast = 0 \).
Group case

If $M_* = M(G)$, this ideal is the common kernel of all reps which annihilate $L_1(G)$ and has thus the same representations as $L_1(G)$; $C^*(M^0_*) = C^*(G)$.

J. Taylor denoted it by $L^{1/2}(G)$ and proved that $M^0_* \neq L_1(G)$ unless G is discrete.

If $M_* = B(G)$, it is the common kernel of all non-evaluation characters; has the same characters as $A(G)$, i.e. evaluations at points of G; $C^*(M^0_*) = C_0(G)$
Duality : definition

Assume M is weakly separable

Definition

Set $\hat{M} = W^*(M^0)$: the enveloping von Neumann algebra of $C^*(M^0)$. Then \hat{M} has a canonical structure of a VNBA and is called the dual algebra of M.

Theorem

The map $M \mapsto \hat{M}$ is a functor on the category of weakly separable VNBA.

If M is a LCQG, then $\hat{M} = W^*(M_*)$;

if M is a Kac algebra then $\hat{M} \simeq \hat{M}$ (probably true for all LCQG).
Other examples

\[M = \hat{N} \text{ and } \begin{cases} \hat{M} \neq 0 \text{ is commutative } & \Rightarrow M \simeq C_0(G)^{**} \\ \hat{\hat{M}} \neq 0 \text{ is commutative } & \Rightarrow M \simeq C^*(G)^{**} \end{cases} \] for some \(G \) (\(G \) is a locally compact group)

Various semigroups \(M \) give:
- \(\hat{M} = 0 \) or \(\hat{M} = \mathbb{C} \)
- \(W^*(\mathbb{R}_+) \), \(L^\infty(\mathbb{R}) \) with \(Sf = f \),
- \(SU_q(N) \) with a bounded antipode;
- \(C^*(\Sigma) \) where \(\Sigma \) is a discrete sub-semigroup of a group
 with \(x \in \Sigma \) invertible iff \(x = e \);
for \(M = L^\infty(\mathbb{R}^2) \) with \(Sf(s,t) = f(s,-t) \), we have \(\hat{M} = C_0(\mathbb{R})^{**} \)

Conjecture: if the canonical map \(D_M : \hat{\hat{M}} \to M \) is surjective, then \(M \) carries a Haar weight

(satisfied for example if \(S \) is bounded and \(\hat{M} \neq 0 \))
Theorem

There is a functor $A \mapsto \hat{A}$ on the category of separable C^*-bialgebras with antipode defined as $\hat{A} = \hat{M}$, where $M = A^{**}$ is the enveloping VNA of A with induced structure.

$A = \hat{B}$ and
\[
\left\{ \begin{array}{l}
A \neq 0 \text{ is commutative} \Rightarrow A \simeq C_0(G) \\
\hat{A} \neq 0 \text{ is commutative} \Rightarrow A \simeq C^*(G)
\end{array} \right.
\]
for some G (G is a locally compact group)

For every LCG G, the following diagram commutes:

\[
\begin{array}{ccc}
\widehat{C^*_u(G)} & \simeq & C_0(G) \\
\widehat{B(G)} & \simeq & C^*_u(G)
\end{array}
\]

\[
\begin{array}{ccc}
\widehat{C^*_u(G)} & \simeq & C_0(G) \\
\widehat{B(G)} & \simeq & C^*_u(G)
\end{array}
\]

\[
\begin{array}{c}
\downarrow C^*_u-env \\
\uparrow C^*_u-env
\end{array}
\]

\[
\begin{array}{cc}
\widehat{C^*_u(G)} & \simeq & C_0(G) \\
\widehat{B(G)} & \simeq & C^*_u(G)
\end{array}
\]