Discrete Mathematics and Theoretical Computer Science DMTCS vol. (subm.), by the authors, 1-1

Weighted Tree Numbers of Matroid
Complexes

Woong Kook'| and Kang-Ju Lee'f

1Departmem‘ of Mathematical Sciences, Seoul National University, Seoul, Korea

received , revised , accepted .

Abstract. We give a new formula for the weighted high-dimensional tree numbers of matroid complexes. This
formula is derived from our result that the spectra of the weighted combinatorial Laplacians of matroid complexes
are polynomials in the weights. In the formula, Crapo’s S-invariant appears as the key factor relating weighted
combinatorial Laplacians and weighted tree numbers for matroid complexes.

Résumé. Nous présentons une nouvelle formule pour les nombres d’arbres pondérés de grande dimension des ma-
troides complexes. Cette formule est dérivée du résultat que le spectre des Laplaciens combinatoires pondérés des
matroides complexes sont des polyndmes a plusieurs variables. Dans la formule, le S-invariant de Crapo apparait
comme étant le facteur clé reliant les Laplaciens combinatoires pondérés et les nombres d’arbres pondérés des ma-
troides complexes.
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1 Introduction

The purpose of this paper is to give a new formula of the weighted tree numbers of matroid complexes.
As a high-dimensional analogue of Cayley-Priifer theorem [29]], Kalai [19] found the formula for the
weighted tree numbers of standard simplexes. Continuing his study, Adin [1] presented a formula for
the tree numbers of complete colorful complexes and posed the problem of finding their weighted tree
numbers. Duval, Klivans, and Martin [[11]] obtained a formula of the weighted tree numbers of shifted
complexes, developing simplicial matrix-tree theorem. We derive a formula of the weighted tree numbers
of the independent set complex of matroids (Theorem [0). We also confirm the conjecture about the
formula for the weighted tree numbers of hypercubes [12, Conjecture 4.3] by applying a similar method
studied in this paper. (This result will be given in a forthcoming paper.)
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2 Combinatorial Laplacians and high-dimensional tree numbers

To begin, we will review a close relationship between combinatorial Laplacians and high-dimensional tree
numbers of cell complexes. This relation was studied by Adin [1]] for the first time and has been studied
in [8L|11413}20,26428|(30,[34]]. For a graph (a 1-dimensional complex), Temperley’s formula [36] shows
this relationship.

Theorem 1 [36| Temperley’s formula] Let G be a finite loopless graph with n vertices with its Laplacian
matrix L(G), and J the all 1's matrix. If we denote the number of spanning trees of G by k(G), then

det(L(G) + J) =n? - k(G).
Here, L(G) + J is the 0-th combinatorial Laplacian of G. O

Temperley’s formula has been generalized to high-dimensional complexes [[11}[12,/20]. In this paper,
we will focus on the following type of complexes. Refering to the terminologies in [11]], a finite simplicial
complex will be called Z-APC (Z-acyclic in positive codimension) if its reduced homology over Z is
trivial except possibly in the top dimension. The independent set complex IN (M) of a matroid M,
which is the main object of study in this paper, is Z-APC because it is shellable [3]. We may refer to
IN (M) as a matroid complex, also.

Let {C;, 0;} be an augmented chain complex of a finite Z-APC complex I of dimension d with the
augmentation J : Cy — Z given by 9y(v) = 1 for every vertex v in I'. Recall that, for i € [-1,d], the i-th
combinatorial Laplacian A; : C; - C} is defined by

Ai = (“)f[“)z + 87;+18f+1.

Let I'; be the set of all ¢-simplices, and ' the i-skeleton of T. For a non-empty subset S c I';, define
I's = S uTD as an i-dimensional subcomplex of T'. For i € [-1,d], a non-empty subset B c T'; is an
i-dimensional tree (or, simply, i-tree) if

(1) Hi(T'p) =0,
(2) |H;-1(T'p)| is finite, and
3) HJ(FB) =0forj<i-2.

Note that condition (3) is a consequence of the fact Fg_l) =T~ We will denote the set of all i-trees
in ' by B; = B;(I") with B_; = {@}. Define the i-th tree number of I" to be

ki=ki(T)=Y [H1(Tp).
BeB;

The following is a generalization of Temperley’s formula showing a relationship between A; and un-
weighted high dimensional tree numbers k;.

Theorem 2 /20| Proposition 7] Let k; be the i-th tree number of a Z-APC complex T .
(1) det A_y = kg
(2) det A; = k;i_1k?k;yy fori e [0,d 1]
(3) det Ay = kg1 if T is acyclic, and 0 otherwise. O
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3 Weighted combinatorial Laplacians and weighted tree numbers

As a refined enumerator of tree numbers, we discuss weighted tree numbers. For example, Cayley-Priifer
theorem [29] gives an enumeration of the spanning trees of complete graphs according to their vertex
degrees, and Kalai’s formula |19, Theorem 1, 3’] gives an enumeration of high-dimensional tree numbers
of standard simplexes according to their vertex degrees. Other examples of weighted Laplacians and
weighted tree numbers can be found in [[11,[12,30]. In [30], the weights of different dimensions were
considered simultaneously, and we will develop similar ideas for matroid complexes in this paper.

Let I" be Z-APC. For each vertex v € I'y, let x,, be an indeterminate and define the weight of v to be
X, = 112) For each face o € I';, define its weight of a face o to be

X, =[] X0 = (2,)>

veo

Denote by F the field containing R and all the indeterminates z,,. Let C; be the F-vector space of i-chains
in I'. The weighted boundary operator 0; : C; — C;_1 is defined as follows. For each oriented i-face

[0] = [7)0,1117 cee »’Ui],

i( a0 -v;]

This (‘i can be also written as

d; = WL o, W

where W is the diagonal matrix whose diagonal entry corresponding to each i-face o € I'; is z,. Define
the i-th weighted combinatorial Laplacian A,; : C; - C; to be the combinatorial Laplacian of the weighted
boundary operator 81, iLe.,

A, = 8 D; + 0,11 02

i+l
To illustrate the weighted boundary operater d;, we present an example.

Example 1 Let C be an (abstract) simplicial complex on a vertex set {1,2,3,4,5} whose facets are
{124,125,134, 135,145, 234,235 245} (see Fig. ' Suppose that the rows and columns of 82 C’g — C’1
are ordered lexicographically. Then Dy is given by

[124] [125] [134] [135] [145] [234] [235] [245]

[12] 1 x4 Ts 0 0 0 0 0 0 7
[13] 0 0 T4 Ts 0 0 0 0
[14] | —z2 0 -3 0 5 0 0 0
[15] 0 -T2 0 -T3 —T4 0 0 0
[23] 0 0 0 0 0 T4 s 0
[24] X1 0 0 0 0 -3 0 T5
[25] 0 1 0 0 0 0 -3 —T4
[34] 0 0 T 0 0 T2 0 0
[35] 0 0 0 T 0 0 T2 0
451 L O 0 0 0 x1 0 0 T2
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o

Fig. 1: a realization of IC

We introduce the definition of weighted high-dimensional tree numbers originated from Kalai [[19].
Definition 3 For i € [0, d], define the i-th weighted tree number of I to be

ki = k()= Y |Hia(Tp)PXp. G.D
Bqu‘,

where Xp = H X, is the weight of B € B;. Define lAc,l =1.
oeB

For each B € B;, define the degree of a vertex v € 'y in B to be the number of facets in B containing
v, denoted by degzv. When I' is a graph, this degree is the same as the degree in graph theory. Then
equation (3.1)) becomes

S [Hia (Tp)P? T Xx,9887,

BeB; vel'g

which explains why weighted tree numbers are often called degree-weighted tree numbers. Note that, if
X, =1forall v e 'y, then we recover the i-th (unweighted) tree number k;.

An example of degree-weighted tree numbers is Cayley-Priifer [29] theorem for complete graphs as
follows.

[T X980 2 X, XX (X0 + X+ + X,)" 2,
TeBy(K,) i=1

A high-dimensional analogue of this theorem is Kalai’s formula [[19, Theorem 3’]

w d 7 n-2 n-2
S Ha (Te)| TT X8 = (X X X) (D (X + Xp 4+ X,) () (3.2)
BeB; (%) i=1

where X is the standard simplex on n vertices.
The following is the weighted version of Theorem 2]

Theorem 4 The following holds for a Z-APC complex T':
(]) detA_l = ]ACO
(2) det Al = (HaeFi,l XU)_l(HaeFi XU)_lfci—lfczZ]%Hl fOri € [Oa d- 1]

(3) det Ag = (Myer,_, Xg-)_ll%d_l(no.sr‘d X)) if T is acyclic, and 0 otherwise. ]
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From now on, let I be an acyclic complex of dimension d + 1. The reason for considering dimension
d + 1 is that we will apply an acyclization to a Z-APC complex of dimension d.

By using Theorem 2] a relation was found between the generating function of the logarithmic determi-
nants of combinatorial Laplacians and that of the logarithmic determinants of tree numbers, which makes
it efficient to compute the tree numbers [20, Theorem 8]. The following theorem is the weighted version
of this relation. We introduce formal logarithm having the following property: log XY =log X +logV
for nonzero X,Y €T.

Theorem 5 Let D(x), K (), and F(x) be given as follows.
(1) D(z) = ¥E Q2" where &; = log det A,
(2) K(z) = Y%, kix’ where i; = log k;

(3) F(x) = Yyer, long((Ziio foiz™th) - fvyd+1$d+1) where f,; is the number of i-faces in X
containing v.

Then we have

D(z) = (1+z)’K(z)-1+2)F(z), or
K(z) = (1+2)72D(z)+(1+2)'F(z).

From this theorem, one can recover Kalai’s formula (equation (3.2)).

In addition, we express weighted tree numbers in terms of all the monomials corresponding to all the
vertices and eigenvalues of weighted combinatorial Laplacians. The following theorem is the weighted
version of [[12, equation (11)] obtained from Theorem@

Theorem 6 Let A be the set of all distinct etgenvalues of the total weighted Laplacian @f_*_l A, and let
my, ; be the multiplicity of/\ inA, ie., det A; = [T5ca N, The d-th weighted tree number kq of T'is

I (Xv)lfc((lk )72 I1 %5

vertices v of T" AeA
where as_; = 7:_1 (-1)7-1(d - j)msy_; and the link of a vertex v is given by

lkv={cel'|on{v}=a,0u{v}el}.

4 Weighted combinatorial Laplacians of matroid complexes

An interesting question for combinatorial Laplacians is which complexes have integral spectra. There are
some known complexes with this property: chessboard [[18]], matching [10], matroid [25]], shifted [14], and
shifted cubical complexes [12]. Then a natural question for weighted combinatorial Laplacains is which
complexes have spectra that are polynomials. Duval, Klivans, and Martin showed that the spectra of the



6 Woong Kook and Kang-Ju Lee

weighted combinatorial Laplacians of shifted complexes are polynomials and used their result to give
the weighted tree numbers of shifted complexes [[11]. We show that matroid complexes have polynomial
spectra and will use these to find the weighted tree numbers of matroid complexes.

First, we review the spectra of the unweighted combinatorial Laplacians of matroid complexes [25]. Let
M be a loopless matroid, r its rank function, L(M) its lattice of flats, and p(V, W) the Mobius function
on L(M) x L(M). Define the a-invariant a( M) of M to be the unsigned reduced Euler characteristic of
its matroid complex I N (M ). For convenience, we will denote (W /V') = |u(V,W)|and d = (M) - 1.

Theorem 7 [25| Corollary 18] Let A be the set of all distinct eigenvalues of the total Laplacian EB?:_l A
of a matroid complex IN (M ). Then

A={|E\V|:V e L(M) and (V) # 0}
and, for each X € A, its multiplicity my ; in A, is given by

>, a(V)u(W/v).
VIENV|=X W:r(W)=i+1

O

We present the weighted version of the above theorem. Let I be the field containing R and all the
indeterminates x. for each element e in the ground set £ of M. For each e € E, define the weight of e to
be X, = 2. For each non-empty set S c E, define ||S|| = .5 X. and ||@|| = 0.

Theorem 8 Let A be the set of all distinct eigenvalues of the total weighted Laplacian @,‘f:_l A, of a

matroid complex IN (M) where A; is the i-th weighted combinatorial Laplacian of M. Then
A={[|[ENV|:V e L(M) and a(V) % 0}

and, for each X = ||E~ V|| € A, its multiplicity ms ,; in A, is given by

> a(M)u(W/v).

Weir(W)=i+1

In particular, the spectra of EB§1=,1 A, are polynomials in X.’s. O

5 Weighted tree numbers of matroid complexes

We show that the weighted tree numbers of matroid complexes have a nice factorization according to the
degrees of their vertices. Our method is different from that which was used to find the formula for the
weighted tree numbers of a shifted complex [[11]. While the reduced Laplacian in the top dimension was
used in [[11]], we use all of the combinatorial Laplacians except the top-dimension.

To begin, we review two important invariants of a matroid M which will appear in the formula. One is
a( M) which equals the unsigned reduced Euler characteristic [x(IN(M))| of IN(M). Note that o(M)
has other interpretations as follows:

a(M) = |:uL(M*)(67 1)| =rk Hr(M)—l(IN(M)) =Tw(0,1),

where M ™ is the dual matroid of M, and T/ («,y) the Tutte polynomial of M.
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The other is Crapo’s 3(M ) which is defined as follows [6]:

B(M) = (-1)" D 3 (-1)Hr(4).

AcE(M)

For our purpose, it will be useful to take the following equivalent definition of 3(M) (used in [38, Chapter
7.3]).

B(M) = (=1)" 5 u(0,V)r(V).

VeL(M)

It is also known that 5(M) also equals the unsigned reduced Euler characteristic of the reduced broken
circuit complex [3|]. The following is the main theorem of this paper.

Theorem 9 The d-th weighted tree number kq(M) = kq(IN(M)) of a matroid complex IN (M) is

[] x(BMaaGie)  T] (T X,)* VB0V,
eclE flats V of M e¢V

where |B(M )| denotes the number of bases of a matroid M. Here,
[BM/e)| - a(M/e) = [R(IN(M/[e) ).

(This equality comes from the shellability of matroid complexes.) O

This theorem is proved using Theorem [6]and Theorem [§]
By setting X, = 1 for all e € E/, we can recover (unweighted) tree numbers of matroid complexes [[24}
Theorem 2]. To simplify their formulas, we introduce a convolution of a-invariant and S-invariant.

Definition 10 For A\ e A = {|E~\V|:V € L(M) and a(V') # 0}, define a convolution of a-invariant and
[-invariant with respect to A as

ooy f= > a(V)B(M[V).

VeL(M):|ExV|=X

Theorem 11 24, Theorem 2] The d-th tree number kq(M) = kq(IN(M)) of a matroid complex

H )\aole.

AeA

IN(M) is

Fig.2: agraph G = K4 -
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Example 2 Let M = M (G) be the cycle matroid of G where G is a graph K, — e (see Fig[2). Then the
cycle matroid complex TN (M) of M is the simplicial complex K in Example E] (see Fig. We apply
our theorem to compute the tree numbers of the matroid complex I N (M).

First, for each vertex e in IN (M), the contracted matroid complex I N (M /e) consists of 4 vertices
and so [Y((IN(M/[e))®)] = 3.

Second, for each flat V' in M, let us compute «(V') and S(M[/V).

e IfV=g,thena(V)=1and B(M/V)=5(M)=1.
* If V has only one element, then a(V) =0 .
« If Vis{1,2,3} or {3,4,5}, then a(V) =l and (M /V) = 1.
o If V=M, then B(M/V) =5(2)=0.
Therefore,
feo(M) = XPXSXIXTXE (X1 + Xo+ Xz + Xa+ X5) (X1 + X2)(Xy + X5)

and we obtain ko (M) =22 -5. ]

6 Applications: Complete colorful complexes

We give the weighted version of Adin’s formula for tree numbers of complete colorful complexes, an-
swering the question posed in [1| Section 6 (b)]. Define a complete colorful complex as follows. For each
telr],let By ={e1,,€24,...,€n, 1} beasetof colort. Let E = Uj_, E, be a vertex set. Define complete
colorful complex K = K(ny,...,n,) as a simplicial complex on a vertex set E whose faces are subsets
of E each containing at most one element from each E, i.e.,

K={FcE||FnE{<1lfort=1,...,7}.

Note that K is isomorphic to the matroid complex of @;_; Uy ,,, where Uy 5, is a rank 1 uniform matroid
on n; elements. For simplicity, denote the dimension of K by d = r — 1. In addition, for each i € [1,d],
the i-th skeleton K () is a matroid complex.

For each ¢ € [r], denote weights of €1 ¢, €24, ..., €n,,t By X14, X2 4, .., Xp, 1, respectively. For each
S c [r], define g = [Tseg (ns — 1).

Theorem 12 For i € [1,d], we have

~ T i i-1-j o r—2-|S]
Fi(K) = [T (Xp X, ) S50 D T s (mienns) TT (3 Xy + o+ X, )™ C00s0)
t=1 IS|<i s¢S
where e;(Y1,...,Y,,) is the j-th elementary symmetric polynomial.

In particular,

kd(K) = H ((XLt“.X’nt,t)(HS#t (ns)fns=t, (n-i‘fl))(let 4+ oo 4+ X’nt,t)ns*t (nsfl))'

t=1



Weighted Tree Numbers of Matroid Complexes 9

The weighted top-dimensional tree number of a complete colorful complex was computed by Aalipour
and Duval.

We recover Adin’s formula for the unweighted tree numbers of complete colorful complexes from the
above weighted version, by setting Xy ; =--- = X,,, ; = 1 forall? ¢ [r]. (The top-dimensional tree number
of a complete colorful complex was suggested by Bolker [5]].)

Corollary 13 [|I| Theorem 1.5] Fori € [1,d], we have

ki(K) = TT (3 na)™ (s,

|S|<i €S

In particular,
kd(K) = H nt(ns#t ("s_l)).
t=1

O

Note that the 1-dimensional skeleton of a complete colorful complex is a complete multipartite graph.
By using the above theorem, we obtain the weighted spanning tree numbers of complete multipartite
graphs (For that of a complete bipartite graph, see [35} Exercise 5.30]).

Let K, . n, be a complete multipartite graph with an r-partition (V4,...,V;). For each ¢ € [r], let
Vi = {v14,...,VUn, ¢}, and denote the weights of vy ¢,...,vp,+ by X14,..., Xy, 1, respectively. For a
complete bipartite graph K, ,, with a bipartition (A4, B) where A = {u1,...,u,,} and B = {v1,...,v,},
let X1,...,X,, (resp. Y1,...,Y,) be the weights of uy, ..., uy, (resp. vi,...,v,).

Corollary 14 The weighted spanning tree number of K,,, .. ,, is given by

yeeey

. T T r=2 r
E(Koy,on,) = ([T X0 X ) (0 (Kae 4 X)) TT( D (X o+ X, )™ )
t=1 t=1

t=1 " s#t

In particular, the weighted spanning tree number of K, ,, is given by
E(Kmn) = (X1 X ) (Vi Y ) (Xy 44 X)) N (V) 4+ V)™

O

When each color set has only one element, we recover Kalai’s formula for the weighted tree numbers
of standard simplexes.

Corollary 15 |19, Theorem 1, 3’| Let 3. be the standard simplex on n vertices. For each vertex v; € (2)o,
let X; be its weight. Then the i-th weighted tree number is given by

(D) = (X1 Xo X)) (X + X+ 04 X,,) (50,
In particular, its i-th tree number is given by

k(D) = n(").
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