Note on paranormal operators and operator equations \(ABA = A^2\) and \(BAB = B^2\)

Il Ju An* Eungil Ko

PDE and Functional Analysis Research Center (PARC)
Seoul National University
Seoul, Korea

ICM Satellite Conference 2014
Cheongpung, Korea
August 9 (Saturday), 2014
Fredholm Operators

Definitions

Let $T \in B(H)$.

- T is called **upper semi-Fredholm** if $R(T)$ is closed and $\alpha(T) < \infty$,
- T is called **lower semi-Fredholm** if $\beta(T) < \infty$.
- T is called **Fredholm** if $\alpha(T) < \infty$ and $\beta(T) < \infty$, in this case, the **index** is defined by
 $$i(T) := \alpha(T) - \beta(T).$$
- T is called **Weyl** if it is Fredholm of index zero.
- T is called **Browder** if it is Fredholm of finite ascent and descent.
Fredholm Operators

Definitions

Let $T \in B(\mathcal{H})$.

- T is called upper semi-Fredholm if $R(T)$ is closed and $\alpha(T) < \infty$,
- T is called lower semi-Fredholm if $\beta(T) < \infty$.
- T is called Fredholm if $\alpha(T) < \infty$ and $\beta(T) < \infty$, in this case, the index is defined by
 \[i(T) := \alpha(T) - \beta(T). \]
- T is called Weyl if it is Fredholm of index zero.
- T is called Browder if it is Fredholm of finite ascent and descent.
The smallest nonnegative integer p such that $N(T^p) = N(T^{p+1})$ is called the ascent of T and denoted by $p(T)$. If no such integer exists, we set $p(T) = \infty$. The smallest nonnegative integer q such that $R(T^q) = R(T^{q+1})$ is called the descent of T and denoted by $q(T)$. If no such integer exists, we set $q(T) = \infty$.
The smallest nonnegative integer \(p \) such that \(N(T^p) = N(T^{p+1}) \) is called the ascent of \(T \) and denoted by \(p(T) \). If no such integer exists, we set \(p(T) = \infty \).
The smallest nonnegative integer p such that $N(T^p) = N(T^{p+1})$ is called the ascent of T and denoted by $p(T)$. If no such integer exists, we set $p(T) = \infty$.

The smallest nonnegative integer q such that $R(T^q) = R(T^{q+1})$ is called the descent of T and denoted by $q(T)$. If no such integer exists, we set $q(T) = \infty$.
Several Spectrums

Let $T \in B(\mathcal{H})$
Several Spectrums

Let $T \in B(H)$

$\sigma_p(T)$: the point spectrum of T

$\sigma_a(T)$: the approximate point spectrum of T
Several Spectrums

Let $T \in B(H)$

$\sigma_p(T)$: the point spectrum of T

$\sigma_a(T)$: the approximate point spectrum of T

$\sigma_{SF+}(T) := \{ \lambda \in \mathbb{C} : T - \lambda \text{ is not upper semi-Fredholm} \}$

$\sigma_{SF-}(T) := \{ \lambda \in \mathbb{C} : T - \lambda \text{ is not lower semi-Fredholm} \}$

$\sigma_e(T) := \{ \lambda \in \mathbb{C} : T - \lambda \text{ is not Fredholm} \}$
Several Spectrums

Let $T \in B(\mathcal{H})$

$\sigma_p(T)$: the point spectrum of T

$\sigma_a(T)$: the approximate point spectrum of T

$\sigma_{SF+}(T) := \{ \lambda \in \mathbb{C} : T - \lambda \text{ is not upper semi-Fredholm} \}$

$\sigma_{SF-}(T) := \{ \lambda \in \mathbb{C} : T - \lambda \text{ is not lower semi-Fredholm} \}$

$\sigma_e(T) := \{ \lambda \in \mathbb{C} : T - \lambda \text{ is not Fredholm} \}$

$\sigma_w(T) := \{ \lambda \in \mathbb{C} : T - \lambda \text{ is not Weyl} \}$

$\sigma_b(T) := \{ \lambda \in \mathbb{C} : T - \lambda \text{ is not Browder} \}$
Local Spectrum

Given an arbitrary $T \in B(\mathcal{H})$ on a Hilbert space \mathcal{H}, the local resolvent set $\rho_T(x)$ of T at the point $x \in \mathcal{H}$ is defined as the union of all open subsets U of \mathbb{C} for which there is an analytic function $f : U \to \mathcal{H}$ which satisfies $(T - \lambda)f(\lambda) = x$ for all $\lambda \in U$.

Local Spectrum

Given an arbitrary $T \in B(\mathcal{H})$ on a Hilbert space \mathcal{H}, the local resolvent set $\rho_T(x)$ of T at the point $x \in \mathcal{H}$ is defined as the union of all open subsets U of \mathbb{C} for which there is an analytic function $f : U \to \mathcal{H}$ which satisfies $(T - \lambda)f(\lambda) = x$ for all $\lambda \in U$.

The local spectrum $\sigma_T(x)$ of T at the point $x \in \mathcal{H}$ is defined as

$$\sigma_T(x) := \mathbb{C} \setminus \rho_T(x).$$
Given an arbitrary $T \in B(\mathcal{H})$ on a Hilbert space \mathcal{H}, the local resolvent set $\rho_T(x)$ of T at the point $x \in \mathcal{H}$ is defined as the union of all open subsets U of \mathbb{C} for which there is an analytic function $f : U \to \mathcal{H}$ which satisfies $(T - \lambda)f(\lambda) = x$ for all $\lambda \in U$.

The local spectrum $\sigma_T(x)$ of T at the point $x \in \mathcal{H}$ is defined as

$$\sigma_T(x) := \mathbb{C} \setminus \rho_T(x).$$

We define the local spectral subspaces of T by

$$H_T(F) := \{x \in \mathcal{H} : \sigma_T(x) \subseteq F\} \text{ for all sets } F \subseteq \mathbb{C}.$$
Localized Single Valued Extension Property

Definitions [1952, N. Dunford]

$T \in B(X)$ has the **single valued extension property** at $\lambda_0 \in \mathbb{C}$ (abbreviated SVEP at λ_0) if for every open neighborhood U of λ_0 the only analytic function $f : U \rightarrow X$ which satisfies the equation

$$(T - \lambda)f(\lambda) = 0$$

is the constant function $f \equiv 0$ on U. The operator T is said to have SVEP if T has SVEP at every $\lambda \in \mathbb{C}$.
Well Known Facts

\[p(T - \lambda) < \infty \implies T \text{ has SVEP at } \lambda \]

\[q(T - \lambda) < \infty \implies T^* \text{ has SVEP at } \lambda \]

It is well known that if \(T - \lambda \) is semi-Fredholm, then these implications are equivalent.
Operator equations $ABA = A^2$ and $BAB = B^2$

Let (A, B) be a solution of the system of operator equations

$$ABA = A^2 \text{ and } BAB = B^2.$$ \hspace{1cm} (1.1)
Let \((A, B)\) be a solution of the system of operator equations

\[ABA = A^2 \quad \text{and} \quad BAB = B^2. \tag{1.1}\]

[A and B are self-adjoint operators satisfying the operator equations (1.1) if and only if \(A = PP^*\) and \(B = P^*P\) for some idempotent operator \(P\).]
Operator equations $ABA = A^2$ and $BAB = B^2$

[2006, C. Schmoeger]

The common spectral properties of the operators A and B satisfying the operator equations (1.1).
Operator equations $ABA = A^2$ and $BAB = B^2$

[2006, C. Schmoeger]

The common spectral properties of the operators A and B satisfying the operator equations (1.1).

[2011, B.P. Duggal]

It is possible to relate the several spectrums, the single-valued extension property and Bishop’s property (β) of A and B.
Note.

(1) If \(\lambda \neq 0 \), then
\[
N(A - \lambda I) = N(AB - \lambda I) = A(N(B - \lambda I)),
\]
\[
N(B - \lambda I) = N(BA - \lambda I) = B(N(A - \lambda I)),
\]
Operator equations $ABA = A^2$ and $BAB = B^2$

Note.

(1) If $\lambda \neq 0$, then

$$N(A - \lambda I) = N(AB - \lambda I) = A(N(B - \lambda I)),$$

$$N(B - \lambda I) = N(BA - \lambda I) = B(N(A - \lambda I)),$$

and

$$\alpha(A - \lambda I) = \alpha(AB - \lambda I) = \alpha(BA - \lambda I) = \alpha(B - \lambda I).$$
Operator equations \(ABA = A^2 \) and \(BAB = B^2 \)

Note.

(1) If \(\lambda \neq 0 \), then

\[
N(A - \lambda I) = N(AB - \lambda I) = A(N(B - \lambda I)) ,
\]

\[
N(B - \lambda I) = N(BA - \lambda I) = B(N(A - \lambda I)) , \text{ and}
\]

\[
\alpha(A - \lambda I) = \alpha(AB - \lambda I) = \alpha(BA - \lambda I) = \alpha(B - \lambda I) .
\]

Moreover, if \(\lambda \neq 0 \), then

\[
p(A - \lambda I) = p(AB - \lambda I) = p(BA - \lambda) = p(B - \lambda I) \text{ and}
\]

\[
q(A - \lambda I) = q(AB - \lambda I) = q(BA - \lambda) = q(B - \lambda I)
\]
Operator equations $ABA = A^2$ and $BAB = B^2$

\[(2) \quad \sigma_x(A) = \sigma_x(AB) = \sigma_x(BA) = \sigma_x(B),\]

where $\sigma_x = \sigma, \sigma_p, \sigma_a, \sigma_{SF+}, \sigma_{SF-}, \sigma_e, \sigma_w,$ or σ_b.
Operator equations \(ABA = A^2 \) and \(BAB = B^2 \)

(2) \(\sigma_x(A) = \sigma_x(AB) = \sigma_x(BA) = \sigma_x(B) \),

where \(\sigma_x = \sigma, \sigma_p, \sigma_a, \sigma_{SF+}, \sigma_{SF-}, \sigma_e, \sigma_w \), or \(\sigma_b \).

(3) \(A \) has SVEP iff \(AB \) has SVEP iff \(BA \) has SVEP iff \(B \) has SVEP.
Question!

Q. When A is paranormal (respectively, normal), is AB, BA, or B also a paranormal (respectively, normal) operator?
Q. When A is paranormal (respectively, normal), is AB, BA, or B also a paranormal (respectively, normal) operator?

Definitions

$T \in B(\mathcal{H})$ is **normal** if $T^* T = TT^*$ and T is **paranormal** if

$$\| Tx \|^2 \leq \| T^2 x \| \| x \|$$ for all $x \in \mathcal{H}$.
Question!

Q. When A is paranormal (respectively, normal), is AB, BA, or B also a paranormal (respectively, normal) operator?

Definitions

$T \in B(\mathcal{H})$ is \textbf{normal} if $T^* T = TT^*$ and T is \textbf{paranormal} if

$$\|Tx\|^2 \leq \|T^2x\|\|x\| \quad \text{for all } x \in \mathcal{H}.$$

\{Normal\} \subseteq \{Paranormal\}
Question!

Q. When A is paranormal (respectively, normal), is AB, BA, or B also a paranormal (respectively, normal) operator?

Definitions

$T \in B(\mathcal{H})$ is **normal** if $T^* T = TT^*$ and T is **paranormal** if

$$\|Tx\|^2 \leq \|T^2x\|\|x\| \text{ for all } x \in \mathcal{H}.$$

$$\{\text{Normal }\} \subseteq \{\text{Paranormal }\} \subseteq \{\text{Polynomial roots of paranormal operators }\}$$
Answer!

A. No, it isn’t.
A. No, it isn’t.

Example 1

let $P = \begin{pmatrix} I & 0 \\ 0 & 0 \end{pmatrix}$ and $Q = \begin{pmatrix} I & 0 \\ I & 0 \end{pmatrix}$ in $B(\mathcal{H} \oplus \mathcal{H})$. Then $P^2 = P$ and $Q^2 = Q$. If $A := PQ$ and $B := QP$, then (A, B) is a solution of the operator equations (1.1). Since $B^* = \begin{pmatrix} I & I \\ 0 & 0 \end{pmatrix}$, a straightforward calculation shows that
A. No, it isn’t.

Example 1

Let \(P = \begin{pmatrix} I & 0 \\ 0 & 0 \end{pmatrix} \) and \(Q = \begin{pmatrix} I & 0 \\ I & 0 \end{pmatrix} \) in \(B(H \oplus H) \). Then \(P^2 = P \) and \(Q^2 = Q \). If \(A := PQ \) and \(B := QP \), then \((A, B) \) is a solution of the operator equations (1.1). Since \(B^* = \begin{pmatrix} I & I \\ 0 & 0 \end{pmatrix} \), a straightforward calculation shows that

\[
B^2 B^2 - 2 \lambda B^* B + \lambda^2 I = \begin{pmatrix} (2 - 4 \lambda + \lambda^2) I & 0 \\ 0 & \lambda^2 I \end{pmatrix},
\]
Example 1

But, \((2 - 4\lambda + \lambda^2)/I\) is not a positive operator for \(\lambda = 1\), hence we obtain that for some \(\lambda > 0\),
Example 1

But, $(2 - 4\lambda + \lambda^2)I$ is not a positive operator for $\lambda = 1$, hence we obtain that for some $\lambda > 0$,

$$B^2 B^2 - 2\lambda B^* B + \lambda^2 \not\geq 0.$$
Example 1

But, $(2 - 4\lambda + \lambda^2)I$ is not a positive operator for $\lambda = 1$, hence we obtain that for some $\lambda > 0$,

$$B^2 B^2 - 2\lambda B^* B + \lambda^2 \nless 0.$$

Therefore B is neither paranormal nor normal. On the other hand, A is normal, so that it is a paranormal operator.
Example 2

If $P = \begin{pmatrix} I & 2I \\ 0 & 0 \end{pmatrix}$ and $Q = \begin{pmatrix} I & 0 \\ 0 & 0 \end{pmatrix}$ are in $B(\mathcal{H} \oplus \mathcal{H})$, then both P and Q are idempotent operators. Also, $A := PQ$ and $B := QP$ satisfy the operator equations (1.1). Since $B^*A^* = \begin{pmatrix} I & 0 \\ 2I & 0 \end{pmatrix}$, a straightforward calculation shows that

However, $(4 - 8\lambda + \lambda^2)I$ is not a positive operator for $\lambda = 1$, hence AB is neither paranormal nor normal. On the other hand, A is normal, so that it is a paranormal operator.
Example 2

If $P = \begin{pmatrix} I & 2I \\ 0 & 0 \end{pmatrix}$ and $Q = \begin{pmatrix} I & 0 \\ 0 & 0 \end{pmatrix}$ are in $B(\mathcal{H} \oplus \mathcal{H})$, then both P and Q are idempotent operators. Also, $A := PQ$ and $B := QP$ satisfy the operator equations (1.1). Since $B^* A^* = \begin{pmatrix} I & 0 \\ 2I & 0 \end{pmatrix}$, a straightforward calculation shows that

$$(AB)^{2*}(AB)^2 - 2\lambda (AB)^*(AB) + \lambda^2 I = \begin{pmatrix} (1 - 2\lambda + \lambda^2)I & (2 - 4\lambda)I \\ (2 - 4\lambda)I & (4 - 8\lambda + \lambda^2)I \end{pmatrix}.$$

However, $(4 - 8\lambda + \lambda^2)I$ is not a positive operator for $\lambda = 1$, hence AB is neither paranormal nor normal. On the other hand, A is normal, so that it is a paranormal operator.
Example 2

If \(P = \begin{pmatrix} I & 2I \\ 0 & 0 \end{pmatrix} \) and \(Q = \begin{pmatrix} I & 0 \\ 0 & 0 \end{pmatrix} \) are in \(B(\mathcal{H} \oplus \mathcal{H}) \), then both \(P \) and \(Q \) are idempotent operators. Also, \(A := PQ \) and \(B := QP \) satisfy the operator equations (1.1). Since \(B^*A^* = \begin{pmatrix} I & 0 \\ 2I & 0 \end{pmatrix} \), a straightforward calculation shows that

\[
(AB)^2^* (AB)^2 - 2\lambda (AB)^* (AB) + \lambda^2 I = \begin{pmatrix} (1 - 2\lambda + \lambda^2)I & (2 - 4\lambda)I \\ (2 - 4\lambda)I & (4 - 8\lambda + \lambda^2)I \end{pmatrix}.
\]

However, \((4 - 8\lambda + \lambda^2)I\) is not a positive operator for \(\lambda = 1 \), hence \(AB \) is neither paranormal nor normal. On the other hand, \(A \) is normal, so that it is a paranormal operator.
Main Results 1

Let a pair \((A, B)\) denote the solution of the operator equations (1.1) throughout this talk.
Let a pair \((A, B)\) denote the solution of the operator equations (1.1) throughout this talk.

Q. Suppose \(A\) is paranormal. How can the operators \(AB\), \(BA\), or \(B\) be paranormal or normal?
Theorem

Let A be a paranormal operator on \mathcal{H} and $N(A) = N(AB)$.

(1) If $\dim \mathcal{H} < \infty$, then AB is a normal operator.

(2) If $\dim \mathcal{H} < \infty$ and $N(A - \lambda) = N(B - \lambda)$ for each $\lambda \in \mathbb{C}$, then all of A, AB, BA, and B are normal operators.
Let A be a paranormal operator on \mathcal{H} and $N(A) = N(AB)$.

(1) If $\dim \mathcal{H} < \infty$, then AB is a normal operator.
Theorem

Let A be a paranormal operator on \mathcal{H} and $N(A) = N(AB)$.

(1) If $\dim \mathcal{H} < \infty$, then AB is a normal operator.

(2) If $\dim \mathcal{H} < \infty$ and $N(A - \lambda) = N(B - \lambda)$ for each $\lambda \in \mathbb{C}$, then all of A, AB, BA, and B are normal operators.
Main Result 1

Given $T \in B(\mathcal{H})$ and $S \in B(\mathcal{K})$ for Hilbert spaces \mathcal{H} and \mathcal{K}, the commutator $C(S, T) \in B(B(\mathcal{H}, \mathcal{K}))$ is the mapping defined by

$$C(S, T)(A) := SA - AT$$

for all $A \in B(\mathcal{H}, \mathcal{K})$.
Given $T \in B(\mathcal{H})$ and $S \in B(\mathcal{K})$ for Hilbert spaces \mathcal{H} and \mathcal{K}, the commutator $C(S, T) \in B(B(\mathcal{H}, \mathcal{K}))$ is the mapping defined by

$$C(S, T)(A) := SA - AT$$

for all $A \in B(\mathcal{H}, \mathcal{K})$.

The iterates $C(S, T)^n$ of the commutator are defined by

$C(S, T)^0(A) := A$ and

$$C(S, T)^n(A) := C(S, T)(C(S, T)^{n-1}(A))$$

for all $A \in B(\mathcal{H}, \mathcal{K})$ and $n \in \mathbb{N}$; they are often called the higher order commutators.
Main Results 1

There is the following binomial identity. It states that

\[C(S, T)^n(A) = \sum_{k=0}^{n} \binom{n}{k} (-1)^k S^{n-k} A T^k, \]

which is valid for all \(A \in B(H, \mathcal{K}) \) and all \(n \in \mathbb{N} \cup \{0\} \).
Let A be paranormal with $N(A) = N(AB)$. If $\dim \mathcal{H} < \infty$ and α is a real number, then the following statements hold:

1. $\alpha AB + (1 - \alpha)A$ is a solution X of the operator equations $C(A, X)_n(A^*) = 0$ for all $n \in \mathbb{N}$.

2. $\sigma_A(\alpha AB + (1 - \alpha)A_x) \subseteq \sigma_{\alpha AB + (1 - \alpha)A_x}$ for all $x \in \mathcal{H}$.

3. $A_x^*H_{\alpha AB + (1 - \alpha)A}(F) \subseteq H_{A(F)}$ for every set F in C.

Corollary

Let A be paranormal with $N(A) = N(AB)$. If $\dim \mathcal{H} < \infty$ and α is a real number, then the following statements hold:
Corollary

Let A be paranormal with $N(A) = N(AB)$. If $\dim \mathcal{H} < \infty$ and α is a real number, then the following statements hold:

1. $\alpha AB + (1 - \alpha)A$ is a solution X of the operator equations $C(A, X)^n(A^*) = 0$ for all $n \in \mathbb{N}$.

2. $\sigma(A^*) \subseteq \sigma(\alpha AB + (1 - \alpha)A)$ for all $x \in \mathcal{H}$.

3. $A^*H_{\alpha AB + (1 - \alpha)A}(F) \subseteq H_{A(F)}$ for every set F in C.

Let A be paranormal with $N(A) = N(AB)$. If $\dim \mathcal{H} < \infty$ and α is a real number, then the following statements hold:

1. $\alpha AB + (1 - \alpha)A$ is a solution X of the operator equations $C(A, X)^n(A^*) = 0$ for all $n \in \mathbb{N}$.

2. $\sigma_A(A^*x) \subseteq \sigma_{\alpha AB + (1 - \alpha)A}(x)$ for all $x \in \mathcal{H}$.

Corollary
Corollary

Let A be paranormal with $N(A) = N(AB)$. If $\dim \mathcal{H} < \infty$ and α is a real number, then the following statements hold:

1. $\alpha AB + (1 - \alpha)A$ is a solution X of the operator equations $C(A, X)^n(A^*) = 0$ for all $n \in \mathbb{N}$.

2. $\sigma_A(A^*x) \subseteq \sigma_{\alpha AB+(1-\alpha)A}(x)$ for all $x \in \mathcal{H}$.

3. $A^*\mathcal{H}_{\alpha AB+(1-\alpha)A}(F) \subseteq \mathcal{H}_A(F)$ for every set F in \mathbb{C}.
It is well known that every quasinilpotent paranormal operator is a zero operator.
It is well known that every quasinilpotent paranormal operator is a zero operator.

Theorem

Let A be a paranormal operator and $\sigma(A) = \{\lambda\}$. Then the following statements hold.
It is well known that every quasinilpotent paranormal operator is a zero operator.

Theorem

Let A be a paranormal operator and $\sigma(A) = \{\lambda\}$. Then the following statements hold.

1. If $\lambda = 0$, then $B^2 = 0$.

It is well known that every quasinilpotent paranormal operator is a zero operator.

Theorem

Let A be a paranormal operator and $\sigma(A) = \{\lambda\}$. Then the following statements hold.

1. If $\lambda = 0$, then $B^2 = 0$.

2. If $\lambda \neq 0$, then $\lambda = 1$ and $A = B = I$.
Remark

Let A be a paranormal operator. Then we have the following.
Remark
Let A be a paranormal operator. Then we have the following.

(1) If A is quasinilpotent, then AB, BA, and B are nilpotent.
Remark

Let A be a paranormal operator. Then we have the following.

(1) If A is quasinilpotent, then AB, BA, and B are nilpotent.

(2) If $A - I$ is quasinilpotent, then B is the identity operator, that is, $AB - \lambda$, $BA - \lambda$, and $B - \lambda$ are invertible for all $\lambda \in \mathbb{C} \setminus \{1\}$.
Remark

Let A be a paranormal operator. Then we have the following.

(1) If A is quasinilpotent, then AB, BA, and B are nilpotent.

(2) If $A - I$ is quasinilpotent, then B is the identity operator, that is, $AB - \lambda$, $BA - \lambda$, and $B - \lambda$ are invertible for all $\lambda \in \mathbb{C} \setminus \{1\}$.

Corollary

If A is a paranormal operator, then $\text{iso} \ \sigma(T) \subseteq \{0, 1\}$ where $T \in \{A, AB, BA, B\}$.
If T is a paranormal operator and λ_0 is an isolated point of $\sigma(T)$, then the Riesz idempotent $E_{\lambda_0}(T) := \frac{1}{2\pi i} \int_{\partial D} (\lambda - T)^{-1} d\lambda$, where D is the closed disk of center λ_0 which contains no other points of $\sigma(T)$, satisfies

$$R(E_{\lambda_0}(T)) = N(T - \lambda_0).$$

Here, if $\lambda_0 \neq 0$, then $E_{\lambda_0}(T)$ is self-adjoint and $N(T - \lambda_0)$ reduces T.

[2006, Uchiyama]
Lemma 1

If A is paranormal and λ_0 is a nonzero isolated point of $\sigma(AB)$,
Lemma 1

If A is paranormal and λ_0 is a nonzero isolated point of $\sigma(AB)$, then for the Riesz idempotent $E_{\lambda_0}(A)$ with respect to λ_0, we have that

$$R(E_{\lambda_0}(A)) = N(AB - \lambda_0) = N(A^*B^* - \overline{\lambda_0}).$$
Main Results 3

We denote the set \mathcal{C} by the collection of every pair (A, B) of operators as the following:
Main Results 3

We denote the set \mathcal{C} by the collection of every pair (A, B) of operators as the following:

$$
\mathcal{C} := \{(A, B) : A \text{ and } B \text{ are solutions of the operator equations } (1.1) \text{ with } N(A - \lambda) = N(B - \lambda) \text{ for } \lambda \neq 0\}.
$$
We denote the set C by the collection of every pair (A, B) of operators as the following:

$$C := \{(A, B) : A \text{ and } B \text{ are solutions of the operator equations (1.1) with } N(A - \lambda) = N(B - \lambda) \text{ for } \lambda \neq 0\}.$$

Lemma 2

Suppose that $(A, B) \in C$ and A is paranormal. If $\lambda_0 \in \text{iso } \sigma(BA) \setminus \{0\}$, then for the Riesz idempotent $E_{\lambda_0}(A)$ with respect to λ_0, we have that

$$R(E_{\lambda_0}(A)) = N(BA - \lambda_0) = N(A^*B^* - \overline{\lambda_0}).$$
Let \((A, B) \in \mathcal{C}\) and \(A\) be a paranormal operator.
Theorem

Let \((A, B) \in \mathcal{C}\) and \(A\) be a paranormal operator.

(1) If \(\lambda_0\) is a nonzero isolated point of \(\sigma(BA)\), then the range of \(BA - \lambda_0\) is closed.
Let \((A, B) \in \mathcal{C}\) and \(A\) be a paranormal operator.

(1) If \(\lambda_0\) is a nonzero isolated point of \(\sigma(BA)\), then the range of \(BA - \lambda_0\) is closed.

(2) If \(B^*\) is injective and \(\lambda_0 \in \text{iso } \sigma(T) \setminus \{0\}\), then \(N(T - \lambda_0)\) reduces \(T\), where \(T \in \{AB, B\}\).
Main Result 3

It was shown by [Djor, Lemma 1] that for every $\lambda \in \pi_{00}(T)$, $H_T(\{\lambda\})$ is finite dimensional if and only if $R(T - \lambda)$ is closed. Furthermore we can easily prove that

It was shown by [Djor, Lemma 1] that for every $\lambda \in \pi_{00}(T)$, $\mathcal{H}_T(\{\lambda\})$ is finite dimensional if and only if $R(T - \lambda)$ is closed. Furthermore we can easily prove that

$$\pi_{00}(A) \setminus \{0\} = \pi_{00}(AB) \setminus \{0\} = \pi_{00}(BA) \setminus \{0\} = \pi_{00}(B) \setminus \{0\}.$$
Main Result 3

It was shown by [Djor, Lemma 1] that for every $\lambda \in \pi_{00}(T)$, $\mathcal{H}_T(\{\lambda\})$ is finite dimensional if and only if $R(T - \lambda)$ is closed. Furthermore we can easily prove that

$$\pi_{00}(A) \setminus \{0\} = \pi_{00}(AB) \setminus \{0\} = \pi_{00}(BA) \setminus \{0\} = \pi_{00}(B) \setminus \{0\}.$$

Corollary

Let $(A, B) \in \mathcal{C}$ and A be a paranormal operator. If $\lambda_0 \in \pi_{00}(BA) \setminus \{0\}$, then $\mathcal{H}_{BA}(\{\lambda_0\})$ is finite dimensional.
Main Result 3

Remark

Let $(A, B) \in \mathcal{C}$ and one of A, BA, AB, or B be paranormal. If λ_0 is a nonzero isolated point in the spectrum of one of them, then all of the ranges of $A - \lambda_0$, $BA - \lambda_0$, $AB - \lambda_0$, and $B - \lambda_0$ are closed. Moreover, if λ_0 is a nonzero isolated eigenvalue of the spectrum of one of them with finite multiplicity, then all of the spectral manifolds $\mathcal{H}_A(\{\lambda_0\})$, $\mathcal{H}_{AB}(\{\lambda_0\})$, $\mathcal{H}_{BA}(\{\lambda_0\})$, and $\mathcal{H}_B(\{\lambda_0\})$ are finite dimensional.
Main Result 4

It is well known that every polynomial roots of paranormal operators satisfy generalized Weyl’s theorem.
Main Result 4

It is well known that every polynomial roots of paranormal operators satisfy generalized Weyl’s theorem.

Now, we would like to show that if A is paranormal, then Weyl’s theorem holds for T, where $T \in \{AB, BA, B\}$. More generally, we prove that if A or A^* is a polynomial root of paranormal operators, then generalized Weyl’s theorem holds for $f(T)$ for $f \in H(\sigma(T))$, where $T \in \{AB, BA, B\}$.
Definitions [2001, M. Berkani]

Let $T \in B(H)$.

For a nonnegative integer n define T_n to be the restriction of T to $R(T^n)$ viewed as a map from $R(T^n)$ into $R(T^n)$ (in particular $T_0 = T$).
\textbf{B-Fredholm Operators}

\textbf{Definitions [2001, M. Berkani]}

Let $T \in B(\mathcal{H})$.

- For a nonnegative integer n define T_n to be the restriction of T to $R(T^n)$ viewed as a map from $R(T^n)$ into $R(T^n)$ (in particular $T_0 = T$).
- T is called \textbf{upper} (resp., \textbf{lower}) \textbf{semi-}B-Fredholm if for some integer n the range $R(T^n)$ is closed and T_n is upper (resp., lower) semi-Fredholm.
- T is called \textbf{semi-}B-Fredholm if it is upper or lower semi-B-Fredholm.
B-Fredholm Operators

Definitions [2001, M. Berkani]

Let $T \in B(\mathcal{H})$.

- For a nonnegative integer n define T_n to be the restriction of T to $R(T^n)$ viewed as a map from $R(T^n)$ into $R(T^n)$ (in particular $T_0 = T$).
- T is called **upper** (resp., **lower**) semi-B-Fredholm if for some integer n the range $R(T^n)$ is closed and T_n is upper (resp., lower) semi-Fredholm.
- T is called **semi-B-Fredholm** if it is upper or lower semi-B-Fredholm.
- T is called **B-Fredholm** if T_n is Fredholm.
- T is called **B-Weyl** if it is B-Fredholm with index 0.
Well Known Facts

[Berk, Theorem 2.7] $T \in B(\mathcal{H})$ is B-Fredholm if and only if

$$T = T_1 \oplus T_2,$$

where T_1 is Fredholm and T_2 is nilpotent.

Let $T \in B(H)$.

$$\sigma_{BF}(T) := \{ \lambda \in \mathbb{C} : T - \lambda \text{ is not } B\text{-Fredholm} \}$$

$$\sigma_{BW}(T) := \{ \lambda \in \mathbb{C} : T - \lambda \text{ is not } B\text{-Weyl} \}$$

$$\pi_0(T) := \{ \lambda \in \text{iso}\sigma(T) : \alpha(T) > 0 \}$$
Concepts of Generalized Weyl type theorems

Definitions [2003, Berkani and Koliha]

Generalized Weyl’s theorem holds for T, in symbol $(g\mathcal{W})$, if

$$\sigma(T) \setminus \sigma_{BW}(T) = \pi_0(T).$$

g-Weyl’s theorem \iff Weyl’s theorem
Main Result 4

Lemma

We have the following properties:

\begin{enumerate}
\item \(\pi_0(A) = \pi_0(AB) = \pi_0(BA) = \pi_0(B) \).
\item \(A \) is isoloid if and only if \(AB \) is isoloid if and only if \(BA \) is isoloid if and only if \(B \) is isoloid.
\end{enumerate}

Theorem

Suppose that \(A \) or \(A^* \) is a polynomial root of paranormal operators. Then \(f(T) \in g(W) \) for each \(f \in H(\sigma(T)) \), where \(T \in \{AB, BA, B\} \).
Lemma

We have the following properties:

(1) \(\pi_0(A) = \pi_0(AB) = \pi_0(BA) = \pi_0(B) \).
Lemma

We have the following properties:
(1) $\pi_0(A) = \pi_0(AB) = \pi_0(BA) = \pi_0(B)$.
(2) A is isoloid if and only if AB is isoloid if and only if BA is isoloid if and only if B is isoloid.
Main Result 4

Lemma

We have the following properties:

1. \(\pi_0(A) = \pi_0(AB) = \pi_0(BA) = \pi_0(B) \).
2. \(A \) is isoloid if and only if \(AB \) is isoloid if and only if \(BA \) is isoloid if and only if \(B \) is isoloid.

Theorem

Suppose that \(A \) or \(A^* \) is a polynomial root of paranormal operators. Then \(f(T) \in g\mathcal{W} \) for each \(f \in H(\sigma(T)) \), where \(T \in \{AB, BA, B\} \).
Corollary

Suppose that \((A, B) \in \mathcal{C}\) and \(A\) is a compact paranormal operator. Then we have that

\[
BA = \begin{pmatrix} I & 0 \\ 0 & Q \end{pmatrix} \text{ on } N(BA - I) \oplus N(BA - I)^\perp,
\]

where \(Q\) is quasinilpotent.
Thank You!