The Game of Hex
and
the Brouwer Fixed-Point Theorem

TAEHEE LEE
(School of Electrical and Computer Engineering & Mathematical Sciences)

http://rals.snu.ac.kr/nm
Good News :)

Takes less than 1 hour and Main Idea is attractive
(Written in English for 2 Post-Docs)
Bad News

Because It’s content is far from what we have learned in this course,

Need to get some Background Information
Hex Theorem

=

Brouwer Fixed-Point Theorem
Contents

1. Hex?

2. Brower Fixed-Point Theorem?

3. =?
What is Hex?

2 Player Board game

- Marking hexagon with X or O alternatively

- Marking a connected set of tiles meeting the boundary regions X~X' (or O~O')
What is Hex?

Who is the winner?

• Neither player has won

• But the X-player has a sure win in 3 moves

• Red curve is called X-path
What is Hex?

Is there always a winner?

• Yes! It can never end in a draw
Is there always winner?

If every tile of the Hex board is marked either x or o, then there is either

1) an x-path connecting regions X and X’

2) or an o-path connecting regions O and O’
Hex Theorem

PROOF?

• Rigorous proof is not provided here

SO?

• funny analogy gives you some insight
Hex Theorem

ANALOGY

• X is trying to build a dam by putting down stones

• O is compared to flowing water
Hex Theorem

In the End?
There could be ONLY TWO cases

- X can succeed in blocking water (X WIN)
- Or NOT (O WIN)

BUT NOT BOTH
Brouwer Fixed-Point Theorem

Basic Theorem in Topology

Let f be a continuous mapping from the unit square I^2 into itself.

Then there exists $x \in I^2$ such that $f(x) = x$
Sorry!
Wait For a Moment!
Graphical Representation

5 X 5 Hex Board

N, S, E, W : Set of Vertices $z = (z_1, z_2)$ of Bk
$z_2 = k, z_2 = 0, z_1 = k, z_1 = 0$
Revision of Hex Theorem

If every tile of the Hex board is marked either x or o, then there is either

1) an x-path connecting regions X and X'
2) or an o-path connecting regions O and O'

Let B_k be covered by two sets H and V. Then either

1) H contains a connected set meeting E and W
2) V contains a connected set meeting N and S
Two Theorems are equivalent!

Let B_k be covered by two sets H and V. Then either

1) H contains a connected set meeting E and W

2) V contains a connected set meeting N and S

Let f be a continuous mapping from the unit square I^2 into itself.

Then there exists $x \in I^2$ such that $f(x) = x$
“Hex” Implies “Brouwer”

Sorry!
Wait For a Moment!
"Hex" Implies "Brouwer"

Four subsets H^+, H^-, V^+, V^- of B_k

\[
H^+ = \{ z \mid f_1(z/k) - z_1/k > \varepsilon \}
\]
\[
H^- = \{ z \mid z_1/k - f_1(z/k) > \varepsilon \}
\]
\[
V^+ = \{ z \mid f_2(z/k) - z_2/k > \varepsilon \}
\]
\[
V^- = \{ z \mid z_2/k - f_2(z/k) > \varepsilon \}
\]

\[
H = H^+ \cup H^-, \quad V = V^+ \cup V^-
\]

Claim: H and V Can't Cover B_k
“Hex” Implies “Brouwer”

Let \(B_k \) be covered by two sets \(H \) and \(V \). Then either

1) \(H \) contains a connected set meeting \(E \) and \(W \)
2) \(V \) contains a connected set Meeting \(N \) and \(S \)

If two conditions below are satisfied

1) \(H \) contains no connected set meeting \(E \) and \(W \)
2) \(V \) contains no connected set Meeting \(N \) and \(S \)

Two Sets \(H \) and \(V \) cannot covered \(B_k \)

\[H = H^+ \cup H^-, \quad V = V^+ \cup V^- \]
Each point of I^2 is uniquely expressible as convex combination of some set of vertices, all of which are adjacent.

$f : B_k \to \mathbb{R}$ can be extended to $f' : l_k^2 \to \mathbb{R}$

$$x = \lambda_1 z^1 + \lambda_2 z^2 + \lambda_3 z^3 \quad \hat{f}(x) = \lambda_1 f(z^1) + \lambda_2 f(z^2) + \lambda_3 f(z^3).$$
“Brouwer” Implies “Hex”

Partitioning Bk by H and V

1) \(W' = \) Vertices connected to \(W \) by H path
 \(E' = H - W' \)

2) \(S' = \) Vertices connected to \(S \) by V path
 \(N' = V - S' \)

- Disjoint
 - Not Contiguous

Proof is by contradiction
(We assumes that there is no H path from \(E \) to \(W \) and no V path from \(N \) to \(S \))

(\(\rightarrow \) There is NO FIXED POINT in some function \(f \))
Define mapping \(f : B_k \rightarrow B_k \)

\[
\begin{align*}
f(z) &= z + e^1 \text{ for } z \in \hat{W} \\
&= z - e^1 \text{ for } z \in \hat{E} \\
&= z + e^2 \text{ for } z \in \hat{S} \\
&= z - e^2 \text{ for } z \in \hat{N}.
\end{align*}
\]

Need to Check \(f \) is in \(B_k \)

Extend to all of \(I_k^2 \) and we can see that \(f \) has NO FIXED POINT

\(W' = \text{Vertices connected to } W \text{ by } H \text{ path} \)

\(E' = H - W' \)

(We assumes that there is no \(H \) path from \(E \) to \(W \) and no \(V \) path from \(N \) to \(S \))
Define mapping \(f : B_k \rightarrow B_k \)

\[
\begin{align*}
 f(z) &= z + e^1 \text{ for } z \in \hat{W} \\
 &= z - e^1 \text{ for } z \in \hat{E} \\
 &= z + e^2 \text{ for } z \in \hat{S} \\
 &= z - e^2 \text{ for } z \in \hat{N}.
\end{align*}
\]

Extend to all of \(I_k^2 \) and We can see that \(f \) has **NO FIXED POINT**

Lemma 1. Let \(z^1, z^2, z^3 \) be vertices of any triangle \(\triangle \) in \(R^2 \) and let \(\hat{\rho} \) be the simplicial extension of the mapping \(\rho \) defined by \(\rho(z^i) = z^i + v^i \) where \(v^1, v^2, v^3 \) are given vectors. Then \(f \) has a fixed point if and only if \(0 \) lies in the convex hull of \(v^1, v^2, v^3 \).

- Let \(x = \lambda_1 z^1 + \lambda_2 z^2 + \lambda_3 z^3 \). Then \(\hat{\rho}(x) = \hat{\lambda}_1 (z^1 + v^1) + \hat{\lambda}_2 (z^2 + v^2) + \hat{\lambda}_3 (z^3 + v^3) \) and \(x \) is fixed if and only if \(\lambda_1 v^1 + \lambda_2 v^2 + \lambda_3 v^3 = 0 \).
Thank You!