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Abstract

For a network G, we introduce a non-singular symmetric matrix, called a path intersection
matrix, that will provide a new method for computing the ratio k(G)/k(G/ab) where k(G)
is the tree-number of G and G/ab is obtained from G ∪ ab by contracting the new edge ab
between two distinct nodes a and b. The quantities k(G)/k(G/ab) appear as invariants for
various networks such as effective conductance for an electrical network and an ingredient
for information centrality for a social network. We will review several examples of networks
where path intersection matrices can be applied.

Keywords: path intersection matrices, the matrix-tree theorem, spanning trees, effective
resistance, information centrality
2000 MSC: primary 05C50, secondary 05C90

1. Introduction

Tree enumeration in graphs often relies on matrices. For example, the matrix-tree the-
orem states that every cofactor of the Laplacian matrix L of a finite graph G is the tree
number k(G), i.e., the number of spanning trees. The tree numbers, in turn, may provide
“combinatorial” interpretations of various network invariants. It is well-known that the effec-
tive conductance between two vertices a and b equals k(G)/k(G/ab), where the contraction
G/ab is obtained from G by adding a new edge ab between a and b, and contracting it. We
refer the readers to [2] and [14] for derivations of this formula from the Laplacian matrix L
and Kirchhoff’s laws.

The purpose of this paper is to present a new matrix called a path intersection matrix
Dab for two distinct vertices a and b in a finite graph G that provides a new method for
computing the ratio k(G)/k(G/ab). We remark that this ratio also equals the information
between two nodes a and b in a network proposed by Stephenson and Zelen [13]. Refer to
[7] for a derivation of this fact using the combinatorial Laplacian L+ J where J is an all 1’s
matrix.
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The ingredient for constructing a path intersection matrix Dab for a finite graph G is
a minimal collection of paths from a to b whose pairwise differences span the cycle space
of G. We will discuss motivations and details of this construction in section 4. While one
has choices for paths in constructing Dab, the main results of the paper will show that the
determinant of Dab equals k(G/ab), and that the sum of all entries of its inverse matrix
equals k(G)/k(G/ab), which depend only on the vertices a and b.

In deriving k(G)/k(G/ab), our method differs from other works in the way k(G/ab) is
counted. In the previous works mentioned above, k(G/ab) is realized exactly as the number
of spanning trees in the contraction G/ab, whereas detDab computes k(G/ab) as the number
of the spanning trees in G ∪ ab containing the edge ab. In particular, our method does not
require edge-contraction, maintaining the original structure of graphs.

The paper is organized as follows. Section 2 reviews tree enumeration in a graph via
a basis of its cycle space. Section 3 introduces a new method for tree enumeration in a
contraction of a graph without edge contraction, and demonstrates its advantages through
classical examples. Section 4 defines the main object of study, the path intersection matrix
of a graph G, and suggests the sum of all entries in its inverse matrix as the main invariant
for our purpose. Section 5 presents the main result of the paper proving a combinatorial
interpretation of the main invariant as the ratio k(G)/k(G/ab), which requires a careful
analysis of minors of a path intersection matrix. Section 6 discusses some well-known network
invariants involving this quantity.

2. Preliminaries

2.1. Spanning trees of a graph

We refer the readers to [3] for basic definitions concerning graphs. In this paper, we
assume that a graph G is connected with multiple edges allowed. Also we assume that its
vertex set V (G) has n elements, and its edge set E(G) is a multiset, having m elements.

A spanning tree T in a connected graph G is a spanning subgraph which is connected
and has no cycle. One can show that every spanning tree has n− 1 edges, and we call n− 1
the rank and c = m− (n− 1) the corank of G. We will denote the collection of all spanning
trees in G by T (G) and we will call the number of spanning trees in G the tree-number of
G, denoted by k(G).

The deletion-contraction recurrence is an important property for k(G): if e ∈ E(G) is
not a loop nor an isthmus (refer to [15]),

k(G) = k(G \ e) + k(G/e)

where G \ e is the subgraph of G obtained by deleting e and G/e is obtained by contracting
e. For our purpose, it is important to note that the number of spanning trees in G containing
the given edge e equals the number of spanning trees in G/e.

2.2. Cycle space and k(G)

Let G be a connected graph. We will assume that each edge e = vv′ of G is assigned
an orientation, and [e] = [vv′] denotes the orientation of e that originates from vertex v and
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terminates at vertex v′. Let C1 = C1(G) = Zm be a free abelian group generated by the
oriented edges {[e] | e ∈ E(G)}, and C0 = C0(G) = Zn generated by the set {[v] | v ∈ V (G)}
where [v] denotes the unique oriented vertex for each v ∈ V (G). An element x ∈ C1 may be
represented as a column vector x = (ne)e∈E(G) or as a formal sum x =

∑
e∈E(G) ne[e] with

ne ∈ Z for all e ∈ E(G), depending on the context. The elements of C0 will be represented
similarly.

The incidence matrix ∂1 = ∂1(G) : C1 → C0 is defined by ∂1([vv
′]) = [v′] − [v] for each

oriented edge [vv′] ∈ C1. Hence, ∂1 is an n-by-m matrix whose rows and columns are indexed
by V (G) and E(G), respectively, and its ([v], [e])-entry equals 1 or −1 if v is the terminal
or originating vertex of e, respectively, and equals 0 if v is neither. The cycle space of G,
denoted by H1(G), is the kernel of ∂1. It is well-known that the rank of H1(G) as a free
abelian group equals the corank c of G.

Now, we define ∂2 for G to be an m-by-c integer matrix, given by

∂2 =
[
z1 z2 . . . zc

]
where the columns z1, . . . , zc form a basis for the cycle space H1(G). We may regard ∂2 as
a map C2 → C1 where C2 = Zc with a standard basis. When G is planar, for example, the
zi’s may be given by the boundary cycles of the finite faces of G.

Although ∂2 depends on the choice of a basis of H1(G), the following proposition shows
an important property of ∂2 that is independent of that choice. For S ⊂ E(G), let (∂2)S
denote the submatrix of ∂2 whose rows are indexed by S. Also, let S = E(G) \ S.

Proposition 2.1. Let S be a subset of E(G) with |S| = c = corank of G. If S forms a
spanning tree in G, then | det(∂2)S| = 1. Otherwise, it is equal to 0.

Proof. Suppose ∂2 = [z1 · · · zc] is given where zi’s form a basis for H1(G). Let S be a subset
of E(G) such that S forms a spanning tree in G. For each e ∈ S, there exist coefficients
a1,e, a2,e, . . . , ac,e ∈ Z such that

∑c
i=1 ai,ezi = ze where ze ∈ H1(G) corresponds to the unique

cycle in S∪e. Writing these equations in a matrix form and restricting it to the rows indexed
by S, we obtain a matrix equation I ′ = (∂2)SA where A = (ai,e) is the coefficient matrix and
I ′ is a permutation matrix up to sign. Hence, we have | det(∂2)S| = 1. If S does not form a
spanning tree, then S contains a cycle, i.e., there is z ∈ H1(G) supported by S. From this
fact, one can easily deduce that (∂2)S is singular.

The following theorem, which is essential for our purpose, is a well-known result from
linear algebra. Refer to any standard text for a proof (for example, [6]).

Theorem 2.2 (Cauchy-Binet formula). Let A and B be s-by-t matrices with s ≥ t whose
rows are indexed by a set R with |R| = s. For a t-set I ⊂ R, let AI (resp. BI) be a submatrix
of A (resp. B) whose rows are indexed by I. Then we have

detAtB =
∑

I⊂R, |I|=t

detAI detBI .
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Recall that the matrix-tree theorem from graph theory states that for a graph G, every
cofactor of its Laplacian matrix L(G) = ∂1∂

t
1 equals k(G). The following is a cycle-space

version of this fact, and its proof is immediate from Proposition 2.1 and Theorem 2.2.

Theorem 2.3. The number of spanning trees in G is

k(G) = det(∂t2∂2).

Remark 2.4. The proofs of the matrix-tree theorem and Theorem 2.3 are similar in that both
are given via the Cauchy-Binet Theorem. However, they differ in the ways the spanning trees
of G are accounted for in the matrices ∂1 and ∂2. Indeed, (∂t1)S with |S| = n − 1 is a full-
rank submatrix of ∂t1 iff S forms a spanning tree whereas (∂2)S with |S| = c is a full-rank
submatrix of ∂2 iff the complement of S in E(G) forms a spanning tree.

Example 2.5. To illustrate Theorem 2.3, we compute k(G) where G is the graph in Figure
1. Note that z1 = [12] + [23] + [34]− [14] and z2 = [34]− [14] + [15]− [25] + [23] form a basis
of H1(G). Using this basis, we have

∂2 =

z1 z2


[12] 1 0
[14] −1 −1
[15] 0 1
[23] 1 1
[25] 0 −1
[34] 1 1

and ∂t2∂2 =

[
4 3
3 5

]
.

Therefore, Theorem 2.3 gives k(G) = det(∂t2∂2) = 11.

Figure 1: A graph G with c = 2

Example 2.6. Let Pn be a path of length n ≥ 1, or Pn = v0v1 · · · vn. A fan P̂n is obtained
by joining each vertex of Pn to a new vertex w by a simple edge (see Figure 2). If we define
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∂2 using cycles described in Figure 2, then ∂t2∂2 = Tn where Tn is the n×n tridigonal matrix
whose main diagonals are 3 and the first diagonals below and above these are −1. It follows
detTn = 3 detTn−1− detTn−2 for n ≥ 2 with detT0 := 1 and detT1 = 3, which are the same
recurrence relations satisfied by the Fibonacci numbers {F2n+2} with F2 = 1 and F4 = 3.
Hence we have k(P̂n) = detTn = F2n+2.

Figure 2: A fan P̂n

2.3. Weighted graphs

A weighted graph G is also called a network. For each e ∈ E(G) in a weighted graph G,
we assume that its weight we is postive. For a spanning tree T in G, we define its weight to
be

wT =
∏

e∈E(T )

we .

Then the weighted tree-number k̂(G) of G is defined as

k̂(G) =
∑

T∈T (G)

wT .

3. Tree-numbers of contraction graphs

In this section, we will give a new method for computing the tree-number of a contraction
graph as a determinant. Given a connected graph G and a, b ∈ V (G) with a 6= b, a path p
from a to b is an element of C1(G) such that

∂1p = [b]− [a].

Hence, for our purpose, a path p means an element of C1 which is a formal sum of oriented
edges satisfying the above condition, and need not correspond to a graph-theoretic path in
G. Also, a path is defined between two distinct vertices only.

Let c be the corank of G. Given a basis {z1, . . . , zc} for H1(G) and a path p from a to b,
define ∂ab to be an m× (c+ 1) matrix obtained by adding p to ∂2 as a column, i.e.,

∂ab =
[
p z1 . . . zc

]
.
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Now, given a, b ∈ V (G) with a 6= b, let Gab denote the graph obtained from G by
adding a new edge ab oriented from b to a. Hence, ∂1(G

ab) is an n-by-(m + 1) matrix
obtained from ∂1(G) by adding a new column that will be indexed by [ba]. In particular,
∂1(G

ab)[ba] = [a]− [b], and the restriction of ∂1(G
ab) to C1(G) equals ∂1(G).

Proposition 3.1. The tree-number of the contraction G/ab is given by

k(G/ab) = det
(
(∂ab)t∂ab

)
.

In particular, det
(
(∂ab)t∂ab

)
depends only on the vertices a and b, and is independent of the

choices of a path from a to b and a basis for H1(G).

Proof. Assume that the corank of G is c. Then, consequently, the corank of Gab is c+ 1. We
claim that the columns of the following (m+ 1)-by-(c+ 1) matrix form a basis for H1(G

ab):[
1 0 · · · 0
∂ab

]
=
[
z̃0 z̃1 z̃2 . . . z̃c

]
where the first row is indexed by the new oriented edge [ba] and the rest by the oriented
edges in G. As formal sums, we have z̃0 = [ba] + p and z̃i = zi for 1 ≤ i ≤ c.

For the proof of the claim, we will write ∂′1 for ∂1(G
ab) and ∂1 for ∂1(G). We have

z̃1, . . . , z̃c ∈ H1(G
ab) because ∂′1z̃i = ∂1zi = 0 for 1 ≤ i ≤ c. Also we have z̃0 ∈ H1(G

ab)
because ∂′1z̃0 = ∂′1[ba] + ∂′1p = [a] − [b] + ∂1p = 0. Since z1, . . . , zc are linearly independent,
being a basis of H1(G), it follows that z̃0, . . . , z̃c are also linearly independent. Hence, it
remains to show that z̃i’s span H1(G

ab). Indeed, let z̃ ∈ H1(G
ab), and write z̃ = r[ba] +x for

some integer r and some x ∈ C1(G). Clearly, w := z̃ − rz̃0 ∈ H1(G
ab). Since w = x − rp ∈

C1(G), we have 0 = ∂′1w = ∂1w, which shows w ∈ H1(G). Hence, w is a linear combination
of z1, . . . , zc. We conclude that z̃ is a linear combination of z̃0, . . . , z̃c which proves the claim.

Hence, the above matrix can be taken as ∂2 for Gab. In what follows, a matrix with a
subscript S means its full submatrix whose rows are indexed by a set S. Then, we have

det
(
(∂ab)t∂ab

)
=

∑
S⊂E(G), |S|=c+1

[det(∂ab)S]2

=
∑

S⊂E(Gab), |S|=c+1, ab/∈S

[det(∂2)S]2

= k(G/ab) .

The first equality uses the Cauchy-Binet formula (Theorem 2.2), and the second equality
comes from the definition of ∂2. For the last equality, note that the subsets S ⊂ E(Gab)
with |S| = c + 1 and ab /∈ S such that E(Gab) \ S forms a spanning tree in Gab correspond
bijectively to the spanning trees inGab/ab. Now, the result follows from k(Gab/ab) = k(G/ab)
and Proposition 2.1. The second statement of the proposition is clear.
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Figure 3: A wheel Wn

Example 3.2. A wheel Wn is a graph obtained by connecting each vertex of a cycle Cn of
length n ≥ 1 with a new vertex w by a simple edge (see Figure 3). In this example, we will
compute k(Wn/ab) for a = w and b = vi with 1 ≤ i ≤ n. Choose the oriented edge p = [ab]
as a path from a to b, and let {z1, . . . , zc} be the basis for H1(Wn) described in Figure 3.
The matrix (∂ab)t∂ab for these choices is an (n+ 1)-by-(n+ 1) matrix

1 −1 0 · · · · · · 0 1
−1 3 −1 0 · · · 0 −1

0 −1 3 · · · . . .
... 0

0 0 −1
. . . . . .

... 0
...

...
...

. . . 3 −1 0
0 0 0 · · · −1 3 −1
1 −1 0 · · · 0 −1 3


.

By elementary row and column operations, we have det(∂ab)t∂ab = det(Tn − Rn) where Rn

is the n-by-n matrix whose (1, 1)-entry and (n, n)-entry are 1 and other entries are 0. By
the multilinearity of determinant, we have

k(Wn/ab) = det(Tn)− 2 det(Tn−1) + det(Tn−2)

= F2n+2 − 2F2n + F2n−2 = F2n.

Note that this result can be also obtained from the fact that Tn − Rn is a reduced
Laplacian of a fan P̂n−1. One can also compute k(Wn/ab) by noting that Tn is a reduced
Laplacian of the contraction Wn/ab [9]. Our method is different from these methods in that
graph contractions or row and column deletions of a matrix are not required.

Example 3.3. In this example, we will rederive the formula

k(Wn) = L2n − 2
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where L2n is the 2n-th Lucas number (refer to [11, 10, 9, 4]). Recall that the Lucas numbers
Ln are defined by L0 = 2, L1 = 1, and Ln = Ln−1 + Ln−2 for n ≥ 2. Expanding det(∂ab)t∂ab

for Wn along the first row gives

k(Wn/ab) = k(Wn)− 2(k(P̂n−1)− k(P̂n−2)) + 2

Then from Example 2.6 and 3.2, we have

k(Wn) = F2n + 2(F2n − F2n−2)− 2

= F2n + 2F2n−1 − 2 = L2n − 2.

4. Path intersection matrix

In this section, we define a path intersection matrix for connected graphs, which is one
of the main objects of study in this paper, and discuss its intriguing properties. In [13],
an example of this matrix was presented to illustrate total information contained in paths,
which motivated our current work.

4.1. Path intersection matrix of a graph

Let c be the corank of G. Given a, b ∈ V (G) with a 6= b, a collection P = {p0, . . . , pc} of
c+1 distinct paths each from a to b will be called saturated if the set of cycles {pi−pj | i 6= j}
spans H1(G). Equivalently, P is saturated if p0 is a path from a to b and pi = p0 + zi for
some basis {z1, . . . , zc} for H1(G). For a saturated P , let ∂P be the m-by-(c + 1) matrix
whose columns are pi’s:

∂P =
[
p0 p1 . . . pc

]
.

Definition 4.1. The path intersection matrix Dab induced by a saturated P is the symmetric
matrix of order c+ 1 given by

Dab = (∂P )t∂P .

The terminology path intersection matrix is motivated by the following observation: If all
entries of each pi ∈ P are ±1 or 0, a diagonal entry in Dab is the length of the corresponding
path, and an off-diagonal entry is the “net intersection”, i.e., the number of common edges
with the same orientations minus that with the opposite orientations in the corresponding
pair of paths.

There is an intriguing invariant Iab associated with Dab defined by

Iab = the sum of all entries in the inverse of Dab.

Theorem 5.1 will give a combinatorial interpretation of Iab, and show that Iab depends only
on the vertices a and b although Dab depends on the paths in its definition.
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4.2. Examples

Example 4.2. (as appeared in [13]) Let G be the graph in Figure 1 with the corank c = 2.
Let C1 be the free abelian group generated by the oriented edges {[12], [14], [15], [23], [25], [34]}.
To compute I13, let P = {p0, p1, p2} ⊂ C1 where p0 = [14] − [34], p1 = [12] + [23], and
p2 = [15]− [25] + [23]. Then, it checks easily that P is saturated, and we have

∂P =

p0 p1 p2


[12] 0 1 0
[14] 1 0 0
[15] 0 0 1
[23] 0 1 1
[25] 0 0 −1
[34] −1 0 0

and D13 =

2 0 0
0 2 1
0 1 3

 .

The inverse of D13 equals
1

10

5 0 0
0 6 −2
0 −2 4

 and I13 =
11

10
.

Example 4.3. Let H3 be the 3-cube graph (Figure 4), and let ab ∈ E(H3). Suppose that
a basis {z1, z2, z3, z4, z5} of H1(H3) is given as in Figure 4. If we let P be the collection of
paths p0 := [ab] and pi := p0 + zi for i = 1, 2, . . . , 5, then Dab is given by

Dab =

p0 p1 p2 p3 p4 p5


p0 1 0 1 1 1 2
p1 0 3 −1 −1 −1 0
p2 1 −1 5 0 1 1
p3 1 −1 0 5 0 2
p4 1 −1 1 0 5 1
p5 2 0 1 2 1 7

,

and one can compute Iab = 384/224.

Figure 4: the 3-cube graph H3
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Example 4.4. Let P
(2)
n be the path graph of length n each of whose edges has multiplicity

2 (Figure 5). To compute I0n, let P be the collection of paths p0 := [e1] + [e3] + · · ·+ [e2n−1]
and pi := p0 + [e2i]− [e2i−1] for i = 1, 2, . . . , n. Then D0n is the (n+ 1)-by-(n+ 1) matrix,

D0n =


n n− 1 · · · · · · n− 1

n− 1 n n− 2 · · · n− 2
... n− 2 n

. . .
...

n− 1
...

. . .
. . . n− 2

n− 1 n− 2 · · · n− 2 n

 , and (D0n)−1 =


a b · · · · · · b
b c d · · · d
... d c

. . .
...

b
...

. . .
. . . d

b d · · · d c

 ,

where a = (n2 − 2n + 2)/n, b = −(n − 1)/n, c = (n + 1)/2n, d = 1/2n. Then we obtain
I0n = a+ 2n · b+ n · c+ (n2 − n)d = 2/n.

Figure 5: the path P
(2)
n of length n each of whose edges has multiplicity 2

We will recover the computations in these three examples by using Theorem 5.1. We end
this section with a lemma showing that detDab depends only on the vertices a, b ∈ V (G).

Lemma 4.5. detDab = k(G/ab).

Proof. Note that ∂ab is a matrix obtained from ∂P by subtracting its first column from the
other columns, i.e., ∂ab = ∂PA where A is a (c+ 1)-by-(c+ 1) matrix such that its entries in
the main diagonal are 1, its off-diagonals in the first row are −1, and the others are 0. Since
Dab = (∂abA−1)t(∂abA−1), Proposition 3.1 proves the lemma.

5. Combinatorial interpretation of Iab

5.1. The main result

Recall that Iab is defined to be the sum of all entries in the inverse matrix ofDab = (∂P )t∂P

where P is a saturated collection of paths from a to b. The following theorem is the main
result of the paper demonstrating, in particular, that Iab depends only on the choices of
a, b ∈ V (G) with a 6= b.

Theorem 5.1. For two distinct vertices a and b in a connected graph G,

Iab =
k(G)

k(G/ab)
.
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Proof. In this proof, we will abbreviate Dab as D, and denote its (i, j)-minor by Dij. Let
∂P (i) denote the matrix obtained from ∂P by removing its i-th column. Then we have
Dij = det

(
(∂P (i))t∂P (j)

)
. Now, the formula of an inverse matrix gives

Iab =
1

detD

∑
1≤i,j≤c+1

(−1)i+j det
(
(∂P (i))t∂P (j)

)
,

where c is the corank of G. By Lemma 4.5, it suffices to show

k(G) =
∑

1≤i,j≤c+1

(−1)i+j det
(
(∂P (i))t∂P (j)

)
.

This identity will be shown by the following equalities. As before, a matrix with a
subscript S means its full submatrix whose rows are indexed by a set S.∑

1≤i,j≤c+1

(−1)i+j det
(
(∂P (i))t∂P (j)

)
=

∑
1≤i,j≤c+1

(−1)i+j
∑

S⊂E(G), |S|=c

det ∂P (i)S det ∂P (j)S

=
∑

S⊂E(G), |S|=c

∑
1≤i,j≤c+1

(−1)i det ∂P (i)S(−1)j det ∂P (j)S

=
∑

S⊂E(G), |S|=c

[ ∑
1≤i≤c+1

(−1)i det ∂P (i)S

]2
=

∑
S⊂E(G), |S|=c

[
det

[
1 · · · 1
(∂P )S

] ]2
=

∑
S⊂E(Gab), |S|=c+1, ab∈S

[
det(∂2)S

]2
= k(G).

The first equality uses Cauchy-Binet formula (Theorem 2.2). The second equality follows
from changing the order of summation. The fifth equality follows from the definition of ∂2
for Gab. For the last equality, note that for S ⊂ E(Gab) with |S| = c + 1 and ab ∈ S, a
subgraph defined by E(Gab) \ S is a spanning tree in G iff | det(∂2)S| = 1 by Proposition
2.1.

Example 5.2. Let G be the graph in Example 4.2. One can compute k(G) = 11 and
k(G/13) = 10. By the above theorem, I13 = 11/10, matching Example 4.2.

Example 5.3. Let H3 be the 3-cube in Example 4.3. Note that k(H3) = 384 (refer to [12]),
and using the symmetry of H3 we find k(H3/ab) = (7/12) ·384 = 224. By the above theorem,
Iab = 384/224, matching Example 4.3.

Example 5.4. Let P
(2)
n be the path graph of length n with 2 multiple edges in Example

4.4. From k(P
(2)
n ) = 2n, k(P

(2)
n /0n) = n · 2n−1, we have I0n = 2/n, matching Example 4.4.
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5.2. Weighted analogue

Suppose that each e ∈ E(G) is assigned a positive weight we. Let
√
W be a diagonal

matrix whose columns are indexed by the same manner as the rows of ∂2 for G and whose
diagonal entry corresponding to e ∈ E(G) is

√
we. Define the second weighted boundary

operator ∂̂2 to be (
√
W )−1∂2. Then the weighted analogue of Proposition 2.1 is as follows.

For S ⊂ E(G), let (∂̂2)S be the submatrix of ∂̂2 whose rows are indexed by S.

Proposition 5.5. Let S ⊂ E(G) with |S| = corank of G. If E(G) \S forms a spanning tree
in G, then | det(∂̂2)S| = 1/

∏
e∈S
√
we. Otherwise, it equals 0.

Proof. The proof follows from Proposition 2.1 and the construction of ∂̂2.

Now, we define the weighted analogue of ∂P to be ∂̂P = (
√
W )−1∂P . Then the corre-

sponding weighted path intersection matrix is defined to be D̂ab = (∂̂P )t∂̂P = (∂P )
t
W−1∂P .

For two distinct vertices a, b ∈ V (G), let

Iab = the sum of all entries in the inverse of D̂ab.

The following theorem is the weighted analogue of Theorem 5.1. Denote by k̂(G)ab the
weighted tree-number of Gab containing the edge ab with wab := 1, i.e.,

k̂(G)ab =
∑

T∈T (Gab), ab∈E(T )

wT .

Theorem 5.6. For distinct vertices a, b ∈ V (G) in a weighted graph G,

Iab =
k̂(G)

k̂(G)ab
.

Proof. We use a similar method used in Theorem 5.1, replacing Proposition 2.1 with Propo-
sition 5.5. Then we have

Iab =

∑
T ∈ T (Gab),
ab /∈ E(T )

∏
e/∈E(T ) 1/we∑

T ∈ T (Gab),
ab ∈ E(T )

∏
e/∈E(T ) 1/we

.

Multiplying both the numerator and the denominator by
∏

e∈E(Gab)we, the result follows.

Example 5.7. Regarding P
(2)
n as the path graph of length n whose edges have 2 as weights,

we will compute I0n. Note that D̂0n is just a 1-by-1 matrix whose entry is n/2. Hence,
I0n = 2/n, matching Examples 4.4 and 5.4.
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6. Examples

6.1. Effective resistance

Consider an electrical network G where each edge is weighted by its conductance. Let
L be the Laplacian matrix of G. Let V = (φv)

t and I = (ιv)
t (v ∈ V (G)) be voltage and

current vectors, respectively, satisfying α = ιa = −ιb and ιv = 0 for v 6= a, b. Solving for
V in the equation LV = I, the effective resistance Rab between a and b is defined to be
(φb − φa)/α. Using Kirchhoff’s laws and Ohm’s law, Thomassen [14] showed that

Rab =
k̂(G/ab)

k̂(G)
= I−1ab .

For a derivation of this formula using a combinatorial Laplacian, refer to [7]. The com-
binatorial interpretation of Iab gives a combinatorial proof of Foster’s Theorem on electrical
networks [5]:

Theorem 6.1. [5, Foster’s Theorem] For a weighted graph G with n vertices, the following
identity holds. ∑

ab∈E(G)

wabRab = n− 1.

Proof. Let F = {(T, ab) | T ∈ T (G) and ab ∈ E(T )}. Then, we get

k̂(G)(n− 1) =
∑

(T,ab)∈F

wT =
∑

ab∈E(G)

wab k̂(G/ab).

This together with Theorem 5.6 yields the desired identity.

For the unweighted complete graph Kn, the effective resistance Rab is constant for every
edge ab by symmetry. Since |E(Kn)| =

(
n
2

)
, Theorem 6.1 implies Rab = (n − 1)/

(
n
2

)
= 2/n

for each pair a, b ∈ V (Kn) with a 6= b.

6.2. Information centrality

Stephenson and Zelen [13] introduced the information centrality as follows. Let L be the
Laplacian matrix of G, J the all 1’s matrix, and (L + J)−1 = (gab). Based on the theory of
statistical estimation, they defined the information between two nodes a and b to be

(gaa + gbb − 2gab)
−1 (1)

Kook [7] gave a combinatorial interpretation of the right-hand side of (1), i.e.,

(gaa + gbb − 2gab)
−1 =

k̂(G)

k̂(G/ab)
= Iab.
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The information centrality Ia for a node a is defined to be the harmonic mean of the
information between a and other vertices [13], i.e.,

Ia = n ·
[ ∑
b∈V (G)\a

1

Iab

]−1
.

We end this paper with a question. Can a path intersection matrix Dab be obtained from
properties or laws governing electrical networks? This question was motivated by the fact
that the Laplacian matrix L of a network is a direct consequence of Kirchhoff’s laws.
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