Bost-Connes system for local fields of characteristic zero

Takuya Takeishi

Univ. Tokyo

9 August, 2014
K: number field
BC-system for K is a C^*-dynamical system (A_K, σ_t) with an action of $G_K^{ab} = G(K^{ab}/K)$.
K: number field

BC-system for K is a C^*-dynamical system (A_K, σ_t) with an action of $G^\text{ab}_K = G(K^\text{ab}/K)$.

- $A_K = \mathcal{C}(Y_K) \rtimes I_K$
 - $Y_K = \hat{\mathcal{O}}_K \times \hat{\mathcal{O}}^* \cdot G^\text{ab}_K$
 - I_K: ideal semigroup of K.
BC-system for number fields

\textit{K}: number field

BC-system for \(K \) is a \(C^*\)-dynamical system \((A_K, \sigma_t)\) with an action of \(G_{K}^{ab} = G(K^{ab}/K) \).

- \(A_K = C(Y_K) \rtimes I_K \)
 - \(Y_K = \hat{O}_K \times \hat{O}^* G_K^{ab} \)
 - \(I_K \): ideal semigroup of \(K \).

- \(\mathbb{R} \) acts on \(A_K \) as
 - \(f \mapsto f \) on \(C(Y_K) \),
 - \(\mu_a \mapsto N(a)^{it} \mu_a \)
 for \(t \in \mathbb{R} \).
\(K: \) number field

BC-system for \(K \) is a \(C^* \)-dynamical system \((A_K, \sigma_t)\) with an action of \(G_K^{ab} = G(K^{ab}/K) \).

- \(A_K = C(Y_K) \rtimes I_K \)
 \[
 Y_K = \hat{\mathcal{O}}_K \times \hat{\mathcal{O}}^* G_K^{ab}

 I_K: \) ideal semigroup of \(K \).

- \(\mathbb{R} \) acts on \(A_K \) as
 \[
 f \mapsto f \quad \text{on} \quad C(Y_K),

 \mu_a \mapsto N(a)^it \mu_a

 \text{for} \ t \in \mathbb{R}.

- \(G_K \) acts by right multiplication on \(Y_K \) and trivially on \(I_K \).
Features of BC-system

Analytic Features (Laca-Larsen-Neshveyev '09)
Features of BC-system

Analytic Features (Laca-Larsen-Neshveyev ’09)

- Unique KMS for $\beta \leq 1$.
Features of BC-system

Analytic Features (Laca-Larsen-Neshveyev ’09)

- Unique KMS for $\beta \leq 1$.
- One-to-one correspondence between G_K^{ab} and extremal KMS for $1 < \beta \leq \infty$.

Features of BC-system

Analytic Features (Laca-Larsen-Neshveyev ’09)

- Unique KMS for $\beta \leq 1$.
- One-to-one correspondence between G_K^{ab} and extremal KMS for $1 < \beta \leq \infty$.
- Partition function $= \zeta_K$.
Arithmetic Features (Yalkinoglu '13)
Arithmetic Features (Yalkinoglu '13)

A_K has a K-subalgebra A_K^{arith} which satisfies the following:

- $\phi(A_K^{\text{arith}}) = K_{ab}$ for any extremal KMS 1-state ϕ.
- $\phi(ga) = \phi(a)g$ for any extremal KMS 1-state ϕ, $a \in A_K^{\text{arith}}$ and $g \in G_{ab}$.

$A_K^{\text{arith}} \otimes_K C$ is dense in A_K. A_K^{arith} is called an arithmetic subalgebra.
Arithmetic Features (Yalkinoglu ’13)

\(A_K \) has a \(K \)-subalgebra \(A^K_{\text{arith}} \) which satisfies the following:

- \(\varphi(A^K_{\text{arith}}) = K^{ab} \) for any extremal KMS\(_\infty\)-state \(\varphi \).
Arithmetic Features (Yalkinoglu '13)

A_K has a K-subalgebra A_K^{arith} which satisfies the following:

- $\varphi(A_K^{\text{arith}}) = K^{ab}$ for any extremal KMS$_\infty$-state φ.
- $\varphi(ga) = \varphi(a)g$ for any extremal KMS$_\infty$-state φ, $a \in A_K^{\text{arith}}$ and $g \in G_K^{ab}$.
Arithmetic Features (Yalkinoglu ’13)

A_K has a K-subalgebra A_K^{arith} which satisfies the following:

- $\varphi(A_K^{\text{arith}}) = K^{ab}$ for any extremal KMS$_\infty$-state φ.
- $\varphi(ga) = \varphi(a)g$ for any extremal KMS$_\infty$-state φ, $a \in A_K^{\text{arith}}$ and $g \in G_K^{ab}$.
- $A_K^{\text{arith}} \otimes_K \mathbb{C}$ is dense in A_K.
Arithmetic Features (Yalkinoglu ’13)

A_K has a K-subalgebra A_K^{arith} which satisfies the following:

- $\varphi(A_K^{\text{arith}}) = K^{ab}$ for any extremal KMS$_{\infty}$-state φ.
- $\varphi(ga) = \varphi(a)g$ for any extremal KMS$_{\infty}$-state φ, $a \in A_K^{\text{arith}}$ and $g \in G_K^{ab}$.
- $A_K^{\text{arith}} \otimes_K \mathbb{C}$ is dense in A_K.

A_K^{arith} is called an arithmetic subalgebra.
Let \(Y_K = \mathcal{O}_K \times \mathcal{O}_K \). The semigroup \(\mathbb{N} \) acts on \(Y_K \) by \(k \cdot (\rho, g) = (\rho \pi^k, \pi^k g) \) for \((\rho, g) \in Y_K \).

Let \(A_K = \mathbb{C}(Y_K) \rtimes \mathbb{R} \) acts on \(A_K \) by \(f \mapsto f \) on \(\mathbb{C}(Y_K) \), \(\mu_n \mapsto q^n \) for \(t \in \mathbb{R} \).

\[q = p_{f, f} : \text{inertia degree of } K / \mathbb{Q} \]
Let $Y_K = \mathcal{O}_K \times \mathcal{O}_K \mathcal{G}^{ab} K$.

The semigroup N acts on Y_K by $k \cdot ([\rho, g]) = ([\rho \pi^k K, \pi \pi^k K], [\pi \pi^k g])$ for $[\rho, g] \in Y_K$.

Let $A_K = C(Y_K) \rtimes N_R$.

R acts on A_K by $f \mapsto f$ on $C(Y_K)$, $\mu \mapsto q^K \mu$ for $t \in R$, $q^K = p_f$, f: inertia degree of K/Q_p.

Definition 1 (T'14) (A_K, σ_t) is called the Bost-Connes system for K.

K: non-Archimedean local field of characteristic zero
K: non-Archimedean local field of characteristic zero
Let $Y_K = \mathcal{O}_K \times \mathcal{O}_K^* \ G_K^{ab}$.
K: non-Archimedean local field of characteristic zero

Let $Y_K = \mathcal{O}_K \times \mathcal{O}_K^* \times G^a$.

The semigroup \mathbb{N} acts on Y_K by

$$k \cdot ([\rho, g]) = [\rho \pi^k_K, [\pi^k_K]^{-1}g]$$

for $[\rho, g] \in Y_K$.

Definition 1 (T '14)

(A_K, σ_t) is called the Bost-Connes system for K.

Takuya Takeishi (Univ. Tokyo)
Let $Y_K = \mathcal{O}_K \times \mathcal{O}_K^* G_K^{ab}$. The semigroup \mathbb{N} acts on Y_K by
$$k \cdot ([\rho, g]) = [\rho \pi_K^k, [\pi_K^k]^{-1} g] \quad \text{for } [\rho, g] \in Y_K.$$ Let $A_K = C(Y_K) \rtimes \mathbb{N}$.

K: non-Archimedean local field of characteristic zero
K: non-Archimedean local field of characteristic zero

Let $Y_K = \mathcal{O}_K \times \mathcal{O}_K^* \times G_K^{ab}$. The semigroup \mathbb{N} acts on Y_K by

$$k \cdot ([\rho, g]) = [\rho \pi^K_k, [\pi^K_k]^{-1} g]$$

for $[\rho, g] \in Y_K$.

Let $A_K = C(Y_K) \rtimes \mathbb{N}$. \mathbb{R} acts on A_K by

- $f \mapsto f$ on $C(Y_K)$,
- $\mu_n \mapsto q_K^t \mu_n$

for $t \in \mathbb{R}$. $q_K = p^f$, f: inertia degree of K/\mathbb{Q}_p.
K: non-Archimedean local field of characteristic zero

Let $Y_K = \mathcal{O}_K \times \mathcal{O}_K^* \times G^a_{K}$.

The semigroup \mathbb{N} acts on Y_K by

$$k \cdot ([\rho, g]) = [\rho \pi_K^k, [\pi_K^k]^{-1} g] \quad \text{for } [\rho, g] \in Y_K.$$

Let $A_K = C(Y_K) \rtimes \mathbb{N}$.

\mathbb{R} acts on A_K by

- $f \mapsto f$ on $C(Y_K)$,
- $\mu \mapsto q_K^t \mu$

for $t \in \mathbb{R}$. $q_K = p^f$, f: inertia degree of K/\mathbb{Q}_p.

Definition 1 (T ’14)

(A_K, σ_t) is called the Bost-Connes system for K.

Theorem 1 (T ’14)

For $0 < \beta \leq \infty$, there is one-to-one correspondence between extremal KMS-states of (A_K, σ_t) and G_{ab}^K. The partition function is $(1 - q^K)^{1/2}$.

There is an arithmetic subalgebra of (A_K, σ_t). In particular, the phase transition does not occur in the local case.
Theorem 1 (T ’14)

For $0 < \beta \leq \infty$, there is one-to-one correspondence between extremal KMS_β-states of (A_K, σ_t) and G_K^{ab}.

The partition function is $(1 - q_K^{-\beta})^{-1}$.
Theorem 1 (T ’14)

1. For $0 < \beta \leq \infty$, there is one-to-one correspondence between extremal KMS_β-states of (A_K, σ_t) and G_{K}^{ab}.
 The partition function is $(1 - q^{-\beta})^{-1}$

2. There is an arithmetic subalgebra of (A_K, σ_t).
Theorem 1 (T ’14)

1. For $0 < \beta \leq \infty$, there is one-to-one correspondence between extremal KMS_β-states of (A_K, σ_t) and G_K^{ab}.

The partition function is $(1 - q_K^{-\beta})^{-1}$.

2. There is an arithmetic subalgebra of (A_K, σ_t).

In particular, the phase transition does not occur in the local case.
Theorem 1 (T ’14)

1. For $0 < \beta \leq \infty$, there is one-to-one correspondence between extremal KMS_β-states of (A_K, σ_t) and $G^a^b_K$.
 The partition function is $(1 - q^{-\beta})^{-1}$

2. There is an arithmetic subalgebra of (A_K, σ_t).

In particular, the phase transition does not occur in the local case.
Connection between local and global ones

\(K \): number field, \(p \): finite prime of \(K \)
\(K_p \): localization of \(K \) at \(p \)
Connection between local and global ones

K: number field, p: finite prime of K

K_p: localization of K at p

We have “\mathbb{R}-equivariant” (A_K, A_{K_p})-correspondence E_p
Connection between local and global ones

\(K \): number field, \(p \): finite prime of \(K \)
\(K_p \): localization of \(K \) at \(p \)

We have “\(\mathbb{R} \)-equivariant” \((A_K, A_{K_p})\)-correspondence \(E_p \)

\(\mathbb{R} \)-equivariance means that there is one-parameter group of isometries \(U_t \) on \(E_p \) such that

- \(U_t a\xi = \sigma_t(a) U_t \xi \)
- \(\langle U_t \xi, U_t \eta \rangle = \sigma_t(\langle \xi, \eta \rangle) \)

for any \(a \in A_K, \xi, \eta \in E_p \) and \(t \in \mathbb{R} \).
Connection between local and global ones

Construction of E_p
Connection between local and global ones

Construction of E_p

$Y_K = \hat{O}_K \times \hat{O}_K^* G^a{}_b^b \subset X_K = \mathbb{A}_K \times \hat{O}_K^* G^a{}_b^b$
Construction of E_p

$Y_K = \hat{\mathcal{O}}_K \times \hat{\mathcal{O}}_K^* \times G_{K}^{ab} \subset X_K = \mathbb{A}_K f \times \hat{\mathcal{O}}_K^* \times G_{K}^{ab}$

$Y_p = \mathcal{O}_p \times \mathcal{O}_p^* \times G_{K}^{ab} \subset X_p = K_p \times \mathcal{O}_p^* \times G_{K}^{ab}$
Connection between local and global ones

Construction of E_p

$Y_K = \hat{O}_K \times \hat{O}_K^* G_K^{ab} \subset X_K = A_{K,f} \times \hat{O}_K^* G_K^{ab}$

$Y_p = O_p \times O_p^* G_K^{ab} \subset X_p = K_p \times O_p^* G_K^{ab}$

$A_K = C(Y_K) \times I_K$, $A_p = C(Y_p) \times \mathbb{N}$
Connection between local and global ones

Construction of E_p

\[Y_K = \hat{O}_K \times \hat{O}_K^* \cdot G_{K}^{ab} \subset X_K = A_{K,f} \times \hat{O}_K^* \cdot G_{K}^{ab} \]
\[Y_p = O_p \times O_p^* \cdot G_{K}^{ab} \subset X_p = K_p \times O_p^* \cdot G_{K}^{ab} \]
\[A_K = C(Y_K) \rtimes I_K, \quad A_p = C(Y_p) \rtimes \mathbb{N} \]
\[\tilde{A}_K = C_0(X_K) \rtimes J_K, \quad \tilde{A}_p = C_0(X_p) \rtimes \mathbb{Z} \]
Connection between local and global ones

Construction of E_p

\[Y_K = \hat{O}_K \times \hat{O}_K^* G_{K}^{ab} \subset X_K = \hat{A}_{K, f} \times \hat{O}_K^* G_{K}^{ab} \]
\[Y_p = \mathcal{O}_p \times \mathcal{O}_p^* G_{K}^{ab} \subset X_p = K_p \times \mathcal{O}_p^* G_{K}^{ab} \]
\[A_K = C(Y_K) \rtimes I_K, \quad A_p = C(Y_p) \rtimes \mathbb{N} \]
\[\tilde{A}_K = C_0(X_K) \rtimes J_K, \quad \tilde{A}_p = C_0(X_p) \rtimes \mathbb{Z} \]
\[1_{Y_K} \tilde{A}_K 1_{Y_K} = A_K, \quad 1_{Y_p} \tilde{A}_p 1_{Y_p} = A_p \]
Connection between local and global ones

Construction of E_p

$$Y_K = \hat{O}_K \times \hat{O}_K^* G_K^{ab} \subset X_K = \mathbb{A}_K, f \times \hat{O}_K^* G_K^{ab}$$

$$Y_p = \mathcal{O}_p \times \mathcal{O}_p^* G_K^{ab} \subset X_p = K_p \times \mathcal{O}_p^* G_K^{ab}$$

$$A_K = C(Y_K) \rtimes I_K, A_p = C(Y_p) \rtimes \mathbb{N}$$

$$\tilde{A}_K = C_0(X_K) \rtimes J_K, \tilde{A}_p = C_0(X_p) \rtimes \mathbb{Z}$$

$$1_{Y_K} \tilde{A}_K 1_{Y_K} = A_K, 1_{Y_p} \tilde{A}_p 1_{Y_p} = A_p$$

We have $X_p \hookrightarrow X_K$ by $[\rho, g] \mapsto [(\rho, 1), g|_K]$
Connection between local and global ones

Let \(E_p = C(JK) \otimes C(Z) \sim A_p \) (right Hilbert \(A_p \)-module), where \(Z \) is identified with the subgroup of \(JK \) generated by \(p \).

\(A_K \) acts on \(E_p \) by \((fu)(ub \otimes g) = uab \otimes ((ab)^{-1} \cdot f) |_{Xp} \) for \(f \in C(XK) \), \(g \in C_0(Xp) \) and \(a, b \in JK \).

Define \(E_p = \bigoplus K \sim E_p \).

One-parameter group of isometries on \(E_p \) is defined by \(U_t(ua \otimes f) = N(a)\cdot it\cdot ua \otimes f \).
Let $\tilde{E}_p = C^*(J_K) \otimes_{C^*(\mathbb{Z})} \tilde{A}_p$ (right Hilbert \tilde{A}_p-module), where \mathbb{Z} is identified with the subgroup of J_K generated by p.
Let $\tilde{E}_p = C^*(J_K) \otimes_{C^*(\mathbb{Z})} \tilde{A}_p$ (right Hilbert \tilde{A}_p-module), where \mathbb{Z} is identified with the subgroup of J_K generated by p. \tilde{A}_K acts on E_p by

$$(fu_a)(u_b \otimes g) = u_{ab} \otimes ((ab)^{-1}.f)|_{X_p} g$$

for $f \in C(X_K), g \in C_0(X_p)$ and $a, b \in J_K$.
Let $\tilde{E}_p = C^*(J_K) \otimes_{C^*(\mathbb{Z})} \tilde{A}_p$ (right Hilbert \tilde{A}_p-module), where \mathbb{Z} is identified with the subgroup of J_K generated by p. \tilde{A}_K acts on E_p by

$$(fu_a)(u_b \otimes g) = u_{ab} \otimes ((ab)^{-1}f)|_{x_p}g$$

for $f \in C(X_K)$, $g \in C_0(X_p)$ and $a, b \in J_K$. Define $E_p = 1_{\gamma_K} \tilde{E}_p 1_{\gamma_p}$.
Let $\tilde{E}_p = C^*(J_K) \otimes_{C^*(\mathbb{Z})} \tilde{A}_p$ (right Hilbert \tilde{A}_p-module), where \mathbb{Z} is identified with the subgroup of J_K generated by p. \tilde{A}_K acts on E_p by

$$(fu_a)(u_b \otimes g) = u_{ab} \otimes ((ab)^{-1}.f)\chi_p g$$

for $f \in C(X_K), g \in C_0(X_p)$ and $a, b \in J_K$.

Define $E_p = 1_{\mathcal{Y}_K} \tilde{E}_p 1_{\mathcal{Y}_p}$

One-parameter group of isometries on E_p is defined by

$U_t(u_a \otimes f) = N(a)^{it}u_a \otimes f$.
Thank you for the attention!