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Preliminariesl

e VWhat is Calculus ?

Integral, Differentiation.

e Differentiation



e Integral

Riemann integral, LLebesgue integral.



e Ordinary differential equations (ODE):

dX

X)) = f(X@@)), t>0o0, X::E’

X(0) = Xo,

where f : R™ — R™ is a Lipschitz continuous function.

or equivalently the IVP can be rewritten as an integral equation:

X0 =Xo+ [ "F(X(s))ds, t>0.



We add (white) noise which is responsible for random fluctua-
tions

: : dX

X)) = fF(X@)+0E®), t>0, Xi="
X(0) = Xo,

where £ = £(¢) is a white noise satisfying

(@) =0, (£),8(s)) =6(t—s).



We formally set

ey =0

Then the stochastically perturbed ODE becomes
X(t) = f(X(t)) + o&(t)

= PO _rxa+o
<~ dX () = f(X())dt + odW (t).

AW (1)




e Example 1:

z=ax, x(0)=xp.

e Example 2:

: =22, z(0) = xp.



e Heat equation (or diffusion equation)

The fundamental solution K = K(z,t) is defined to be the solu-
tion of the following IVP:

Ut O'Q'Ungj, xr & R, t > O,
u(x,0) = do(x).
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The solution to the IVP for heat equation:

OUgxx, ZUER, t>0,
up(z)

ut

u(x,0)

IS given by

u(x,t) = K(x,t) * ug.



Motivation |

e Stochastic Differential Equations (SDE)

dX
X (0)

b(X, t)dt + B(X, t)dW,
Xo.

which means

t t
X (¢) :Xo+/0 b(X(s),s)ds—l—/o B(X(s),s)dW(s), t> 0.
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Need to define Ito’'s integral (1949):

T T
/OGdW, or /OG(t,w)dW(t,w), G : adapted process.

If W is differentiable, (which is not true), we can define

T T
/ GdW = / GW'dt.
0 0

Of course, B.M W is not differentiable in probability 1.
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Construction of Ito’s integraII

e General guideline:

Step 1: Construction of Ito's Integral for simple adapted process.

Step 2: Construction of Ito’s Integral for general L2-adapted
process.
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e Definition (Simple adopted process)

A = A(t) is a simple process if and only if for some partition
P={{tg=0<t1 < - <tp} of [0,T], A(t) is constant in t on
each subinterval [t;,t;41).

t
Question: How to define I(t) ::/O A(s)dW(s) 7
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Hueristic interpretation

e W(t) : the price per share of an asset at time ¢.

® io,t1, - ,tn : trading dates in the asset.

o A(tg),A(t1), -+ ,A(tp) : the number of shares take in the
asset at each trading date and held to the next trading date.

Then the gain I(t) from trading at each time ¢t is given by

I(t) = AQO)[W()-W(to)] =A0)W(t), 0<t<ty,

I(t) = AO)W(t1) + AW () —W(t)], t1<t<to,

I(t) = AO)W(t1) + AW (t2) — W(t1)] + A(t2)[W(t) — W(t2)], t2 <t <ts,
k—1

I(t) = Z A(t)[W(tjr1) = W)+ AEDW () = W(itk)],  te <t <tpq1.

7=0

(2)
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e [ heorem

Proof.

Ito’s integral is a martingale.
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e Theorem (Ito’s isometry)
2 b2
E[I<(t)] = E/O A“(s)ds.

Proof.
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e Theorem (Quadratic Variation)

[, 1](t) = /Ot A2(s)ds = t.

Proof.
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e Construction of I(t) for L2-process A(t):

I 2
E/O A2(4)dt < co.

Step 1: Choose a sequence A, (t) of simple processes such that

T
im, E | [An(t) — A()|2dt = 0.

Step 2: For each adopted simple process A,,, we define an Ito’s
integral Ip:

I, = /OT A () dW ().
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Step 3: Define an Ito’s integral I(T) as a limit of I, i.e.,

T L T
/O AW (1) == lim. /O An()dW (1)
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e Theorem. Ito’'s integral I(t) = /OtA(s)dW(s) satisfies

1. (Continuity): The sample paths of I(¢t) are continuous.
2. (Adaptivity): For each ¢, I(t) is F(t)-measurable.

3. (Linearity): For every constants A\, u,

t t t
/O</\A1<s>+uaz<s>>dw<s> = /O A(s)dW (s)+p /O Ao (s)dW (s).
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1. (Martingale): I(t) is a martingale.

2. (Ito's isometry):

E(2(t)) = E /O " A2(s)ds.

3. (Quadratic variation):

1, 1](t) = /O " A2(s)ds.
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Ito-Doeblin Formula |

Question: We want to differentiate f(W(t)), f is a differentiable
function and W(s) is a B.M.

e Heuristic explanation.

For one-dimensional case n = 1, consider a SDE:

AX (1)
X (0)

Let f: R — R and define

Y (1) = f(X(®)).

A(t)dt + B(t)dW,
Xg.
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e (Wrong answer). If f is differentiable,

d
ay(t)
dY (t)

fIX@)X'(¢), or

FIX @)X (¢)dt
X)AW@t + f/(X(t)B(t)dW (t).



1
e Right approach: We use a heuristic principle "dW = (dt)2"
and " Taylor expansion” to find

dY (t)

df (X (1)) . .
FX@AX () + S f' (X)X ()2 + " (X ()X (1) + -+

= (X)) (A(t)dt + B(t)dW(t))
+ Lo (Awa+ B(t)dW(t))Q b
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Note that

(A(t)dt 4 B(t)dW(t))2
= A(t)2dt? 4+ 2A() B(t)dtdW (t) + B(t)2dW (t)?
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This is the Ito-Doeblin’s formula in differential form. Integrating
this, we also obtain a mathematically meaningful form:

YO -¥(0) = [ F(X()BE)W(s)
) Ito’s iﬁtegral ’

+ (G + B2 ()) )ds.

7

Lebesg ue Integral
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e (Higher dimensions)

dX (1)
X(0)

A(®)dt + odW (1), t>0,

20,

where X (t) = (z1(t), -+, zn(t))T.

For f: R*" x [0,00) — R and Y (t) = f(X(¢),t), we have
ay (t) = df(X(1),t)
= fi(X(@),t)dt + ) fo;(X(t),t)dx;(t)

1=1
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4 %Z faiw; (X (#), t)dx;(t)dx;(t),
2V}

dt, 1 =73,

1
dW,; = ((115)27 dW,LdW] — { 0, i 7+_ J.



Hence we have

WY () = LX), DA+ S fo (X (@), )dws(0)
1=1

n %Z Fow; (X (), £)da; (£)dar; (£)
(2¥)

= XW, DA+ S Fa (X, ) (Ai(E)dE + od Wi (1)
1=1

0.2
— ftz()f(t), tdt + Ve f(X(0),1) - (A()dt + odW (¢))
+ %Af(X(t),t)dt.
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e | heorem.

Let f = f(t,z) be a Ctl,;f-function, and let W (t) be a B.M. Then
for every T'> 0, we have

FTW(T)) = £(0,W(0))+ /OTftu,W(t))dt
t [ LG W@IW @+ [ fralt W)
o "N 2 Jo TN '
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Remark.
t
/O W (s)dW (s) =7
If W is differentiable, then we might expect
t t p t /1 5 / 1 5
/OW(s)dW(s) =/OW(3)W(s)ds=/O (EW(S) )ds=5W(t) |

Of course, this is not true. We now apply Ito and Doeblin’s
formula for f(z) = 32 to find

SWAT) = fW(T)) ~ f(W(0))

[ Favaaw @ + = [ o
0 2Jo

— /O W (D)W (1) + ST
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Hence

T - 1 5 B z
/O W(DdW () = SW(T) - 3.



Ito’s process I

e Definition. Let W(t), t > 0 be a Brownian motion, and let
F(t) be an associated filtration. An Ito’'s process is a stochastic
process of the form

t t
X(t) = X(0) + /O A(s)dW (s) + /O O (s)ds,

where X (0) is nonrandom, and A(s) and ©(s) are adapted
processes.
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e Theorem (Quadratic variation).

(X, X](¢) = /O " A2(s)ds.

Formal hueristic proof. Rewrite Ito's process in differential form

dX (1) = A@)dW (t) + ©(t)dt.

Then we use dW (t)dW (t) = dt,dW (t)dt = dtdt = 0 to get

A2()dW (£)dW () 4+ 24 (£)O()dW (t)dt 4+ ©2(t)dtdt
A2 (t)dt.

dX (£)dX (t)
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Integral with respect to Ito processI

e Definition. Let X (¢),t > 0 be an Ito process, and let I'(¢),t > 0
be an adopted process. Define the integral with respect to Ito’s
process

[ F©)dx(s) = [ FAEAW () + [ T()O(s)ds
0] 0 0 .
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e Theorem.(Ito-Doeblin formula for an Ito’'s process)

Let X(¢),t > 0 be an Ito process, and let f be a Ctl’f—function.
Then for any T' > 0, we have

FT,X(T)) = £(0,X(0)) + /OTftu,X(t))dt
t [ R X)X+ - [ fra(t X(0)dIX, X](0)
o "N B 2 Jo 7 ’T ’
= £(0,Xx(0)) + /O fo(t, X () dt + /O Fe(t, X (£)) A(£)dW (¢)
T 1 /T 5
+ [ St X@)OWdt+ [ faalt, X)) A (Bt
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Examples for Ito’s processesl

1. Geometric Brownian Motion.

dS(t) = aSt)dt + oS (t)dW (¢), a, 0. constants

Apply Ito's formula to InS(%), i.e.,
dS(t) 1
S(t) 25(t)2
— (a _ %JQ) dt + odW (t).

dIn S(t) o252 (t)dt

We integrate the above equality from O to ¢t to get
S(t) = S(0)ela=+W®,
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2. Generalized geometric Brownian Motion.

dS(t) = a(t)S(t)dt + o (£)S(#)dW (t).

As before, we apply Ito's formula to InS(¢) to find

ainS(t) = (a(t) - %a(t)Q)dt + o (t)dW (1),

Direct integration yields

S(t) = §(0)es @O—=)st [[o()aw(s)



3. Vasicek interest rate model.

dR(t) = (a — BR(t))dt + odW (1).

Here o, 8 and o are positive constants.

We apply Ito’s formula to e’ R(t) to get

d(e”'R(t)) BeP R(t)dt + e’'dR(t)
ae’ldt + oePtdWw (t).

We now integrate the above relation from O to ¢t and find

t
R(t) = e "'R(0) + %(1 —e Mt / e B aw (s).
0



4. Cox-Ingersoll-Ross (CIR) interest rate model.

dR(t) = (a — BR())dt + o/ R(£)dW (1).

We apply Ito’s formula to e R(t) to find
d(e’'R(t)) = ae’ dt + oePt'\/R(t)dW ().

We integrate the above relation to get

P R(t) = R(0) + %(eﬂt — D40 [ PUSRE)IW (w).
0
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Black-Scholes-Merton equationl

e Derivation of B-5-M equation

Please see the separate note.
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Connection between SDE and PDEl

e Definition. A stochastic differential equation (in short SDE) is
an equation of the form

dX(s) = B(s,X(s))ds~+ ~v(s,X(s))dW(s), s>t,
X)) = Xop.
where
B(s,x) : drift, ~(s,x) : diffusion.

or equivalently,
T T
X(D) =+ [ Bls,X()ds+ | (s, X(s))dW (s).
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Consider one-dimensional linear SDE:

dX(s) = (a(s) + b(s)X(s))ds + (v(s) + o(s)X(s))dW (),

where a, b,~v,0 are nonrandom function of time s.

e Examples 1. Geometric Brownian motion.

dS(t) = aS(t)dt + oS(t)dW (t).

2. Hull-White interest rate model.

dR(t) = (a(t) — b(t)R(t))dt + o ()dW (¢).
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Markov propertyl

Consider SDE:

dX(s) B(s, X(s))ds +~(s, X(s))dW(s), s=>t,
X(t) = Xo.

Let 0 < t < T be given, and let h(y) be a Borel-measurable
function. We denote by

g(t,z) := EV"h(X(T)),
where X (T') is the solution of SDE with initial data X (¢t) = x.
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e Theorem. Let X(s),s > 0 be a solution to the stochastic
differential equation with initial condition given at time 0. Then
for 0 <t < T,

Elh(X(T)|F@)] = g(t, X(2)).

e Corollary.

Solutions to SDE are Markov process.
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Feynman-Kac’s formuIaI

e [ heorem. Consider the stochastic differential equation

dX (s) = B(s, X(s))ds + (s, X(5))dW (s).

Let h(y) be a Boreal-measurable function. Fix T > 0, and let
t € [0,T] be given. Define the function

g(t,z) = EV"h(X(T)).
Then ¢g(t,x) satisfies the following PDE of parabolic type:
1
gt(t7aj) _I_ ﬁ(taw)gx(tax) + 572(757 m)gafilﬁ(tax) — Oa
with the terminal condition:
g(T,z) = h(x), for all .
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e Lemma. Let X = X(s) be a solution to the SDE:

dX(s) = B(s, X(s))ds + (s, X(s))dW (s),

with initial condition given at time 0. Let h(y) be a Borel-
measurable function. Fix T' > 0, and let ¢ = ¢g(t,x) be given as
before. Then stochastic process

g(t, X(t)), 0<t<T, is @ martingale.
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Outline of proof of Feynman-Kac’'s formula: Let X(t) be the
solution to the SDE starting at time zero. Since ¢g(t, X (t)) is a
martingale, the net dt in the differential ¢g(¢, X(t)) must be zero.

1
dg(t, X(t)) = gidt + g=dX + Eg:ca:dXdX
1
= gidt + Bgudt + vgedW + Evzgmdt

1
gt + Bgz + 5’}’293:33 dt + vgzdW.

Hence we have

91(t, X (D) + Bt X ()92t X(B)) + 57206 X (#)gia(t, X (1)) =0,

along every path of X. Therefore, we have
1
g¢(t,z) + B(t, x) ga(t, ) + 572(75, 2)gez(t,z) = O.
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