The Invariant Subspace Problem for Hyponormal Operators

Jaewoong Kim

Department of Mathematical Sciences, Seoul National University, Seoul, 151-747, Korea kim2@snu.ac.kr

If $T \in L(H)$ then T is said to have a nontrivial invariant subspace if there is a subspace \mathfrak{M} of H such that $\{0\} \neq \mathfrak{M} \neq H$ and $T\mathfrak{M} \subset \mathfrak{M}$. In this case we can represent T as

$$T = \begin{pmatrix} * & * \\ 0 & * \end{pmatrix}$$
 on $\mathfrak{M} \oplus \mathfrak{M}^{\perp}$.

In 1932, J. von Neumann addressed the following problem:

If \mathcal{X} is a Banach space of dim $\mathcal{X} \geq 2$, does $T \in L(\mathcal{X})$ have a nontrivial invariant subspace?

Today this is known as the *Invariant Subspace Problem*. In 1984, C.J. Read has shown that there exists an operator acting on ℓ_1 which has no nontrivial invariant subspace. However the invariant subspace problem remains still open for the cases of separable Hilbert spaces.

In this paper we show:

Theorem 1. Let $T \in L(H)$ be an operator such that $||p(T)|| \leq ||p||_{\sigma(T)}$ for every polynomial p. If int $\widehat{\sigma(T)}$ is a union of C^2 -Caratheodory domains then T has a nontrivial invariant subspace. (Here K means the polynomially convex hull of K.)

Corollary 1. If $T \in L(H)$ is a hyponormal operator such that $\inf \widehat{\sigma(T)}$ is a boundary of a C^2 -Caratheodory domain then T has a nontrivial invariant subspace.