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Preliminaries

• What is Calculus ?

Integral, Differentiation.

• Differentiation
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• Integral

Riemann integral, Lebesgue integral.

3



• Ordinary differential equations (ODE):

Ẋ(t) = f(X(t)), t > 0, Ẋ :=
dX

dt
,

X(0) = X0,

where f : Rn → Rn is a Lipschitz continuous function.

or equivalently the IVP can be rewritten as an integral equation:

X(t) = X0 +
∫ t

0
f(X(s))ds, t ≥ 0.
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We add (white) noise which is responsible for random fluctua-

tions

Ẋ(t) = f(X(t)) + σξ(t), t > 0, Ẋ :=
dX

dt
,

X(0) = X0,

where ξ = ξ(t) is a white noise satisfying

⟨ξ(t)⟩ = 0, ⟨ξ(t), ξ(s)⟩ = δ(t − s).
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We formally set

ξ(t) =
dW (t)

dt
.

Then the stochastically perturbed ODE becomes

Ẋ(t) = f(X(t)) + σξ(t)

⇐⇒
dX(t)

dt
= f(X(t)) + σ

dW (t)

dt
⇐⇒ dX(t) = f(X(t))dt + σdW (t).
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• Example 1:

ẋ = ax, x(0) = x0.

• Example 2:

ẋ = x2, x(0) = x0.
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• Heat equation (or diffusion equation)

The fundamental solution K = K(x, t) is defined to be the solu-

tion of the following IVP:

ut = σ2uxx, x ∈ R, t > 0,

u(x,0) = δ(x).

K(x, t) =
1√

4πσ2t
exp

(
−

x2

4σ2t

)
.
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The solution to the IVP for heat equation:

ut = σuxx, x ∈ R, t > 0,

u(x,0) = u0(x)

is given by

u(x, t) = K(x, t) ∗ u0.
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Motivation

• Stochastic Differential Equations (SDE)

dX = b(X, t)dt + B(X, t)dW,

X(0) = X0.

which means

X(t) = X0 +
∫ t

0
b(X(s), s)ds +

∫ t

0
B(X(s), s)dW (s), t ≥ 0.
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Need to define Ito’s integral (1949):∫ T

0
GdW, or

∫ T

0
G(t, ω)dW (t, ω), G : adapted process.

If W is differentiable, (which is not true), we can define∫ T

0
GdW =

∫ T

0
GW ′dt.

Of course, B.M W is not differentiable in probability 1.
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Construction of Ito’s integral

• General guideline:

Step 1: Construction of Ito’s Integral for simple adapted process.

Step 2: Construction of Ito’s Integral for general L2-adapted

process.

12



• Definition (Simple adopted process)

∆ = ∆(t) is a simple process if and only if for some partition

P = {t0 = 0 < t1 < · · · < tn} of [0, T ], ∆(t) is constant in t on

each subinterval [tj, tj+1).

Question: How to define I(t) :=
∫ t

0
∆(s)dW (s) ?

13



Hueristic interpretation

• W (t) : the price per share of an asset at time t.

• t0, t1, · · · , tn : trading dates in the asset.

• ∆(t0),∆(t1), · · · ,∆(tn) : the number of shares take in the

asset at each trading date and held to the next trading date.

Then the gain I(t) from trading at each time t is given by

I(t) = ∆(0)[W (t) − W (t0)] = ∆(0)W (t), 0 ≤ t ≤ t1,
I(t) = ∆(0)W (t1) + ∆(t1)[W (t) − W (t1)], t1 ≤ t ≤ t2,
I(t) = ∆(0)W (t1) + ∆(t1)[W (t2) − W (t1)] + ∆(t2)[W (t) − W (t2)], t2 ≤ t ≤ t3,

I(t) =
k−1∑
j=0

∆(tj)[W (tj+1) − W (tj)] + ∆(tk)[W (t) − W (tk)], tk ≤ t ≤ tk+1.

(2)
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• Theorem

Ito’s integral is a martingale.

Proof.
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• Theorem (Ito’s isometry)

E[I2(t)] = E
∫ t

0
∆2(s)ds.

Proof.
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• Theorem (Quadratic Variation)

[I, I](t) :=
∫ t

0
∆2(s)ds = t.

Proof.
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• Construction of I(t) for L2-process ∆(t):

E
∫ T

0
∆2(t)dt < ∞.

Step 1: Choose a sequence ∆n(t) of simple processes such that

lim
n→∞E

∫ T

0
|∆n(t) − ∆(t)|2dt = 0.

Step 2: For each adopted simple process ∆n, we define an Ito’s

integral In:

In :=
∫ T

0
∆n(t)dW (t).
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Step 3: Define an Ito’s integral I(T ) as a limit of In, i.e.,∫ T

0
∆(t)dW (t) := lim

n→∞

∫ T

0
∆n(t)dW (t).
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• Theorem. Ito’s integral I(t) =
∫ t

0
∆(s)dW (s) satisfies

1. (Continuity): The sample paths of I(t) are continuous.

2. (Adaptivity): For each t, I(t) is F(t)-measurable.

3. (Linearity): For every constants λ, µ,∫ t

0
(λ∆1(s)+µ∆2(s))dW (s) = λ

∫ t

0
∆1(s)dW (s)+µ

∫ t

0
∆2(s)dW (s).
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1. (Martingale): I(t) is a martingale.

2. (Ito’s isometry):

E(I2(t)) = E
∫ t

0
∆2(s)ds.

3. (Quadratic variation):

[I, I](t) =
∫ t

0
∆2(s)ds.
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Ito-Doeblin Formula

Question: We want to differentiate f(W (t)), f is a differentiable

function and W (s) is a B.M.

• Heuristic explanation.

For one-dimensional case n = 1, consider a SDE:

dX(t) = A(t)dt + B(t)dW,

X(0) = X0.

Let f : R → R and define

Y (t) = f(X(t)).
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• (Wrong answer). If f is differentiable,

d

dt
Y (t) = f ′(X(t))X ′(t), or

dY (t) = f ′(X(t))X ′(t)dt

= f ′(X(t))A(t)dt + f ′(X(t)B(t)dW (t).



• Right approach: We use a heuristic principle ”dW = (dt)
1
2”

and ”Taylor expansion” to find

dY (t) = df(X(t))

= f ′(X(t)dX(t) +
1

2
f ′′(X(t))dX(t)2 +

1

6
f ′′′(X(t))dX(t)3 + · · ·

= f ′(X(t))
(
A(t)dt + B(t)dW (t)

)
+

1

2
f ′′(X(t))

(
A(t)dt + B(t)dW (t)

)2
+ · · ·
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Note that(
A(t)dt + B(t)dW (t)

)2

= A(t)2dt2 + 2A(t)B(t)dtdW (t) + B(t)2dW (t)2
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This is the Ito-Doeblin’s formula in differential form. Integrating

this, we also obtain a mathematically meaningful form:

Y (t) − Y (0) =
∫ t

0
f ′(X(s))B(s)dW (s)︸ ︷︷ ︸

Ito’s integral

+
∫ t

0

(
f ′(X(s))A(s) +

1

2
B(s)2f ′′(X(s))

)
ds︸ ︷︷ ︸

Lebesgue Integral

.
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• (Higher dimensions)

dX(t) = A(t)dt + σdW (t), t ≥ 0,

X(0) = x0,

where X(t) = (x1(t), · · · , xn(t))T .

For f : Rn × [0,∞) → R and Y (t) = f(X(t), t), we have

dY (t) = df(X(t), t)

= ft(X(t), t)dt +
n∑

i=1

fxi(X(t), t)dxi(t)
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+
1

2

∑
i,j

fxixj(X(t), t)dxi(t)dxj(t),

dWi = (dt)
1
2, dWidWj =

{
dt, i = j,
0, i ̸= j.



Hence we have

dY (t) = ft(X(t), t)dt +
n∑

i=1

fxi(X(t), t)dxi(t)

+
1

2

∑
i,j

fxixj(X(t), t)dxi(t)dxj(t)

= ft(X(t), t)dt +
n∑

i=1

fxi(X(t), t)(Ai(t)dt + σdWi(t))

+
σ2

2

∑
i

fxixi(X(t), t)dt

= ft(X(t), t)dt + ∇xf(X(t), t) · (A(t)dt + σdW (t))

+
σ2

2
∆f(X(t), t)dt.
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• Theorem.

Let f = f(t, x) be a C
1,2
t,x -function, and let W (t) be a B.M. Then

for every T > 0, we have

f(T, W (T )) = f(0, W (0)) +
∫ T

0
ft(t, W (t))dt

+
∫ T

0
fx(t, W (t))dW (t) +

1

2

∫ T

0
fxx(t, W (t))dt.
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Remark. ∫ t

0
W (s)dW (s) =?

If W is differentiable, then we might expect∫ t

0
W (s)dW (s) =

∫ t

0
W (s)W ′(s)ds =

∫ t

0

(
1

2
W (s)2

)′
ds =

1

2
W (t)2.

Of course, this is not true. We now apply Ito and Doeblin’s

formula for f(x) = 1
2x2 to find

1

2
W2(T ) = f(W (T )) − f(W (0))

=
∫ T

0
f ′(W (t))dW (t) +

1

2

∫ t

0
f ′′(W (t))dt

=
∫ T

0
W (t)dW (t) +

1

2
T.
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Hence ∫ T

0
W (t)dW (t) =

1

2
W2(T ) −

T

2
.



Ito’s process

• Definition. Let W (t), t > 0 be a Brownian motion, and let

F(t) be an associated filtration. An Ito’s process is a stochastic

process of the form

X(t) = X(0) +
∫ t

0
∆(s)dW (s) +

∫ t

0
Θ(s)ds,

where X(0) is nonrandom, and ∆(s) and Θ(s) are adapted

processes.
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• Theorem (Quadratic variation).

[X, X](t) =
∫ t

0
∆2(s)ds.

Formal hueristic proof. Rewrite Ito’s process in differential form

dX(t) = ∆(t)dW (t) + Θ(t)dt.

Then we use dW (t)dW (t) = dt, dW (t)dt = dtdt = 0 to get

dX(t)dX(t) = ∆2(t)dW (t)dW (t) + 2∆(t)Θ(t)dW (t)dt + Θ2(t)dtdt

= ∆2(t)dt.
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Integral with respect to Ito process

• Definition. Let X(t), t ≥ 0 be an Ito process, and let Γ(t), t ≥ 0

be an adopted process. Define the integral with respect to Ito’s

process∫ t

0
Γ(s)dX(s) =

∫ t

0
Γ(s)∆(s)dW (s) +

∫ t

0
Γ(s)Θ(s)ds.
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• Theorem.(Ito-Doeblin formula for an Ito’s process)

Let X(t), t ≥ 0 be an Ito process, and let f be a C
1,2
t,x -function.

Then for any T ≥ 0, we have

f(T, X(T )) = f(0, X(0)) +
∫ T

0
ft(t, X(t))dt

+
∫ T

0
fx(t, X(t))dX(t) +

1

2

∫ T

0
fxx(t, X(t))d[X, X](t)

= f(0, X(0)) +
∫ T

0
ft(t, X(t))dt +

∫ T

0
fx(t, X(t))∆(t)dW (t)

+
∫ T

0
fx(t, X(t))Θ(t)dt +

1

2

∫ T

0
fxx(t, X(t))∆2(t)dt.
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Examples for Ito’s processes

1. Geometric Brownian Motion.

dS(t) = αS(t)dt + σS(t)dW (t), α, σ: constants

Apply Ito’s formula to lnS(t), i.e.,

d lnS(t) =
dS(t)

S(t)
−

1

2S(t)2
σ2S2(t)dt

=
(
α −

1

2
σ2

)
dt + σdW (t).

We integrate the above equality from 0 to t to get

S(t) = S(0)e(α−σ2

2
)t+σW (t).
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2. Generalized geometric Brownian Motion.

dS(t) = α(t)S(t)dt + σ(t)S(t)dW (t).

As before, we apply Ito’s formula to lnS(t) to find

d lnS(t) =
(
α(t) −

1

2
σ(t)2

)
dt + σ(t)dW (t).

Direct integration yields

S(t) = S(0)e
∫ t

0
(α(s)−σ(s)2

2
)ds+

∫ t

0
σ(s)dW (s)

.



3. Vasicek interest rate model.

dR(t) = (α − βR(t))dt + σdW (t).

Here α, β and σ are positive constants.

We apply Ito’s formula to eβtR(t) to get

d(eβtR(t)) = βeβtR(t)dt + eβtdR(t)
= αeβtdt + σeβtdW (t).

We now integrate the above relation from 0 to t and find

R(t) = e−βtR(0) +
α

β
(1 − e−βt) + σ

∫ t

0
e−β(t−s)dW (s).



4. Cox-Ingersoll-Ross (CIR) interest rate model.

dR(t) = (α − βR(t))dt + σ
√

R(t)dW (t).

We apply Ito’s formula to eβtR(t) to find

d(eβtR(t)) = αeβtdt + σeβt
√

R(t)dW (t).

We integrate the above relation to get

eβtR(t) = R(0) +
α

β
(eβt − 1) + σ

∫ t

0
eβu

√
R(t)dW (u).
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Black-Scholes-Merton equation

• Derivation of B-S-M equation

Please see the separate note.
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Connection between SDE and PDE

• Definition. A stochastic differential equation (in short SDE) is

an equation of the form

dX(s) = β(s, X(s))ds + γ(s, X(s))dW (s), s ≥ t,

X(t) = X0.

where

β(s, x) : drift, γ(s, x) : diffusion.

or equivalently,

X(T ) = x +
∫ T

t
β(s, X(s))ds +

∫ T

t
γ(s, X(s))dW (s).
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Consider one-dimensional linear SDE:

dX(s) = (a(s) + b(s)X(s))ds + (γ(s) + σ(s)X(s))dW (s),

where a, b, γ, σ are nonrandom function of time s.

• Examples 1. Geometric Brownian motion.

dS(t) = αS(t)dt + σS(t)dW (t).

2. Hull-White interest rate model.

dR(t) = (a(t) − b(t)R(t))dt + σ(t)dW̃ (t).
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Markov property

Consider SDE:

dX(s) = β(s, X(s))ds + γ(s, X(s))dW (s), s ≥ t,

X(t) = X0.

Let 0 ≤ t ≤ T be given, and let h(y) be a Borel-measurable

function. We denote by

g(t, x) := Et,xh(X(T )),

where X(T ) is the solution of SDE with initial data X(t) = x.
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• Theorem. Let X(s), s ≥ 0 be a solution to the stochastic

differential equation with initial condition given at time 0. Then

for 0 ≤ t ≤ T ,

E[h(X(T ))|F(t)] = g(t, X(t)).

• Corollary.

Solutions to SDE are Markov process.
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Feynman-Kac’s formula

• Theorem. Consider the stochastic differential equation

dX(s) = β(s, X(s))ds + γ(s, X(s))dW (s).

Let h(y) be a Boreal-measurable function. Fix T > 0, and let

t ∈ [0, T ] be given. Define the function

g(t, x) = Et,xh(X(T )).

Then g(t, x) satisfies the following PDE of parabolic type:

gt(t, x) + β(t, x)gx(t, x) +
1

2
γ2(t, x)gxx(t, x) = 0,

with the terminal condition:

g(T, x) = h(x), for all x.
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• Lemma. Let X = X(s) be a solution to the SDE:

dX(s) = β(s, X(s))ds + γ(s, X(s))dW (s),

with initial condition given at time 0. Let h(y) be a Borel-

measurable function. Fix T > 0, and let g = g(t, x) be given as

before. Then stochastic process

g(t, X(t)), 0 ≤ t ≤ T, is a martingale.
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Outline of proof of Feynman-Kac’s formula: Let X(t) be the

solution to the SDE starting at time zero. Since g(t, X(t)) is a

martingale, the net dt in the differential g(t, X(t)) must be zero.

dg(t, X(t)) = gtdt + gxdX +
1

2
gxxdXdX

= gtdt + βgxdt + γgxdW +
1

2
γ2gxxdt

=
[
gt + βgx +

1

2
γ2gxx

]
dt + γgxdW.

Hence we have

gt(t, X(t)) + β(t, X(t))gx(t, X(t)) +
1

2
γ2(t, X(t))gxx(t, X(t)) = 0,

along every path of X. Therefore, we have

gt(t, x) + β(t, x)gx(t, x) +
1

2
γ2(t, x)gxx(t, x) = 0.
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