Operators Admitting a Moment Sequence

Il Bong Jung

Department of Mathematics, Kyungpook National University, Daegu 702-701, Korea ibjung@knu.ac.kr

This paper is joint work with B. Chevreau, E. Ko, and C. Pearcy. In this paper \mathcal{H} will always be a separable, infinite dimensional, complex Hilbert space, and $\mathcal{L}(\mathcal{H})$ will denote the algebra of all bounded linear operators on \mathcal{H} . As usual, $\mathbf{K} = \mathbf{K}(\mathcal{H})$ will denote the ideal of compact operators in $\mathcal{L}(\mathcal{H})$, and we write $\mathbb{N}[\mathbb{N}_0]$ for the set of positive integers. Following [1] and [3], we say that an operator T in $\mathcal{L}(\mathcal{H})$ admits a moment sequence if there exist nonzero vectors x and y in \mathcal{H} and a (finite, regular) Borel measure μ supported on the spectrum $\sigma(T)$ of T such that $\langle T^n x, y \rangle = \int_{\sigma(T)} \lambda^n d\mu$, $n \in \mathbb{N}_0$.

In [1], Atzmon and Godefroy proved that if \mathcal{X} is a real separable Banach space and T is a bounded linear operator on \mathcal{X} that admits a moment sequence (with associated Borel measure μ supported on $\sigma(T) \subset \mathbb{R}$), then T has a nontrivial invariant subspace. Also, it is obvious that every T in $\mathcal{L}(\mathcal{H})$ that has a nontrivial invariant subspace (n.i.s.) admits a moment sequence, and Atzmon and Godefroy point in the direction of the possible equivalence of the two concepts. Thus one believes that the question of which operators in $\mathcal{L}(\mathcal{H})$ can be shown to have a moment sequence is worth further exploration.

Let $(\mathbf{N} + \mathbf{K})$ be the set of all operators T in $\mathcal{L}(\mathcal{H})$ that can be written as a sum T = N + K, where N is a normal operator and K is compact. We write, as usual, $\pi : \mathcal{L}(\mathcal{H}) \to \mathcal{L}(\mathcal{H}) / \mathbf{K}$ for the Calkin map, and $\sigma_e(T) := \sigma(\pi(T))$, $||T||_e := ||\pi(T)||$. In [3], they proved the following theorem

Theorem A. Every $T \in (\mathbf{N} + \mathbf{K})$ admits a moment sequence.

Theorem B ([2]). Let A be a proper subalgebra of $\mathcal{L}(\mathcal{H})$ that is closed in the weak operator topology and contains the identity operator $1_{\mathcal{H}}$. Then there exist nonzero vectors x and y in \mathcal{H} such that

- 1) $\langle x, y \rangle \geq 0$, and
- 2) the linear functional $\varphi \in \mathcal{A}^*$ defined by $\varphi(A) = \langle Ax, y \rangle$ satisfies $|\varphi(A)| \leq \langle x, y \rangle ||A||_e$ for every $A \in \mathcal{A}$.

In this paper, we discuss a new and simple proof of Theorem A by using Theorem B.

Corollary C. Every T in $\mathcal{L}(\mathcal{H})$ that is either nonbiquasitriangular, essentially normal, or hyponormal admits a moment sequence.

Theorem D. Suppose $T \in \mathcal{L}(\mathcal{H})$ is almost hyponormal, and let X be any Hilbert-Schmidt operator in $\mathcal{L}(\mathcal{H})$. Then, if $T^*T - TT^* \notin C_1(\mathcal{H})$, the operator T + X has a n.i.s.

Theorem E. Every operator in $\mathcal{L}(\mathcal{H})$ of the form T+X, where T is almost hyponormal and $X \in \mathcal{C}_2(\mathcal{H})$ admits a moment sequence.

Theorem F. Suppose $T \in \mathcal{L}(\mathcal{H})$ and $\sigma(T)$ contains at least one isolated point. Then T has a n.i.s. if and only if T admits a moment sequence.

Proposition G. Every $T = S + K \in \mathcal{L}(\mathcal{H})$ with S subnormal and $K \in \mathbf{K}$ has a moment sequence.

References

- [1] A. Atzmon and G. Godefroy, An application of the smooth variational principle to the existence of nontrivial invariant subspaces, C.R. Acad. Sci. Paris Sér. I Math. **332**(2001), 151-156.
- [2] V. Lomonosov, Positive functionals on general operator algebras, J. Math. Anal. Appl. **245**(2000), 221-224.
- [3] C. Foias, I. Jung, E. Ko and C. Pearcy, Operators that admit a moment sequence, Israel J. Math. 145(2005), 83-91.