Toeplitz operators and their binormality

Ji Eun Lee*
(With Eungil Ko)

Mathematics-Applied Statistics, Sejong University, Seoul, Republic of Korea

2014 ICM Satellite Conference on Operator Algebras and Applications,
August 10, Cheongpung, Korea
Table of contents

1 Motivation
 • Study

2 Introduction
 • Binormal operator
 • Toeplitz operator

3 Main Results
 • Binormal Toeplitz

4 Reference
Study

- Eungil Ko and Ji Eun Lee, *Characterizations of binormal Toeplitz operators on the Hardy space H^2*, preprint.
Binormal operator

- \mathcal{H}: a complex (separable) Hilbert space
- $\mathcal{L}(\mathcal{H})$: the algebra of all bounded linear operators on \mathcal{H}.

Definition

- T is *normal* if $T^*T = TT^*$.
- T is *quasinormal* if T^*T and T commute.
- T is *binormal* if T^*T and TT^* commute.
- T is *subnormal* if \exists a Hilbert space \mathcal{K} containing \mathcal{H} and a normal operator N on \mathcal{K} such that $NH \subset \mathcal{H}$ and $T = N|_H$.
- T is *hyponormal* if $T^*T - TT^* \geq 0$.

$normal \Rightarrow quasinormal \Rightarrow binormal.$
Binormal operator

- \mathcal{M} is *nontrivial* if it is different from (0) and \mathcal{H}.
- A closed subspace $\mathcal{M} \subset \mathcal{H}$ is *invariant* for T if $T\mathcal{M} \subset \mathcal{M}$.

Known fact, Campbell(1972)

- If $T \in \mathcal{L}(\mathcal{H})$ is hyponormal and binormal, then T has a non-trivial invariant subspace.
Hardy space

- $L^2 := L^2(\partial\mathbb{D})$ is the usual Lebesque space on the unit circle $\partial\mathbb{D}$.
- L^∞ is the Banach space consisting of all essentially bounded functions on $\partial\mathbb{D}$.
- $\{z^n : n = 0, \pm1, \pm2, \pm3, \cdots\}$ is an orthonormal basis for L^2.
- $H^2 = \{f \mid f : \text{analytic functions on } \mathbb{D} \text{ with } f(z) = \sum_{n=0}^{\infty} a_n z^n \text{ and } \sum_{n=0}^{\infty} |a_n|^2 < \infty\}$

: Hilbert Hardy space.

- $H^2 = \text{span}\{z^n : n = 0, 1, 2, 3, \cdots\}$.
- H^∞ is the space of bounded analytic functions on \mathbb{D}.
Toeplitz operator

Definition

For any \(\varphi \in L^\infty \), the *Toeplitz operator* \(T_\varphi : H^2 \to H^2 \) is defined by the formula

\[
T_\varphi f = P(\varphi f), \quad f \in H^2
\]

where \(P \) denotes the orthogonal projection of \(L^2 \) onto \(H^2 \).

- \(T_\varphi \) is bounded if and only if \(\varphi \in L^\infty \) and \(\| T_\varphi \| = \| \varphi \|_\infty \).

- \(T_\varphi \) is a Toeplitz operator if and only if \(S^* T_\varphi S = T_\varphi \) where \(S \) is the unilateral shift on \(H^2 \), i.e., \(Sf(z) = zf(z) \) for \(f \in H^2 \).
Toeplitz operator

Known facts

- (In 1963, A. Brown and P. R. Halmos)
 \(T_\varphi \) is normal if and only if \(\varphi = \alpha + \beta \rho \) where \(\rho \) is a real valued function in \(L^\infty \) and \(\alpha, \beta \in \mathbb{C} \).

- (In 1975, I. Amemiya, T. Ito, and T. K. Wong)
 Every quasinormal Toeplitz operator is either normal or analytic.

- (In 1988, C. Cowen)
 For \(\varphi \in L^\infty \), let \(\varphi = f + \overline{g} \) where \(f \) and \(g \) are in \(H^2 \). Then the Toeplitz operator \(T_\varphi \) is hyponormal if and only if \(g = c + T_{\overline{h}} f \) for some constant \(c \) and some function \(h \in H^\infty \) with \(\| h \|_\infty \leq 1 \).
Binormal Toeplitz

Question

• When are Toeplitz operators binormal?

Notation

(i) $A = T^* \varphi^2$, $B = \varphi T^* \varphi$, and S denotes the unilateral shift.
(ii) $\varphi_+ = S^* T^* \varphi e_0 = \sum_{n=0}^{\infty} \hat{\varphi}(n+1)e_n$.
(iii) $\varphi_- = S^* T^* \varphi e_0 = \sum_{n=0}^{\infty} \hat{\varphi}(-n-1)e_n$.
(iv) $F = (S^* A e_0 \otimes S^* B e_0) + (\varphi_- \otimes B \varphi_-) + (S^* A S \varphi_+ \otimes \varphi_+)$.
(v) $E_1 = S^* A e_0 \otimes S^* B e_0$, $E_2 = \varphi_- \otimes B \varphi_-$, and $E_3 = S^* A S \varphi_+ \otimes \varphi_+$.
Binormal Toeplitz

Theorem

Let T_{φ} be a Toeplitz operator on H^2 with a symbol $\varphi \in L^\infty$. Then the following statements are equivalent:

(i) T_{φ} is binormal.

(ii) The operator

$$F = (S^* A e_0 \otimes S^* B e_0) + (\varphi_- \otimes B \varphi_-) + (S^* A S \varphi_+ \otimes \varphi_+)$$

is a self-adjoint operator.
Binormal Toeplitz

Corollary

Let T_φ be Toeplitz operator with a symbol $\varphi \in L^\infty$. Assume that one of the following statements holds:

(i) T_φ is normal.
(ii) T_φ is analytic and $\varphi = \lambda u$ for an inner function u and $\lambda \in \mathbb{C}$.
(iii) T_φ is coanalytic and $\varphi = \lambda \overline{u}$ for an inner function u and $\lambda \in \mathbb{C}$.
(iv) $B = aA + bl$ for some nonzero real a and real b.
(v) A and B are a linear combination of T_φ and the identity I.
(vi) A and B are a linear combination of T_φ^* and the identity I.
(vii) $A = aT_\varphi + \overline{a}T_\varphi^*$ and $B = bT_\varphi + \overline{b}T_\varphi^*$ for some $a, b \in \mathbb{C}$.

Then F is self-adjoint. Hence, in this case, T_φ is binormal.
Examples

Example

Assume that one of the followings holds.
(i) $\varphi(z) = az^2 + b\bar{z}$ or $\varphi(z) = az + b\bar{z}^2$ for any nonzero $a, b \in \mathbb{C}$.
(ii) $\varphi(z) = z + z^2$ or $\varphi(z) = \bar{z} + \bar{z}^2$.
Hence, by Theorem 1, T_φ is not binormal.

Example

Let $\varphi(z) = az^2 + bz + c + d\bar{z} + e\bar{z}^2$ where a, b, d, e are nonzeros.
If $|a| = |e|$ and $ad = \overline{be}$, then, by [Lee], T_φ is binormal.

Example

Let $\varphi(z) = (1 + 2i)z^7$ or $\varphi(z) = (i - 1)\bar{z}^6$. Then by Theorem 1, T_φ is binormal.
Corollary

Suppose that \(\varphi(z) = az^n + b + c\bar{z}^n \) for some \(a, b, c \in \mathbb{C} \) and \(n \in \mathbb{N} \). Then \(T_\varphi \) is binormal if and only if \(|a| = |c|, a = c = 0, \) \(a = b = 0 \), or \(b = c = 0 \).

e.g. If \(\varphi(z) = z + \frac{1}{2}\bar{z} \), then \(T_\varphi \) is not binormal. But it is hyponormal and not subnormal.
I. One of E_i is nonzero and the others are zero

Theorem

Let $T_\varphi \in \mathcal{L}(H^2)$ be a Toeplitz operator on H^2 and let E_i be rank-one operators. Assume that one of E_i is nonzero and the others are zero. Then T_φ is binormal if and only if one of the following statements holds:

1. T_φ is normal.
2. T_φ is analytic and $\varphi = \lambda u$ for an inner function u and $\lambda \in \mathbb{C}$.
3. T_φ is coanalytic and $\varphi = \lambda \overline{u}$ for an inner function u and $\lambda \in \mathbb{C}$.
4. e_0 is an eigenvector of A with respect to real λ, φ_+ is an eigenvector of S^*AS with respect to nonzero real μ, and φ_- is an eigenvector of B with respect to 0.
I. One of E_i is nonzero and the others are zero

Theorem

(5) e_0 and φ_- are eigenvectors of B with respect to real λ_1 and 0, respectively, and φ_+ is an eigenvector of S^*AS with respect to nonzero real μ.

(6) e_0 is an eigenvector of A with respect to real λ, φ_+ is an eigenvector of S^*AS with respect to 0, and φ_- is an eigenvector of B with respect to nonzero real μ.

(7) e_0 and φ_- are eigenvectors of B with respect to real λ_1 and μ, respectively, and φ_+ is an eigenvector of S^*AS with respect to 0.

(8) e_0 is an eigenvector of $A - \mu B$ with respect to real λ, φ_+ is an eigenvector of S^*AS with respect to 0, and φ_- is an eigenvector of B with respect to 0.
II. Two of E_i are nonzero

Theorem

Let $T_\varphi \in \mathcal{L}(H^2)$ be a Toeplitz operator on H^2. Suppose that **two of E_i are nonzero** for $i = 1, 2, 3$.

(a) If $E_1 + E_2$ is **rank one**, then T_φ is **binormal** if and only if one of the following statements holds:

1. T_φ is coanalytic and $\varphi = \lambda \overline{u}$ for an inner function u and $\lambda \in \mathbb{C}$.
2. φ_+ is an eigenvector of S^*AS corresponding to the eigenvalue 0 and one of the following assertions holds:
 \[
 \begin{cases}
 (i) & B\varphi_+ = a\varphi_+ \text{ for some } a \in \mathbb{C}. \\
 (ii) & \varphi_- = aS^*Be_0 + bB\varphi_- \text{ for some } a \in \mathbb{C} \text{ and } b \in \mathbb{R} \setminus \{0\}. \\
 (iii) & \varphi_- + aS^*Ae_0 = bB\varphi_- \text{ for some } a \in \mathbb{C} \text{ and } b \in \mathbb{R} \setminus \{0\}.
 \end{cases}
 \]
II. Two of E_i are nonzero

Theorem

(b) If $E_1 + E_3$ is rank one, then T_φ is binormal if and only if one of the following arguments holds:

(1) T_φ is analytic and $\varphi = \lambda u$ for an inner function u and $\lambda \in \mathbb{C}$.

(2) φ_- is an eigenvector of B corresponding to the eigenvalue 0 and one of the following assertions holds:

\[
\begin{cases}
 (i) \varphi_+ = aS^*AS\varphi_+ \text{ for some } a \in \mathbb{C}.
 \\
 (ii) S^*AS\varphi_+ = aS^*Be_0 + b\varphi_+ \text{ for some } a \in \mathbb{C} \text{ and } b \in \mathbb{R} \setminus \{0\}.
 \\
 (iii) aS^*Ae_0 + S^*AS\varphi_+ = b\varphi_+ \text{ for some } a \in \mathbb{C} \text{ and } b \in \mathbb{R} \setminus \{0\}.
\end{cases}
\]
II. Two of E_i are nonzero

Theorem

(c) If $E_2 + E_3$ is **rank one**, then T_φ is **binormal** if and only if e_0 is an eigenvector of A with respect to the real eigenvalue λ or e_0 is an eigenvector of B with respect to the real eigenvalue λ_1 and one of the following statements holds:

\[
\begin{align*}
(i) \quad & \varphi_+ = aS^*AS\varphi_+ \text{ for some } a \in \mathbb{C}. \\
(ii) \quad & S^*AS\varphi_+ = aB\varphi_- + b\varphi_+ \text{ for some } a \in \mathbb{C} \text{ and nonzero } b \in \mathbb{R}. \\
(iii) \quad & a\varphi_- + S^*AS\varphi_+ = b\varphi_+ \text{ for some } a \in \mathbb{C} \text{ and nonzero } b \in \mathbb{R}.
\end{align*}
\]
II. Two of \(E_i \) are nonzero

Theorem

Let \(T_\varphi \in \mathcal{L}(H^2) \) be a Toeplitz operator on \(H^2 \) with a symbol \(\varphi \in L^\infty \) and let two of \(E_i \) be nonzero for \(i = 1, 2, 3 \).

(a) If \(E_1 + E_2 \) is rank two, then \(T_\varphi \) is binormal if and only if \(\varphi_+ \) is an eigenvector of \(S^*AS \) corresponding to the eigenvalue 0 and

\[
S^*B_0 = aS^*A_0 + b\varphi_- \quad \text{and} \quad B\varphi_- = \overline{b}S^*A_0 + c\varphi_-
\]

for some nonzero constants \(a, c \in \mathbb{R} \) and \(b \in \mathbb{C} \).
II. Two of E_i are nonzero

Theorem

(b) If $E_1 + E_3$ is rank two, then T_φ is binormal if and only if φ_- is an eigenvector of B corresponding to the eigenvalue 0 and $S^*Ae_0 = aS^*Be_0 + b\varphi_+$ and $S^*AS\varphi_+ = \overline{b}S^*Be_0 + c\varphi_+$ for some nonzero constants $a, c \in \mathbb{R}$ and $b \in \mathbb{C}$.

(c) If $E_2 + E_3$ is rank two, then T_φ is binormal if and only if e_0 is an eigenvector of A with respect to the real eigenvalue λ or e_0 is an eigenvector of B with respect to the real eigenvalue λ_1 and

$$B\varphi_- = a\varphi_- + bS^*AS\varphi_+ \quad \text{and} \quad \varphi_+ = \overline{b}\varphi_- + cS^*AS\varphi_+$$

for some nonzero constants $a, c \in \mathbb{R}$ and $b \in \mathbb{C}$.
III. All of E_i are nonzero

Theorem

Let $T_\varphi \in \mathcal{L}(H^2)$ be a Toeplitz operator on H^2 and let E_i be nonzero rank-one operators.

(a) If F is rank one, then T_φ is binormal if and only if

$S^*Ae_0 = a\varphi_+$, $S^*Be_0 = b\varphi_+$, $S^*AS\varphi_+ = c\varphi_+$, $\varphi_- = d\varphi_+$, and $B\varphi_- = e\varphi_+$ for some $a, b, c, d, e \in \mathbb{C}$.
III. All of E_i are nonzero

Theorem

(b) If F is rank two, then T_φ is binormal if and only if one of the following statements holds:

\[
\begin{cases}
(i) \quad S^* A e_0 = a \varphi_+ + b \varphi_-, S^* B e_0 = c \varphi_+, \\
\quad \quad S^* A S \varphi_+ = d S^* A e_0, \text{ and } B \varphi_- = e \varphi_+ + f \varphi_-.

(ii) \quad S^* A e_0 = a \varphi_-, S^* B e_0 = b \varphi_+ + c \varphi_-,
\quad \quad B \varphi_- = d S^* B e_0, \text{ and } S^* A S \varphi_+ = e \varphi_+ + f \varphi_-.

(iii) \quad S^* A e_0 = a \varphi_+ + b \varphi_-, S^* B e_0 = c \varphi_+ + d \varphi_-,
\quad \quad S^* A S \varphi_+ = e \varphi_-, \text{ and } B \varphi_- = f \varphi_+
\end{cases}
\]

for some $a, b, c, d, e, f \in \mathbb{C}$.
III. All of E_i are nonzero

Theorem

(c) If F is rank three, then T_φ is binormal if and only if

\[
\begin{align*}
S^*B_{e_0} &= aS^*A_{e_0} + b\varphi_- + cS^*AS\varphi_+,
B\varphi_- &= \overline{b}S^*A_{e_0} + d\varphi_- + eS^*AS\varphi_+,
\varphi_+ &= \overline{c}S^*A_{e_0} + \overline{e}\varphi_- + fS^*AS\varphi_+
\end{align*}
\]

for some nonzero $a, d, f \in \mathbb{R}$ and $b, c, e \in \mathbb{C}$.
IV. All of E_i are zero

Theorem

Let \(T_\varphi \in \mathcal{L}(H^2) \) be a Toeplitz operator on \(H^2 \) and let \(E_1 = 0, E_2 = 0, \) and \(E_3 = 0. \) Then \(T_\varphi \) is binormal if and only if one of the following statements holds:

(1) \(T_\varphi \) is normal, i.e., \(T_\varphi = T_{\varphi_0} \) where \(\varphi_0 \) is the 0-th Fourier coefficient of \(\varphi. \)

(2) \(e_0 \) is an eigenvector of \(A \) with respect to real eigenvalue \(\lambda, \varphi_+ \) is an eigenvector of \(S^*AS \) with respect to the eigenvalue 0, and \(\varphi_- \) is an eigenvector of \(B \) with respect to 0.

(3) \(e_0 \) is an eigenvector of \(B \) with respect to real eigenvalue \(\lambda_1, \varphi_+ \) is an eigenvector of \(S^*AS \) with respect to the eigenvalue 0, and \(\varphi_- \) is an eigenvector of \(B \) with respect to 0.
Binormal Toeplitz

Corollary

If \(\varphi(z) = \sum_{n=-m}^{N} a_n z^n \) is a trigonometric polynomial where one of \(a_{-m} \) and \(a_N \) is nonzero, then \(T_\varphi \) is binormal if and only if it has one of the following symbols:

(i) \(\varphi(z) = \sum_{n=-m}^{m} a_n z^n \) where \(|a_{-m}| = |a_m| \) with \(a_m \neq 0 \) and

\[
\begin{pmatrix}
a_{-1} \\
a_{-2} \\
\vdots \\
a_{-m}
\end{pmatrix}
= a_m
\begin{pmatrix}
\overline{a_1} \\
\overline{a_2} \\
\vdots \\
\overline{a_m}
\end{pmatrix},
\]

\[
(1)
\]

(ii) \(\varphi(z) = a_N z^N \),

(iii) \(\varphi(z) = a_{-m} z^m \),

(iv) \(\varphi(z) = a_0 \).
Corollary

Let $\varphi(z) = \sum_{n=-m}^{N} a_n z^n$ be a trigonometric polynomial where one of a_{-m} and a_N is nonzero. If T_φ is binormal with $T_\varphi \neq \lambda I$, then it has a nontrivial invariant subspace.
Conditions of binormality

Theorem

Let \(\varphi = \varphi_+ + \overline{\varphi_-} \) where \(\varphi_+ \) and \(\varphi_- \) are in \(zH^2 \) and let \(\varphi_- = \lambda \varphi_+ \) for some \(\lambda \in \mathbb{C} \) with \(\varphi_+ \neq 0 \). Suppose that one of the following assertions holds:

(i) \(\varphi_- = \lambda \varphi_+ \) for some \(\lambda \in \mathbb{C} \) with \(|\lambda| = 1 \).

(ii) \(S^*Be_0 = \mu S^*Ce_0 \) for some \(\mu \in \mathbb{R} \setminus \{0\} \) and \(S^*BS - |\lambda|^2B = (|\lambda|^2 - 1)S^*CS \).

(iii) \(S^*Be_0 = \mu S^*Ce_0 \) and \([S^*BS - |\lambda|^2B + (1 - |\lambda|^2)S^*CS] \varphi_+ = \mu_1 \varphi_+ \) for some \(\mu, \mu_1 \in \mathbb{R} \setminus \{0\} \), where \(B = T_\varphi T_\varphi^* \) and \(C = [T_\varphi^*, T_\varphi] \) is self-commutator of \(T_\varphi \). Then \(T_\varphi \) is binormal.
Corollary

Let $\varphi(z) = \varphi_+ + \lambda \overline{\varphi_+}$ where $\varphi_+ \in H^\infty$ and $\lambda \in \mathbb{C}$. If T_φ is binormal and $[T_\varphi^*, T_\varphi]$ has a non-trivial kernel, then T_φ is normal.

Corollary

Let $\varphi(z) = \varphi_+ + \overline{\varphi_-}$ where φ_+ and φ_- are in zH^2. If $\varphi_- = \lambda \varphi_+$ for some complex number λ with $|\lambda| < 1$ and the conditions (ii) or (iii) in Theorem 8 hold, then T_φ has a nontrivial invariant subspace.
Nontrivial invariant subspace

Theorem

Let \(\varphi(z) = \varphi_+ + \overline{\varphi_-} \) where \(\varphi_+, \varphi_- \in zH^2 \) with \(\| \varphi_+ \| = \| \varphi_- \| \). Suppose that \(\varphi_+ = u \varphi_- \) for some inner function \(u \). If an operator

\[
(\varphi_- \otimes B \varphi_-) + (S^* A S u \varphi_- \otimes u \varphi_-)
\]

is self-adjoint, then \(T_{\varphi} \) has a nontrivial invariant subspace.
Nontrivial invariant subspace

Corollary

Let \(\varphi(z) = \varphi_+ + \overline{\varphi_-} \) where \(\varphi_+, \varphi_- \in zH^2 \) with \(\|\varphi_+\| = \|\varphi_-\| \).

Suppose that \(\varphi_+ = \frac{a-z}{1-\overline{a}z} \varphi_- \) for every \(a \in \mathbb{D} \). If an operator

\[
(\varphi_- \otimes B\varphi_-) + \left(S^* AS \frac{a-z}{1-\overline{a}z} \varphi_- \otimes \frac{a-z}{1-\overline{a}z} \varphi_- \right)
\]

is self-adjoint, then \(T_\varphi \) has a nontrivial invariant subspace.
Nontrivial invariant subspace

Example

If $\varphi_+ = z \varphi_-$ and an operator

$$(\varphi_- \otimes B \varphi_-) + (S^* A S \varphi_- \otimes z \varphi_-)$$

is self-adjoint, then T_φ has a nontrivial invariant subspace by Corollary.

Even if $\varphi(z) = \varphi_+ + \overline{\varphi_-}$ with $\varphi_+(z) = z^2$ and $\varphi_-(z) = z$ in the above example, then, since $\varphi_+ = z \varphi_-$, T_φ is hyponormal by [GS]. But T_φ is not binormal by Example.
Binormal Toeplitz and CSO

- A conjugation on \mathcal{H} is an antilinear operator $C : \mathcal{H} \to \mathcal{H}$ which satisfies $\langle Cx, Cy \rangle = \langle y, x \rangle$ for all $x, y \in \mathcal{H}$ and $C^2 = I$.
- An operator $T \in \mathcal{L}(\mathcal{H})$ is said to be complex symmetric if there exists a conjugation C on \mathcal{H} such that $T = CT^*C$.

Corollary

Let $\varphi(z) = az^n + b\overline{z}^n$ for some nonzero $a, b \in \mathbb{C}$ and $n \in \mathbb{N}$. Then the following assertions are equivalent.
(i) T_φ is binormal.
(ii) T_φ is complex symmetric.
(iii) T_φ is normal.
(iv) $|a| = |b|$.
Binormal Toeplitz and CSO

Proposition

Let \(\varphi \in L^\infty \) and let \(C\left(\sum_{k=0}^{\infty} a_k z^k \right) = \sum_{k=0}^{\infty} (-1)^k \bar{a}_k z^k \) for \(\sum_{k=0}^{\infty} a_k z^k \in H^2 \). Then the following statements are equivalent.

1. \(T_\varphi \) is complex symmetric with the conjugation \(C \).
2. \(T_\varphi \) is normal.
3. \(\hat{\varphi}(-n) = \hat{\varphi}(n)(-1)^n \) for all \(n \).
Binormal Toeplitz and CS0

Proposition

Let $\varphi(z) = \sum_{n=-m}^{N} a_n z^n$ where $N \geq m > 0$ and $a_n \in \mathbb{C}$ with nonzero a_{-m}, a_N and let $C(\sum_{k=0}^{\infty} a_k z^k) = \sum_{k=0}^{\infty} (-1)^k \bar{a}_k z^k$ for $\sum_{k=0}^{\infty} a_k z^k \in H^2$. Then T_φ is complex symmetric with the conjugation C if and only if $m = N$ and $a_{-n} = a_n (-1)^n$ for all n.

Let $\varphi(z) = z^2 + z - \bar{z} + \bar{z}^2$. Then T_φ is complex symmetric with the same conjugation C by Proposition or [GZ]. However, T_φ is not binormal by Example 7.
Reference

Reference

Thank you for your attention!
(jieunlee7@sejong.ac.kr; jieun7@ewhain.net)