

Operator Radii

Tsuyoshi Ando

Hokkaido University (Emeritus), Sapporo, Japan
ando@es.hokudai.ac.jp

On the space $B(\mathcal{H})$ of bounded linear operators on a Hilbert space \mathcal{H} there are two natural norms; the one is the operator norm $\|\cdot\|_\infty$ and the other is the numerical radius $w(\cdot)$. The operator norm is closely related to the notion of unitary dilation. Inspired by the discovery by Berger that the numerical radius is related to the notion of so-called unitary 2-dilation, for any $\rho > 1$ Sz.-Nagy and Foiaş introduced the notion of unitary ρ -dilation by the requirement that there is a unitary operator \mathbf{U} on a Hilbert space $\mathcal{K} \supset \mathcal{H}$ such that

$$T^k = \rho \mathbf{P} \mathbf{U}^k |_{\mathcal{H}} \quad (k = 1, 2, \dots) \quad \mathbf{P} \text{ projection from } \mathcal{K} \text{ to } \mathcal{H}.$$

Holbrook defined ρ -radius $w_\rho(T)$ in such a way that T admits a unitary ρ -dilation if and only if $w_\rho(T) \leq 1$, hence $w_1(T) = \|T\|_\infty$ and $w_2(T) = w(T)$. It is easy to see that $\rho \mapsto w_\rho(T)$ is a decreasing function of $\rho \geq 1$ and $\lim_{\rho \rightarrow \infty} w_\rho(T)$ coincides with the spectral radius of T while $\rho \mapsto \rho w_\rho(T)$ is an increasing function. When $\dim(\mathcal{H}) \geq 2$, the ρ -radius $w_\rho(T)$ becomes a norm if and only if $1 \leq \rho \leq 2$.

The artificialness for T to admit a unitary ρ -dilation was converted to a requirement inside $B(\mathcal{H})$ by Ando, Durszt, and Okubo-Ando as

$$w_\rho(T) \leq 1 \iff T = \rho f_\rho(T)^{1/2} W A^{1/2} \quad \exists 0 \leq A \leq I, \quad \exists \|W\|_\infty \leq 1, \\ \text{where } f_\rho(t) := \frac{1-t}{1+\rho(\rho-2)t} \quad (0 \leq t \leq 1).$$

In this talk the usefulness of this representation will be shown in proving the following:

(1) For any unital completely positive linear map $\Phi(\cdot)$

$$w_\rho(\Phi(T)) \leq \frac{\max\{\rho, 2\}}{2} w_\rho(T).$$

(2) $w_\rho(T) \leq 1, w_\rho(T^{-1}) \leq 1 \exists \rho \implies T \text{ is unitary.}$

(3) When $\dim(\mathcal{H}) = n < \infty$ and $\rho \geq 2$ the maximum in the class of unitarily invariant norms dominated by the ρ -radius $w_\rho(\cdot)$ is given by

$$\max \left\{ \frac{\|T\|_\infty}{\rho}, \frac{\|T\|_1}{\frac{n}{2}\rho} \right\} \quad \text{if } n \text{ is even} \quad \text{and} \quad \max \left\{ \frac{\|T\|_\infty}{\rho}, \frac{\|T\|_1}{\frac{n-1}{2}\rho + 1} \right\} \quad \text{if } n \text{ is odd.}$$

(4) When $2 \leq \dim(\mathcal{H}) = n < \infty$ and $1 < \rho < 2$,

$$\max \left\{ \frac{\|T\|_\infty}{\rho}, \frac{\|T\|_1}{n} \right\} \leq w_\rho(T) \quad \forall T.$$

But the norm on the left-hand side is not maximum in the class of unitarily invariant norms, dominated by the ρ -radius $w_\rho(\cdot)$.