

Partially normal composition operators via directed trees

Eun Young Lee

Department of Mathematics, Kyungpook National University, Korea
 eee-222@hanmail.net

A pair (V, E) is a *directed graph* if V is a nonempty and E is a subset of $V \times V \setminus \{(v, v) : v \in V\}$. An element of V is called a *node* of \mathcal{G} . Set $\text{Chi}(u) = \{v \in V : (u, v) \in E\}$, $u \in V$. For $u \in V$, the cardinality of $\text{Chi}(u)$ called to be the *degree* of u . Put $\text{Gen}^k(u) = \cup_{v \in \text{Gen}^{k-1}(u)} \text{Chi}(v)$, $u \in V$, where $\text{Gen}^0(u) = \{u\}$. The set $\text{Gen}^k(u)$ is called *generation k* of u . A graph $\mathcal{G} = (V, E, \mu)$ is a *weighted directed graph* if (V, E) be a directed graph and $(V, \mathcal{P}(V), \mu)$ be a σ -finite measure space on V , where $\mathcal{P}(V)$ is the power set of V . For a node $u \in V$, we write m_u for the point mass $\mu(u)$. If, for a given node $u \in V$, there exists a unique node $v \in V$ such that $(v, u) \in E$, then we say that u has a *parent* v and write $\text{par}(u)$ for v . A node v of \mathcal{G} is called a *root* of \mathcal{G} if there is no node u of \mathcal{G} such that (u, v) is an edge of \mathcal{G} . A graph $\mathcal{G} = (V, E, \mu)$ is a *weighted directed tree* if \mathcal{G} is a weighted directed graph such that \mathcal{G} is connected, \mathcal{G} has no circuits, and each node $v \in V \setminus \{\text{root}\}$ has a parent. Given a graph \mathcal{G} and a sequence of graphs \mathcal{G}_n , we say that \mathcal{G} is an *equivalent-limit* of $\{\mathcal{G}_n\}$, and write $e\text{-lim } \mathcal{G}_n = \mathcal{G}$ if there exist graphs H_1, \dots, H_n, \dots such that $\mathcal{G}_i \subseteq H_i$, $i = 1, 2, \dots$, and $\lim_{n \rightarrow \infty} H_n = \mathcal{G}$. Let \mathcal{G} be weighted directed trees and let T be the measurable transformation V corresponded by \mathcal{G} . The directed tree \mathcal{G} is *p-hyponormal* if the composition operator C_T relevant to \mathcal{G} is *p-hyponormal*. We call a (sub)directed tree consisting of one node not a root, its children and their children (including the point mass data) a *system* \mathcal{S} . We say that, for any node n in a directed graph not a root, the subgraph system in which n falls in generation 1 is a *neighborhood* of n and may write $\mathcal{S}(n)$. Let $D_{\mathcal{G}}$ be the maximum of the degrees and $M_{\mathcal{G}} := \sup_{u \in V} \left\{ \sum_{v \in \text{Chi}(u)} m_v / m_u \right\}$,

$$\sum_{u \in \text{Chi}(\text{root})} \left(\frac{m_u}{\mu(\text{Chi}(u))} \right)^p \cdot m_u \leq \left(\frac{m_{\text{root}}}{\mu(\{\text{root}\} \cup \text{Chi}(\text{root}))} \right)^p \cdot \mu(\text{Chi}(\text{root})). \quad (\dagger)$$

We introduce one of our results as following.

Theorem. *Let $M \in \mathbb{R}_+$, $D \in \mathbb{N}$, $D \geq 2$, $p \in \mathbb{R}_+$ and $\epsilon > 0$ be arbitrary. Then there exists a *p-hyponormal directed tree* $\mathcal{E} = \mathcal{E}(M, D, \epsilon, p)$ with $D_{\mathcal{E}} = D$ and $M_{\mathcal{E}} < M + \epsilon$, and such that for all trees \mathcal{G} with $D_{\mathcal{G}} \leq D$ and $M_{\mathcal{G}} \leq M$, the following assertions hold.*

- (i) *If \mathcal{G} has no root, \mathcal{G} is *p-hyponormal* if and only if for every node n of \mathcal{G} , $\mathcal{S}(n) = e\text{-lim}_{j \rightarrow \infty} \mathcal{S}_j$ with \mathcal{S}_j a system in \mathcal{E} for all j .*
- (ii) *If \mathcal{G} has a root, then the test (\dagger) for *p-hyponormal* of the root r holds and \mathcal{G} has the property in (i).*

In particular, if $D = 1$, then we may obtain the analogous result with $D_{\mathcal{E}} = 2$. Also, \mathcal{E} has the additional property that $m_v \in \mathbb{Q}_+$ for all $v \in \mathcal{E}$.