Cancellation for Inclusions of C*-algebras

Ja A Jeong

Department of Mathematical Sciences, Seoul National University, Seoul, 151-747, Korea jajeong@snu.ac.kr

For two projections p, q in a C^* -algebra, we write $p \sim q$ if they are Murray-von Neumann equivalent. A C^* -algebra A is said to have cancellation of projections if whenever $p,q,r \in A$ are projections with $p \perp r$, $q \perp r$, and $p+r \sim q+r$, then $p \sim q$. If the matrix algebra $M_n(A)$ over A has cancellation of projections for each $n \in \mathbb{N}$, we simply say that A has cancellation. Every C^* -algebra with cancellation is stably finite. For a unital C^* -algebra A, if the topological stable rank tsr(A) of A satisfies tsr(A) = 1, then A has cancellation. For a stably finite simple C^* -algebra A, it has been a long standing open question, settled negatively by A. S. Toms, whether cancellation implies tsr(A) = 1.

Let $1 \in A \subset B$ be a unital inclusion of C^* -algebras with index-finite type and with finite depth. In particular, B could be a crossed product $A_{\alpha}G$ of a unital C^* -algebra by a finite group. Our main result says that if A is simple, has topological stable rank 1, and satisfies Property (SP) (every hereditary C^* -subalgebra contains a nonzero projection), then B has cancellation. As an intermediate result, we show that the topological stable rank satisfies

$$tsr(B) < tsr(A) + n - 1.$$

if $1 \in A \subset B$ is an inclusion of C^* -algebras with common unit and $E \colon B \to A$ is a conditional expectation with index-finite type and a quasi-basis of n elements.