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Abstract. For a d-dimensional cell complex Γ with H̃i(Γ) = 0 for −1 ≤ i < d,

an i-dimensional tree is a non-empty collection B of i-dimensional cells in Γ

such that H̃i(B ∪Γ(i−1)) = 0 and w(B) := |H̃i−1(B ∪Γ(i−1))| is finite, where

Γ(i) is the i-skeleton of Γ. Define the i-th tree-number to be ki :=
∑

B w(B)2,

where the sum is over all i-dimensional trees. In this paper, we will show that

if Γ is acyclic and ki > 0 for −1 ≤ i ≤ d, then ki and the combinatorial

Laplace operators ∆i are related by
∑d

i=−1 ωi x
i+1 = (1 + x)2

∑d−1
i=0 κix

i,

where ωi = log det ∆i and κi = log ki. We will discuss various applications of
this equation.

1. Introduction

In this paper, we will extend Temperley’s tree-number formula for finite graphs
[10] to a class of cell complexes, called γ-complexes, and show interesting applica-
tions to acyclic complexes. We will review this formula shortly.

A γ-complex is a non-empty finite cell complex Γ whose integral cellular chain
complex {Ci, ∂i}i≥−1 with C−1 = Z satisfies the following conditions:

(γ1) rk ∂i > 0 (equivalently, ∂i 6= 0) for 0 ≤ i ≤ dim Γ, and

(γ2) the reduced integral homology H̃i(Γ) = 0 for i < dim Γ.

This definition is intended as a generalization of connected finite graphs. Other
examples of γ-complexes are matroid complexes, standard simplexes, and cubical
complexes [3] with the latter two being acyclic. However, the n-dimensional sphere
Sn made of one 0-cell and one n-cell is not a γ-complex for n ≥ 2 because it violates
condition (γ1).

We will define high-dimensional spanning trees for a γ-complex extending the
ideas in [1]. Given a γ-complex Γ, let Γi be the set of all i-dimensional cells, and Γ(i)

the i-skeleton of Γ. Given a subset S ⊂ Γi, define ΓS = S ∪Γ(i−1) as a subcomplex
of Γ. An i-dimensional spanning tree of Γ (or simply, an i-tree) is a non-empty

subset B ⊂ Γi such that H̃i(ΓB) = 0 and w(B) := |H̃i−1(ΓB)| is finite. Define the
i-th tree-number of Γ by

ki(Γ) = ki =
∑
B

w(B)2 ,

where the sum is over all i-trees in Γ. We will see that ki > 0 for all −1 ≤ i ≤ dim Γ
where we define k−1 = 1. If Γ is a connected graph, then k0 is the number of vertices
and k1 is the number of graph theoretic spanning trees in Γ. Note that Sn with
one 0-cell and one n-cell has no i-tree for i ≥ 1: it is an n-dimensional “loop”.
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An important method for computing the tree-numbers for Γ is given by the
combinatorial Laplacians ∆i ([1], [3], and [10]). For example, let ∆0 = L + J ,
where L is the Laplacian matrix of a finite graph G of order n, and J is the all
1’s matrix. Temperley [10] showed that det ∆0 = n2k1 for G (refer to Corollary
7). This method is more efficient than the matrix-tree theorem for certain graphs.
Indeed, for Γ = Kn the complete graph on n vertices, we have ∆0 = nI and
det ∆0 = nn, from which the Cayley’s Theorem k1(Kn) = nn−2 is immediate.

We will show that Temperley’s formula can be extended to any γ-complex Γ (refer
to Theorem 6). Also, if Γ is acyclic of dimension d, then each ∆i is positive-definite,

and the following polynomials are well-defined: D(x) =
∑d
i=−1(log det ∆i)x

i+1 and

K(x) =
∑d−1
i=0 (log ki)x

i. The main result of the paper will show that

D(x) = (1 + x)2K(x) . (1.1)

This paper is organized as follows. Section 2 is a review of useful facts from
matrix theory and combinatorial Laplacians for γ-complexes. In section 3, we
will describe high-dimensional spanning trees for a γ-complex via the boundary
operators of its chain complex. In section 4, we will prove the main results of the
paper which consist of a generalization of Temperley’s tree-number formula and a
logarithmic version (1.1) of this result for acyclic γ-complexes. In section 5, we will
discuss a new method for computing tree-numbers for certain planar graphs. We
will also discuss applications of the main results to standard simplexes [6] and the
cubical complexes [3].

2. Preliminaries

2.1. Matrix Theory. We will review several important facts about symmetric
matrices. For all definitions and basic facts from matrix theory, one may refer to
[5]. All matrices are assumed to have real entries. For a square matrix M , let PM
denote the multiset of all non-zero eigenvalues of M , and let πM =

∏
λ∈PM

λ.

Lemma 1. Let A and B be n × n symmetric matrices such that AB = BA = 0.
Then, we have PA+B = PA∪PB as multisets. In particular, if A+B is non-singular,

det(A+B) = πAπB . (2.1)

Proof. SinceA andB commute, there is a basis of common eigenvectors {v1, . . . , vn}.
For each 1 ≤ i ≤ n, let λi and µi be the eigenvalues of A and B corresponding to
vi so that the collection {λi + µi | 1 ≤ i ≤ n} is the multiset of all eigenvalues of
A + B. Since AB = 0, we have λiµi = 0, i.e., either λi = 0 or µi = 0 for each i.
Therefore α = λi + µi ∈ PA+B if and only if α = λi ∈ PA or α = µi ∈ PB . 2

Lemma 2. Let M be a rectangular matrix of rank r (r > 0). Let B(M) be the
collection of all non-singular r×r submatrices of M . If A = MM t, or M tM , then

πA =
∑

B∈B(M)

(detB)2 . (2.2)

Proof. This result follows from Binet-Cauchy theorem and the fact that the product
of all non-zero eigenvalues of a diagonalizable matrix of rank r equals the sum of all
principal minors of order r. Equation (2.2) holds for both MM t and M tM because
they have the same multiset of non-zero eigenvalues. Details will be omitted. 2
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2.2. Combinatorial Laplacians for γ-complexes. We will assume familiarity
with basic definitions concerning finite cell complexes and reduced homology groups.
Refer to [8] for details. Let X be a finite cell complex of dimension d. For −1 ≤ i ≤
d, we will let Xi denote the set of all i-dimensional cells where we define X−1 = {∅},
and X(i) the i-skeleton X−1 ∪X0 ∪ · · · ∪Xi as a subcomplex of X. Also we define
X−2 and X(−2) to be the void set.

Let {Ci, ∂i} (−1 ≤ i ≤ d) be the integral cellular chain complex of X where
C−1 = Z and ∂0 the usual augmentation. Define ∂−1 = 0, and we have ∂i−1∂i = 0.

The i-th reduced homology group of X is defined by H̃i(X) = Ker ∂i/Im ∂i+1.

Define H̃i(X) = 0 for i ≤ −1. Note that H̃d(X) = Ker ∂d is free abelian. Recall

that rk H̃i(X) = 0 iff H̃i(X) is finite. X is acyclic if H̃i(X) = 0 for all i.
Suppose that ∂i 6= 0 for 0 ≤ i ≤ d. Then, we have Xi 6= ∅ and Ci ∼= Z|Xi|.

Regard the boundary map ∂i : Ci → Ci−1 as a |Xi−1|×|Xi| matrix whose rows and
columns are indexed by Xi−1 and Xi . The coboundary map ∂ti : Ci−1 → Ci is the
transpose of ∂i. For −1 ≤ i ≤ d, the combinatorial Laplacian ∆i : Ci → Ci for X
is defined by

∆i = ∂i+1∂
t
i+1 + ∂ti∂i ,

where we define ∂d+1 to be the zero map. Denote Li = ∂i+1∂
t
i+1 and Ji = ∂ti∂i.

Then, Li and Ji are non-zero, symmetric, non-negative definite, and LiJi = JiLi =
0. Hence ∆i is non-zero, symmetric, and non-negative definite by Lemma 1.

An important property of the combinatorial Laplacians is that the 0-eigenspace
of ∆i regarded as a matrix over Q is isomorphic to the rational homology group
H̃i(X;Q) [4, Proposition 2.1]. Therefore, if ∂i 6= 0 for 0 ≤ i ≤ d, then we have

det ∆i > 0 if and only if rk H̃i(X) = 0 . (2.3)

Note that ∆−1 = L−1 : Z→ Z is a multiplication by |Γ0|. Now the following lemma
is immediate from the definition of γ-complex and (2.3).

Lemma 3. If Γ is a γ-complex of dimension d, then we have det ∆i > 0 for
−1 ≤ i < d. Moreover, if Γ is acyclic, then we also have det ∆d > 0. 2

3. High-dimensional trees for γ-complexes

In this section, Γ will denote a γ-complex of dimension d. For a non-empty
subset S ⊂ Γi, define ΓS := S ∪ Γ(i−1) as an i-dimensional subcomplex of Γ. For
−1 ≤ i ≤ d, a non-empty subset B ⊂ Γi is an i-dimensional spanning tree (or
simply, i-tree) if

(1) H̃i(ΓB) = 0,

(2) w(B) := |H̃i−1(ΓB)| is finite, and

(3) H̃j(ΓB) = 0 for j ≤ i− 2.

Note that (3) is a consequence of the fact Γ
(i−1)
B = Γ(i−1). We see that B ⊂ Γi is

an i-tree iff ΓB is Q-acyclic. We will denote the set of all i-trees in Γ by Bi = Bi(Γ)
with B−1 = {∅}. It is clear that B0 is the set of all single 0-cells in Γ and B1 is the
set of all graph theoretic spanning trees of Γ(1) as a finite graph.

Define the i-th tree-number of Γ to be

ki = ki(Γ) =
∑
B∈Bi

w(B)2 .
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We have k−1 = 1 by definition, and k0 = |Γ0|. If Γ is a connected graph, then k1 is
the number of spanning trees in Γ because w(B) = 1 for B ∈ B1. However, w(B)
may not equal 1 for B ∈ Bi when i > 1. (See [6].)

Next, we will describe i-trees via the boundary operator ∂i of Γ, which will
show that ki > 0 for i ≥ 0. Denote ri = rk ∂i. Recall that ri > 0 for 0 ≤ i ≤ d,
which also implies that both Γi−1 and Γi are non-empty. Given a non-empty subset
T ⊂ Γi, define ∂T to be the |Γi−1|×|T | submatrix of ∂i consisting of the columns of
∂i indexed by T . Recall that if Γ is a connected finite graph of order n with the inci-
dence matrix ∂1, then T ⊂ Γ1 is a spanning tree of Γ iff |T | = rk ∂T = rk ∂1 = n−1.
(Refer to [2] for details.) More generally, we have the following useful fact.

Proposition 4. Let Γ be a γ-complex of dimension d. Let ri = rk ∂i for 0 ≤ i ≤ d.
Then Bi is non-empty, and it is given by

Bi = {B ⊂ Γi | |B| = rk ∂B = ri } . (3.1)

Moreover, we have ri = |Γi−1| − ri−1, where r−1 = 0.

Proof. Suppose B ∈ Bi. Since Ker ∂B = H̃i(ΓB) = 0, we have rk ∂B = |B|. Since

Γ
(i−1)
B = Γ(i−1) and H̃i−1(ΓB) is finite, we must have rk ∂B = ni−1 the rank of

Ker ∂i−1. However, H̃i−1(Γ) = 0 implies ri = ni−1, and we have |B| = rk ∂B = ri.
The inclusion of the right-hand side of (3.1) in Bi is proved similarly. The second
statement follows from ni−1 = |Γi−1| − ri−1. 2

Remarks 1. In matroid theoretic terms, Bi is the set of all bases of a matroid
whose ground set is Γi and the independent sets are the subsets I ⊂ Γi such that
Ker ∂I = 0 or I = ∅. (Refer to [9] for the definition of a matroid.)
2. If Γ is also acyclic, then there is exactly one d-tree, namely B = Γd. Since
Ker ∂d = H̃d(Γ) = 0, the only base of the matroid just mentioned is Γd. In this

case, it also follows that kd = 1 because H̃d−1(ΓB) = H̃d−1(Γ) = 0.
3. We also remark that if X is a cell complex satisfying (γ2) but ri = 0 for some i,
then X has no i-tree. Indeed, for any non-empty subset S ⊂ Γi, if any, we would
have H̃i(ΓS) = Z|S| 6= 0.

The following theorem will play an essential role in section 3. Given non-empty
subsets S ⊂ Γi−1 and T ⊂ Γi, let ∂S,T be the |S| × |T | submatrix of ∂i whose rows
and columns are indexed by S and T , respectively. Denote S̄ = Γi−1 \ S.

Theorem 5. Let Γ be a γ-complex of dimension d. Let ri = rk ∂i for 0 ≤ i ≤ d.
Then the set of all ri×ri non-singular submatrices of ∂i is given by

B(∂i) := { ∂Ā,B |A ∈ Bi−1 and B ∈ Bi } .
Moreover, we have |det ∂Ā,B | = w(A)w(B) for ∂Ā,B ∈ B(∂i).

Proof. Let S ⊂ Γi−1 with |S| = ri−1 and let T ⊂ Γi with |T | = ri. Then ∂S̄,T is
a square submatrix of ∂i of order ri by Prop. 4. First, we will show that ∂S̄,T is
singular if S /∈ Bi−1 or T /∈ Bi. Regard ∂S̄,T as the top boundary operator for the

relative complex (ΓT ,ΓS). Note that H̃i(ΓT ) = Ker ∂T , H̃i(ΓT ,ΓS) = Ker ∂S̄,T ,

and H̃i−1(ΓS) = Ker ∂S . Since H̃i(ΓS) = 0, we obtain the following exact sequence
from the long exact homology sequence of the pair (ΓT ,ΓS) :

0→ Ker ∂T → Ker ∂S̄,T → Ker ∂S → H̃i−1(ΓT ) .
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If T /∈ Bi, then Ker ∂T 6= 0 by Remark 1 above. Hence, we have Ker ∂S̄,T 6= 0.
Similarly, if S /∈ Bi−1, then rk(Ker ∂S) 6= 0. If T /∈ Bi, we are done. If T ∈ Bi, then

Ker ∂T = 0 and H̃i−1(ΓT ) is finite. Therefore, it is clear that Ker ∂S̄,T 6= 0.
Now we proceed to prove the second statement, which will also complete the proof

of the first statement. Consider the following portion of the long exact homology
sequence of the pair (ΓB ,ΓA) with A ∈ Bi−1 and B ∈ Bi:

H̃i−1(ΓA)→ H̃i−1(ΓB)→ H̃i−1(ΓB ,ΓA)→ H̃i−2(ΓA)→ H̃i−2(ΓB) .

Since H̃i−1(ΓA) = H̃i−2(ΓB) = 0, it follows that

|H̃i−1(ΓB ,ΓA)| = |H̃i−2(ΓA)| · |H̃i−1(ΓB)| = w(A)w(B) .

Note that Cj(ΓB ,ΓA) = Zri if j = i − 1, and 0 if j < i − 1. Therefore, we have

|H̃i−1(ΓB ,ΓA)| = |Zri/Im ∂Ā,B | = |det ∂Ā,B |. 2

4. Main Results

The main results will consist of a generalization of Temperley’s tree-number
formula for γ-complexes and its logarithmic version for acylic γ-complexes.

Proposition 6. Let Γ be a γ-complex of dimension d, and let ∆i be its combina-
torial Laplacians for −1 ≤ i ≤ d. Then

(1) det ∆−1 = k0,
(2) det ∆i = ki−1k

2
i ki+1 for 0 ≤ i ≤ d− 1, and

(3) det ∆d = kd−1 if Γ is acyclic, and 0 otherwise.

Proof.(1) In section 2, we noted that ∆−1 = L−1 : Z → Z is a multiplication by
|Γ0|. In section 3, we also saw that k0 = |Γ0|. Hence det ∆−1 = k0.
(2) Note that we have rk ∂i∂

t
i = rk ∂i > 0 for 0 ≤ i ≤ d. Therefore, ∂i∂

t
i has

non-zero eigenvalues. Let πi denote the product of all non-zero eigenvalues of ∂i∂
t
i .

By Lemma 2 and Theorem 5, we have

πi =
∑
A∈Bi−1

B∈Bi

(det ∂Ā,B)2 =
∑
A∈Bi−1

B∈Bi

w(A)2w(B)2 = ki−1ki .

Now recall that ∂ti∂i and ∂i∂
t
i have the same multiset of non-zero eigenvalues.

Therefore, for 0 ≤ i ≤ d− 1, Lemma 1 and Lemma 3 imply

det ∆i = det(∂ti∂i + ∂i+1∂
t
i+1) = πiπi+1 = ki−1k

2
i ki+1 .

(3) If Γ is acyclic, then kd = 1 because Γd is the only d-tree in Γ. Therefore

det ∆d = det(∂td∂d) = πd = kd−1kd = kd−1 .

If Γ is not acyclic, then rk H̃d(Γ) > 0 and det ∆d = 0 by (2.3). 2

Recall that the Matrix-Tree theorem states that for a finite graph G, every
cofactor of its Laplacian matrix equals the number of spanning trees in G ([7]).
The following corollary is an analogue of this theorem by Temperley [10].

Corollary 7. (Temperley) Given a finite graph G with n vertices, let L be its
Laplacian matrix, k(G) the number of spanning trees in G, and J the n×n all 1’s
matrix. Then,

det(L+ J) = n2k(G) . (4.1)
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Proof. Regarding G as a γ-complex, we have L = ∂1∂
t
1, J = ∂t0∂0, and L+J = ∆0.

Since k−1 = 1, k0 = n, and k1 = k(G), the result follows from Proposition 6 (2). 2

The following theorem, which is the main result of the paper, is a logarithmic
version of Proposition 6 for acyclic complexes.

Theorem 8. Let Γ be an acyclic complex of dimension d such that ∂i 6= 0 for

0 ≤ i ≤ d. Let D(x) =
∑d
i=−1 ωix

i+1 and K(x) =
∑d−1
i=0 κix

i, where ωi = log det ∆i

and κi = log ki . Then we have

D(x) = (1 + x)2K(x) .

Proof. Since Γ is a γ-complex, we have Bi 6= ∅ and ki ≥ 1 for 0 ≤ i ≤ d. Hence
K(x) is well defined. By Proposition 6, we see that det ∆i ≥ 1 for −1 ≤ i ≤ d,
and D(x) is well defined. The rest of the proof is checking the following details.
Proposition 6 (1) implies ω−1 = κ0. Proposition 6 (2) implies ωi = κi−1+2κi+κi+1

for 0 ≤ i ≤ d− 1. In particular, k−1 = 1 implies ω0 = 2κ0 + κ1, which also follows
from (4.1). Also, kd = 1 because Γ is acyclic, and we have ωd−1 = κd−2 + 2κd−1.
Finally, Proposition 6 (3) implies ωd = κd−1. The result follows. 2

5. Examples

5.1. Tree-number of a planar graph. Given a connected finite planar graph G,
let Ḡ be the 2-dimensional complex whose 1-skeleton is G and 2-dimensional cells
are the finite faces of G. Note that Ḡ is an acyclic complex. By (3) in Proposition 6,
the number of spanning trees of G is the determinant of ∆2 for Ḡ. As an example,
we prove the following theorem. Recall that the Fibonacci sequence {Fn} is defined
by F0 = F1 = 1 and Fn = Fn−1 + Fn−2 for n ≥ 2.

Theorem 9. Let G be a triangulation of an (n + 2)-gon P (n ≥ 1) without any
internal triangle, i.e., a triangle with no edge from P . Then the number of spanning
trees in G equals F2n+1.

Proof. Let f1, . . . , fn be the faces of G. Since G has no internal triangle, each fi
contains one or two edges of P . Since each edge of P belongs to a unique face,
there are exactly two faces, say f1 and fn, each of which contains two edges of P .
If G∗ is the dual graph of G and v∞ the vertex corresponding to the infinite face
of G, then G∗ − v∞ is a path whose two end points correspond to f1 and fn. By
arranging the faces of G in the same order as the vertices appear in this path, we
may assume that fi shares one edge each with fi−1 and fi+1 for 1 < i < n. The
remaining edge of fi is an edge of P .

Assume that each face of G is oriented counterclockwise. Then each column of
∂2 for Ḡ has exactly three non-zero entries, which are ±1’s, and the inner product
of two columns is -1 if they are adjacent, and 0 otherwise. Therefore, ∆2 = ∂t2∂2

is an n×n tridiagonal matrix with 3’s on the main diagonal and -1’s just below
and above it. If δn denotes the determinant of this tridigonal matrix, we have the
recurrence relations δn = 3δn−1−δn−2 for n ≥ 2 with δ1 = 3 and δ0 := 1. These are
the same recurrence relations satisified by the subsequence {F2n+1} of Fibonacci
numbers. Hence, we have det ∆2 = δn = F2n+1. �

In particular, the number of spanning trees of the fan with n+2 vertices is F2n+1

by this theorem.
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5.2. Standard simplexes. Let Σ be the standard simplex on n vertices (hence
dim Σ = n − 1). Then, Σ is acyclic and |Σi| =

(
n
i+1

)
for −1 ≤ i ≤ n − 1. If [σ]

denotes an oriented simplex for σ ∈ Σi, one can check that ∆i[σ] = n[σ], which
follows directly from the definition of the boundary operators ∂i and ∂i+1 (and their
transpose). Therefore, we have ∆i = nI, where I is the identity matrix of order(
n
i+1

)
, and det ∆i = n( n

i+1). Letting ωi = logn det ∆i =
(
n
i+1

)
, we see that

D(x) =

n−1∑
i=−1

ωix
i+1 =

n−1∑
i=−1

(
n

i+ 1

)
xi+1 = (1 + x)n .

By Theorem 8, we obtain

K(x) =

n−2∑
i=0

κix
i = (1 + x)n−2 ,

where κi = logn ki =
(
n−2
i

)
. Hence, we have ki = n(n−2

i ) for 0 ≤ i ≤ n − 2. This
result was originally obtained by Kalai [6].

5.3. Cubical complexes. The n-cubeQn (n ≥ 1) is an n-dimensional cell complex
that is the n-fold product I × · · ·× I, where I is the unit interval regarded as a cell
complex with two 0-cells and one 1-cell. Hence Qn is a cell complex of dimension
n, and is the convex hull of the 2n points in Rn whose coordinates are all 0 or 1.
One can see that Qn is acyclic by induction on n together with the fact that Qn−1

is a deformation retract of Qn for n ≥ 2.
In [3], Duval, Klivans, and Martin showed that the tree-numbers for Qn are

ki =

n∏
j=2

(2j)(
j−2
i−1)(

n
j) (1 ≤ i ≤ n− 1) (5.1)

based on the spectra (the multisets of eigenvalues) of ∂∗∂
t
∗, which are, in turn,

obtained from those of ∆∗. In what follows, we will derive (5.1) directly from the
spectra Spec(∆∗) of ∆∗ via Theorem 8. We will start with the following generating
function for the eigenvalues of ∆∗ for Qn ([3, Theorem 3.4]):

dimQn∑
i=0

∑
λ∈Spec(Di)

tirλ = (1 + r2 + tr2)n =

n∑
k=0

tk
(
n

k

)
r2k(1 + r2)n−k , (5.2)

where Di = ∆i for i ≥ 1 and D0 = ∂1∂
t
1. From (5.2), one can deduce that

det ∆i =
∏n
j=1(2j)(

n
j)(

j
i) for 1 ≤ i ≤ n, and that πD0 = k0k1 =

∏n
j=1(2j)(

n
j). By

Corollary 7, we also obtain det ∆0 = 2n
∏n
j=1(2j)(

n
j). Now, let ωi = log2 det ∆i,

and let αj =
(
n
j

)
log2(2j). Then,

ω−1 = n, ω0 = n+

n∑
j=1

αj , and ωi =

n∑
j=1

(
j

i

)
αj for 1 ≤ i ≤ n ,
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and we have

D(x) =

n∑
i=−1

ωix
i+1

= n+
(
n+

n∑
j=1

αj

)
x+

n∑
i=1

( n∑
j=1

(
j

i

)
αj

)
xi+1

= n(1 + x) +

n∑
i=0

( n∑
j=1

(
j

i

)
αj

)
xi+1

= n(1 + x) + x

n∑
j=1

αj(1 + x)j (by interchanging the sums)

= n(1 + x)2 + x

n∑
j=2

αj(1 + x)j . (because α1 = n)

By Theorem 8, we obtain

K(x) =

n−1∑
i=0

κix
i = n+ x

n∑
j=2

αj(1 + x)j−2 ,

where κi = log2 ki. By identifying the coefficients of xi for 1 ≤ i ≤ n−1, we obtain

κi =
∑n
j=2

(
j−2
i−1

)
αj , and ki =

∏n
j=2(2j)(

j−2
i−1)(

n
j) for 1 ≤ i ≤ n− 1.
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