

Hankel Type Operators And Invariant Subspaces

Takahiko Nakazi

Hokusei Gakuen University, Sapporo 004-8631, Japan
 z00547@hokusei.ac.jp

Let \mathcal{H} be a Hilbert space and M a closed subspace of \mathcal{H} . P^M denotes the orthogonal projection onto M . When $M_1 \subseteq M_2$ are closed subspaces of \mathcal{H} , the following operator is called a Hankel type operator :

$$G_{M_1, M_2} = (I - P^{M_2})GP^{M_1}$$

where G is a bounded linear operator on \mathcal{H} . When $M_1 = M_2$, we write $G_{M_1, M_2} = G_{M_1}$ simply. In this lecture, we are interested in when G_{M_1, M_2} is of finite rank. Since $G_M = 0$ means $GM \subset M$, finite rank G_M means that M is closed to an invariant subspace of G .

Let $\Gamma = \Gamma_z = \{z \in \mathbb{C} : |z| = 1\}$ and $\Gamma^2 = \Gamma \times \Gamma = \Gamma_z \times \Gamma_w$. $L^p = L^p(\Gamma^2)$ and $L^p(\Gamma)$ are Lebesgue spaces, $H^p = H^p(\Gamma^2)$ and $H^p(\Gamma)$ denotes usual Hardy spaces. For a function ϕ in L^∞ , L_ϕ is a multiplication operator on L^2 and T_ϕ is a Toeplitz operator on H^2 . A Hankel operator H_ϕ is just $G_{H^2, (H^2)^\perp}$ for $G = L_\phi$.

In one variable case, Kronecker [5] determined the symbol ϕ when H_ϕ is of finite rank and Beurling [2] described M when $G_M = 0$ for $G = T_z$. In two variable case, we [3] also can describe the symbol ϕ when H_ϕ is of finite rank in very different form. However we still can not describe M completely when $G_M = 0$ for $G = T_z$ and $G = T_w$. Many mathematicians believe that it is not possible to describe M as in one variable case (cf. [1], [4], [6], [7], [8]).

This lecture is an expository one. However a few new results are given.

Let M be a closed subspace in H^2 and $N = H^2 \ominus M$. Suppose $G_{M, N} = 0$ for $G = T_Q$ and Q is inner in H^2 . In a half of this lecture, we give and use the following decomposition : If $G = T_Q^*$ then

$$M = \left(\sum_{j=0}^{\infty} \oplus T_{Q^j} K \right) \oplus M_\infty \text{ and } N = \left[\bigcup_{j=1}^{\infty} T_{Q^j}^* K \right] \oplus N_\infty$$

where $K = [G_M^* H^2] \subset M \ominus QM$, $T_Q M_\infty \subset M_\infty$, $T_Q^* M_\infty \subset M_\infty$ and $T_Q N_\infty \subset M_\infty$. If $G_M = 0$ for $G = T_Q^*$ then $M = M_\infty$ or equivalently $N = N_\infty$.

In one variable case, when $zM \subset M$, $G_M = 0$ for $G = T_Q^*$ if and only if $M = H^2(\Gamma)$. In two variable case, when $zM \subset M$ and $wM \subset M$, $G_M = 0$ for $G = T_Q^*$ if and only if

$$M = \sum_{j=0}^{\infty} \oplus Q^j S \text{ and } S \subset H^2(\Gamma^2) \ominus QH^2(\Gamma^2).$$

If $G_M = 0$, we can describe M completely in case $Q(z, w) = w$ or $Q(z, w) = zw$. Moreover we consider M when G_M is of finite rank.

References

- [1] O. P. Agrawal, D. N. Clark and R. G. Douglas, Invariant subspaces in the polydisk, *Pacific J. Math.* 121(1986), 1-11.
- [2] A. Beurling, On two problems concerning linear transformations in Hilbert space, *Acta Math.* 81(1949), 239-255.
- [3] R. Curto, P. Muhly and T. Nakazi, Uniform algebras, Hankel operators and invariant subspaces. Advances in invariant subspaces and other results of operator theory (Timisoara and Hercelean, 1984), 109-119, *Oper. Theory Adv. Appl.*, 17, Birkhäuser, Basel, 1986.
- [4] K. Izuchi, T. Nakazi and M. Seto, Backward shift invariant subspaces in the bidisc. II. *J. Operator Theory* 51(2004), 361-376.
- [5] L. Kronecker, Zur Theorie der Elimination einer Variablen aus zwei algebraischen Gleichungen, *Monatsber. Königl. Preuss. Akad. Wiss. Berlin*, 1881, 535-600.
- [6] V. Mandrekar, The validity of Beurling theorems in the polydiscs. *Proc. Amer. Math. Soc.* 103(1988), 145-148.
- [7] T. Nakazi, Certain invariant subspaces of H^2 and L^2 on a bidisc. *Canad. J. Math.* 40(1988), 1272-1280.
- [8] T. Nakazi, Invariant subspaces in the bidisc and wandering subspaces, *J. Aust. Math. Soc.* 84(2008), 367-374.