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Foreword

Toeplitz operators arise naturally in several fields of mathematics and in a variety
of problems in physics. Also the theory of hyponormal and subnormal operators
is an extensive and highly developed area, which has made important contributions
to a number of problems in functional analysis, operator theory, and mathematical
physics. Thus, it becomes of central significance to describe in detail hyponormality
and subnormality for Toeplitz operators. In this sense, the following question is
challenging and interesting:

Which Toeplitz operators are hyponormal or subnormal ?

While the precise relation between normality and subnormality has been extensively
studied, as have been the classes of subnormal and hyponormal operators, the rela-
tive position of the class of subnormals inside the classes of hyponormals is still far
from being well understood. We call it a “bridge theory” for operators to explore a
bridge between hyponormality and subnormality for bounded linear operators act-
ing on an infinite dimensional complex Hilbert (or Banach) space. In this lecture I
will try to provide a bridge theory for block Toeplitz operators. This is originated
from Halmos’s Problem 5 (in 1970):

Is every subnormal Toeplitz operator either normal or analytic ?

Even though Halmos’s Problem 5 was, in 1984, answered in the negative by C.
Cowen and J. Long, until now researchers have been unable to characterize subnor-
mal Toeplitz operators in terms of their symbols. In this lecture I attempt to set forth
some of the recent developments that had taken place in the study of the subnormal-
ity of block Toeplitz operators acting on the vector-valued Hardy space H2

Cn of the
unit circle.
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Chapter 1
Introduction

Let H and K be complex Hilbert spaces, let B(H ,K ) be the set of bounded
linear operators from H to K , and write B(H ) := B(H ,H ). For an operator
T ∈B(H ), we write kerT and ranT for the kernel and the range of T , respectively.
For a set M , clM and M⊥ denote the closure and the orthogonal complement of
M , respectively. For A,B ∈ B(H ), we let [A,B] := AB−BA. For an operator
T ∈ B(H ), T ∗ denotes the adjoint of T . An operator T ∈ B(H ) is said to be
normal if T ∗T = T T ∗, hyponormal if its self-commutator [T ∗,T ] is positive semi-
definite, and quasinormal if T commutes with T ∗T . An operator T ∈B(H ) is said
to be pure if it has no nonzero reducing subspace on which it is normal. An operator
T ∈ B(H ) is said to be subnormal if there exists a Hilbert space K containing
H and a normal operator N on K such that NH ⊆ H and T = N|H . In this
case, N is called a normal extension of T . For the general theory of subnormal and
hyponormal operators, we refer to [Con] and [MP]. In general, it is quite difficult to
examine whether such a normal extension exists for an operator. Of course, there are
a couple of constructive methods for determining subnormality; one of them is the
Bram-Halmos criterion of subnormality ([Br],[Con]), which states that an operator
T ∈ B(H ) is subnormal if and only if ∑i, j(T ix j,T jxi)≥ 0 for all finite collections
x0,x1, · · · ,xk ∈ H . It is easy to see that this is equivalent to the following positivity
test: 

[T ∗,T ] [T ∗2,T ] · · · [T ∗k,T ]
[T ∗,T 2] [T ∗2,T 2] · · · [T ∗k,T 2]

...
...

. . .
...

[T ∗,T k] [T ∗2,T k] · · · [T ∗k,T k]

≥ 0 (all k ≥ 1). (1.1)

In view of (1.1), between hyponormality and subnormality there exists a whole slew
of increasingly stricter conditions, each expressible in terms of the joint hyponor-
mality of the tuples (I,T,T 2, · · · ,T k). Given an n-tuple T= (T1, · · · ,Tn) of operators
on H , we let [T∗,T] ∈B(H ⊕·· ·⊕H ) denote the self-commutator of T, defined
by
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2 1 Introduction

[T∗,T] :=


[T ∗

1 ,T1] [T ∗
2 ,T1] · · · [T ∗

n ,T1]
[T ∗

1 ,T2] [T ∗
2 ,T2] · · · [T ∗

n ,T2]
...

...
. . .

...
[T ∗

1 ,Tn] [T ∗
2 ,Tn] · · · [T ∗

n ,Tn]

 .

This definition of self-commutator for n-tuples of operators on a Hilbert space was
introduced by A. Athavale [At]. By analogy with the case n = 1, we shall say ([At],
[CMX]) that T is jointly hyponormal (or simply, hyponormal) if [T∗,T] is a positive
operator on H ⊕·· ·⊕H . T is said to be normal if T is commuting and every Ti
is a normal operator, and subnormal if T is the restriction of a normal n-tuple to a
common invariant subspace. Clearly, the normality, subnormality or hyponormality
of an n-tuple requires as a necessary condition that every coordinate in the tuple
be normal, subnormal or hyponormal, respectively. Normality and subnormality
require that the coordinates commute, but hyponormality does not. When the notion
of “joint hyponormality” was first formally introduced by A. Athavale [At] in 1988,
he conceived joint hyponormality as a notion at least as strong as requiring that
the linear span of the operator coordinates consist of hyponormal operators. Recall
([Ath],[CMX],[CoS]) that T ∈ L (H ) is said to be weakly k-hyponormal if

LS(T,T 2, · · · ,T k) :=

{
k

∑
j=1

α jT j : α = (α1, · · · ,αk) ∈ Ck

}

consists entirely of hyponormal operators. If k = 2 then T is called quadratically
hyponormal, and if k = 3 then T is said to be cubically hyponormal. Similarly,
T ∈ L (H ) is said to be polynomially hyponormal if p(T ) is hyponormal for ev-
ery polynomial p ∈ C[z]. It is known that k-hyponormal ⇒ weakly k-hyponormal,
but the converse is not true in general. The classes of (weakly) k-hyponormal op-
erators have been studied in an attempt to bridge the gap between subnormal-
ity and hyponormality (cf. [Cu1], [Cu2], [CuF], [CuL1], [CuL2], [CMX], [DPY],
[McCP]). Joint hyponormality and weak joint hyponormality have been studied by
A. Athavale [At], J. Conway and W. Szymanski [CS], R. Curto [Cu], R. Curto and
W.Y. Lee [CuL1], R. Curto, P. Muhly, and J. Xia [CMX], R. Douglas, V. Paulsen and
K. Yan [DPY], R. Douglas and K. Yan [DY], D. Farenick and R. McEachin [FM],
C. Gu [Gu2], S. McCullough and V. Paulsen [McCP1],[McCP2], D. Xia [Xi], and
others. Joint hyponormality originated from questions about commuting normal
extensions of commuting operators, and it has also been considered with an aim at
understanding the gap between hyponormality and subnormality for single opera-
tors. Since a (2×2)-operator matrix

(
A B
B∗ C

)
(with A invertible) is positive if and

only if A ≥ o, C ≥ 0, and B∗A−1B ≤C, we can rephrase (1.1) as follows:
I T ∗ · · · T ∗k

T T ∗T · · · T ∗kT
...

...
. . .

...
T k T ∗T k · · · T ∗kT k

≥ 0 (all k ≥ 1). (1.2)



1 Introduction 3

Thus the Bram-Halmos criterion can be stated as follows: T is subnormal if and
only if the positivity condition (1.3) holds for all k ≥ 1. But it may not still be
possible to test the positivity condition (1.3) for every positive integer k, in general.
Hence the following question is interesting and challenging:

Which operators are subnormal ?

The class of Toeplitz operators is a nice test ground for this question. On the other
hand, condition (1.2) provides a measure of the gap between hyponormality and
subnormality. In fact the positivity condition (1.2) for k = 1 is equivalent to the
hyponormality of T , while subnormality requires the validity of (1.2) for all k. For
k ≥ 1, an operator T is said to be k-hyponormal if T satisfies the positivity con-
dition (1.2) for a fixed k. Thus the Bram-Halmos criterion can be stated as: T is
subnormal if and only if T is k-hyponormal for all k ≥ 1. The k-hyponormality has
been considered by many authors with an aim at understanding a bridge between
hyponormality and subnormality. For instance, the Bram-Halmos criterion on sub-
normality indicates that 2-hyponormality is generally far from subnormality. There
are special classes of operators, however, for which these two notions are equiva-
lent. A trivial example is given by the class of operators whose square is compact.
Also it was shown in ([CuL1]) that if W√

x,(
√

a,
√

b,
√

c)∧ is the weighted shift whose
weight sequence consists of the initial weight x followed by the weight sequence
of the recursively generated subnormal weighted shift W(

√
a,
√

b,
√

c)∧ with an initial

segment of positive weights
√

a,
√

b,
√

c (cf. [CuF1], [CuF2], [CuF3]), then Wα is
subnormal if and only if the positivity condition (1.1) is satisfied with k = 2.

We review a few essential facts about (block) Toeplitz operators, and for that we
will use [BS], [Do1], [Do2], [GGK], [MAR], [Ni], and [Pe]. Let T = R/2πZ be the
unit circle. Recall that the Hilbert space L2 ≡ L2(T) has a canonical orthonormal
basis given by the trigonometric functions en(z) = zn, for all n ∈ Z, and that the
Hardy space H2 ≡H2(T) is the closed linear span of {en : n= 0,1, · · ·}. An element
f ∈ L2 is said to be analytic if f ∈ H2. Let H∞ ≡ H∞(T) := L∞ ∩H2, i.e., H∞ is the
set of bounded analytic functions on the open unit disk D.

Given a bounded measurable function φ ∈ L∞, the Toeplitz operator Tφ and the
Hankel operator Hφ with symbol φ on H2 are defined by

Tφ g := P(φg) and Hφ g := JP⊥(φg) (g ∈ H2), (1.3)

where P and P⊥ denote the orthogonal projections that map from L2 onto H2 and
(H2)⊥, respectively, and J denotes the unitary operator from L2 onto L2 defined by
J( f )(z) = z f (z) for f ∈ L2. To study hyponormality (resp. normality and subnor-
mality) of the Toeplitz operator Tφ with symbol φ we may, without loss of gen-
erality, assume that φ(0) = 0; this is because hyponormality (resp. normality and
subnormality) is invariant under translations by scalars. Normal Toeplitz operators
were characterized by a property of their symbols in the early 1960’s by A. Brown
and P.R. Halmos [BH] and the exact nature of the relationship between the symbol
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φ ∈ L∞ and the hyponormality of Tφ was understood via Cowen’s Theorem [Co4]
in 1988.

Theorem 1.1. (Cowen’s Theorem) ([Co4], [NT]) For each φ ∈ L∞, let

E (φ)≡ {k ∈ H∞ : ||k||∞ ≤ 1 and φ − kφ ∈ H∞}.

Then a Toeplitz operator Tφ is hyponormal if and only if E (φ) is nonempty.

This elegant and useful theorem has been used in the works [CuL1], [CuL2],
[FL1], [FL2], [Gu1], [Gu2], [GS], [HKL1], [HKL2], [HL1], [HL2], [HL3], [Le],
[NT], [Zhu], and etc., which have been devoted to the study of hyponormality for
Toeplitz operators on H2. However it may not even be possible to find tractable nec-
essary and sufficient condition for the hyponormality of Tφ in terms of the Fourier
coefficients of the symbol φ unless certain assumptions are made about φ . Tractable
criteria for the cases of trigonometric polynomial symbols and rational symbols and
bounded type symbols were derived from a Carathéodory-Schur interpolation prob-
lem ([Zhu]), a tangential Hermite-Fejér interpolation problem ([Gu1]) or the classi-
cal Hermite-Fejér interpolation problem ([HL3]), respectively.

We introduce the notion of block Toeplitz operators. Let Mn×r denote the set
of all n× r complex matrices and write Mn := Mn×n. For X a Hilbert space, let
L2

X ≡ L2
X (T) be the Hilbert space of X -valued norm square-integrable measur-

able functions on T and let H2
X ≡ H2

X (T) be the corresponding Hardy space. We
observe that L2

Cn = L2⊗Cn and H2
Cn = H2⊗Cn. If Φ is a matrix-valued function in

L∞
Mn

≡ L∞
Mn
(T) (= L∞ ⊗Mn) then TΦ : H2

Cn → H2
Cn denotes a block Toeplitz operator

with symbol Φ defined by

TΦ f := Pn(Φ f ) for f ∈ H2
Cn ,

where Pn is the orthogonal projection of L2
Cn onto H2

Cn . A block Hankel operator
with symbol Φ ∈ L∞

Mn
is the operator HΦ : H2

Cn → H2
Cn defined by

HΦ f := JnP⊥
n (Φ f ) for f ∈ H2

Cn ,

where Jn denotes the unitary operator from L2
Cn onto L2

Cn given by Jn( f )(z) :=
zIn f (z) for f ∈ L2

Cn , with In the n×n identity matrix. Note that H2
Cn can be viewed

either as
H2

Cn = Cn ⊕Cn ⊕Cn ⊕·· · ,

the infinite direct sum of Cn, or as,

H2
Cn = H2 ⊕·· ·⊕H2,

where the number of copies of H2 is n. If we write Φ =∑∞
n=−∞ Φnzn ∈ L∞

Mn
(z= eiθ ),

then with respect to the decomposition H2
Cn = Cn ⊕Cn ⊕Cn ⊕·· ·, we can write
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TΦ =


Φ0 Φ−1 Φ−2 · · ·

Φ1 Φ0 Φ−1
. . .

Φ2 Φ1 Φ0
. . .

...
. . . . . . . . .

 and HΦ =


Φ−1 Φ−2 Φ−3 · · ·

Φ−2 Φ−3 Φ−4
. . .

Φ−3 Φ−4
. . .

...
. . . . . . . . .

 .

Also if we write

Φ =

φ11 · · · φ1n
...

φn1 · · · φnn

 ∈ L∞
Mn

,

then with respect to the decomposition H2
Cn = H2 ⊕·· ·⊕H2, we can write

TΦ =

Tφ11 · · · Tφ1n
...

Tφn1 · · · Tφnn

 and HΦ =

Hφ11 · · · Hφ1n
...

Hφn1 · · · Hφnn

 .

For Φ ∈ L∞
Mn×m

, write
Φ̃(z) := Φ∗(z).

A matrix-valued function Θ ∈ H∞
Mn×m

(= H∞ ⊗Mn×m) is called inner if Θ ∗Θ = Im
almost everywhere on T. The following basic relations can be easily derived:

T ∗
Φ = TΦ∗ , H∗

Φ = HΦ̃ (Φ ∈ L∞
Mn
); (1.4)

TΦΨ −TΦ TΨ = H∗
Φ∗HΨ (Φ ,Ψ ∈ L∞

Mn
); (1.5)

HΦ TΨ = HΦΨ , HΨΦ = T ∗
Ψ̃ HΦ (Φ ∈ L∞

Mn
,Ψ ∈ H∞

Mn
); (1.6)

H∗
Φ HΦ −H∗

ΘΦ HΘΦ = H∗
Φ HΘ∗H∗

Θ∗HΦ (Θ inner, Φ ∈ L∞
Mn
). (1.7)

A function φ ∈ L∞ is said to be of bounded type (or in the Nevanlinna class) if
there are functions ψ1,ψ2 ∈ H∞(D) such that φ(z) = ψ1(z)/ψ2(z) for almost all z in
T. Evidently, rational functions are of bounded type. For a matrix-valued function
Φ ≡ [φi j] ∈ L∞

Mn
, we say that Φ is of bounded type if each entry φi j is of bounded

type, and we say that Φ is rational if each entry φi j is a rational function. A matrix-
valued trigonometric polynomial Φ ∈ L∞

Mn
is of the form

Φ(z) =
N

∑
j=−m

A jz j (A j ∈ Mn),

where AN and A−m are called the outer coefficients of Φ . We recall that for matrix-
valued functions A := ∑∞

j=−∞ A jz j ∈ L2
Mn

and B := ∑∞
j=−∞ B jz j ∈ L2

Mn
, we define the

inner product of A and B by

(A,B) :=
∫

T
tr(B∗A)dµ =

∞

∑
j=−∞

tr(B∗
jA j) ,
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where tr(·) denotes the trace of a matrix and define ||A||2 :=(A,A)
1
2 . We also define,

for A ∈ L∞
Mn

,

||A||∞ := ess supt∈T||A(t)|| (|| · || denotes the spectral norm of a matrix).

On the other hand, recently C. Gu, J. Hendricks and D. Rutherford [GHR] con-
sidered the hyponormality of block Toeplitz operators and characterized it in terms
of their symbols. In particular they showed that if TΦ is a hyponormal block Toeplitz
operator on H2

Cn , then its symbol Φ is normal, i.e., Φ∗Φ = ΦΦ∗. Their character-
ization for hyponormality of block Toeplitz operators resembles Cowen’s Theorem
except for an additional condition – the normality condition of the symbol.

Theorem 1.2. (Hyponormality of Block Toeplitz Operators) ([GHR]) For each
Φ ∈ L∞

Mn
, let

E (Φ) :=
{

K ∈ H∞
Mn

: ||K||∞ ≤ 1 and Φ −KΦ∗ ∈ H∞
Mn

}
.

Then TΦ is hyponormal if and only if Φ is normal and E (Φ) is nonempty.

The hyponormality of the Toeplitz operator TΦ with arbitrary matrix-valued sym-
bol Φ , though solved in principle by Cowen’s Theorem [Co4] and the criterion due
to Gu, Hendricks and Rutherford [GHR], is in practice very complicated.

This lecture concerns the gap between hyponormality and subnormality of block
Toeplitz operators with rational symbols. In [Hal3, Problem 209], it was shown that
there exists a hyponormal operator whose square is not hyponormal, e.g., U∗+2U
(U is the unilateral shift on ℓ2), which is a trigonometric Toeplitz operator, i.e.,
U∗+2U ≡ Tz̄+2z. This example addresses the gap between hyponormality and sub-
normality for Toeplitz operators. This matter is closely related to Halmos’s Problem
5 [Hal1], [Hal2]: Is every subnormal Toeplitz operator either normal or analytic ?
The most interesting partial answer to Halmos’s Problem 5 was given by M. Abra-
hamse [Ab]. M. Abrahamse gave a general sufficient condition for the answer to
Halmos’s Problem 5 to be affirmative. Abrahamse’s Theorem can be then stated as
follows: Let φ = g+ f ∈ L∞ ( f ,g ∈ H2) be such that φ or φ is of bounded type.
If Tφ is subnormal then Tφ is normal or analytic. In this lecture, we consider the
question: Which subnormal block Toeplitz operators are either normal or analytic ?



Chapter 2
Basic Theory and Preliminaries

2.1 Hyponormality and subormality of scalar Toeplitz operators

An elegant and useful theorem of C. Cowen [Co3] characterizes the hyponormality
of a Toeplitz operator Tφ on the Hardy space H2(T) of the unit circle T ⊂ C by
properties of the symbol φ ∈ L∞(T). This result makes it possible to answer an
algebraic question coming from operator theory – namely, is Tφ hyponormal ? - by
studying the function φ itself. Normal Toeplitz operators were characterized by a
property of their symbol in the early 1960’s by A. Brown and P.R. Halmos [BH],
and so it is somewhat of a surprise that 25 years passed before the exact nature of
the relationship between the symbol φ ∈ L∞ and the positivity of the selfcommutator
[T ∗

φ ,Tφ ] was understood (via Cowen’s theorem). As Cowen notes in his survey paper
[Co2], the intensive study of subnormal Toeplitz operators in the 1970’s and early
80’s is one explanation for the relatively late appearance of the sequel to the Brown-
Halmos work. The characterization of hyponormality via Cowen’s theorem requires
one to solve a certain functional equation in the unit ball of H∞. However the case
of arbitrary trigonometric polynomials φ , though solved in principle by Cowen’s
theorem, is in practice very complicated. Indeed it may not even be possible to find
tractable necessary and sufficient conditions for the hyponormality of Tφ in terms
of the Fourier coefficients of φ unless certain assumptions are made about φ . In this
chapter we present some recent development in this research.

2.1.1 Cowen’s Theorem

In this section we present Cowen’s theorem. Cowen’s method is to recast the
operator-theoretic problem of hyponormality of Toeplitz operators into the prob-
lem of finding a solution of a certain functional equation involving its symbol. This
approach has been put to use in the works [CLL, CuL1, CuL2, CuL3, FL1, FL2,
Gu1, HKL1, HKL2, HL3, NT, Zhu] to study Toeplitz operators.

7
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We begin with:

Theorem 2.1 (Brown-Halmos). [BH] Normal Toeplitz operators are translations
and rotations of hermitian Toeplitz operators i.e.,

Tφ normal ⇐⇒ ∃ α,β ∈ C, a real valued ψ ∈ L∞ such that Tφ = αTψ +β1.

The following are basic properties of Toeplitz and Hankel operators.

1. H∗
ψ = Hψ∗ ;

2. HψU =U∗Hψ (U is the unilateral shift);
3. KerHψ = {0} or θH2 for some inner function θ (by Beurling’s theorem);
4. Tφψ −Tφ Tψ = H∗

φ Hψ ;
5. Hφ Th = Hφh = T ∗

h∗Hφ (h ∈ H∞).
6. If U is the unilateral shift on H2 then comm(U) = {Tφ : φ ∈ H∞}.

D. Sarason [Sa] gave a generalization of the above property (6).

Theorem 2.2 (Sarason’s Interpolation Theorem). [Sa] Let

(i) U =the unilateral shift on H2;
(ii) K := H2 ⊖ψH2 (ψ is an inner function);
(iii) S := PU |K , where P is the projection of H2 onto K .

If T ∈ comm(S) then there exists a function φ ∈ H∞ such that T = Tφ |K with
||φ ||∞ = ||T ||.

We then have:

Theorem 2.3 (Cowen’s Theorem). [Co4] If φ ∈ L∞ is such that φ = g+ f ( f ,g ∈
H2), then

Tφ is hyponormal ⇐⇒ g = c+Th f

for some constant c and some h ∈ H∞(D) with ||h||∞ ≤ 1.

Sketch of proof. Let φ = f +g ( f ,g ∈ H2). For every polynomial p ∈ H2, ⟨(T ∗
φ Tφ −

Tφ T ∗
φ )p, p⟩= ||H f p||2 −||Hg p||2. Since polynomials are dense in H2,

Tφ hyponormal ⇐⇒ ||Hgu|| ≤ ||H f u||, ∀u ∈ H2 (2.1)

Write K := cl ran(H f ) and let S be the compression of the unilateral shift U to
K . Since K is invariant for U∗, we have S∗ =U∗|K . Suppose Tφ is hyponormal.
Define A on ran(H f ) by

A(H f u) = Hgu. (2.2)

Then A is well defined and by (2.1), ||A|| ≤ 1, so A has an extension to K , which
will also be denoted A. Then we can see that SA∗ = A∗S. By Sarason’s interpolation
theorem,
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∃ k ∈ H∞(D) with ||k||∞ = ||A∗||= ||A|| such that A∗ = the compression of Tk to K .

Since T ∗
k H f = H f Tk∗ , we have that K is invariant for T ∗

k = Tk, which means that A
is the compression of Tk to K and by (2.2),

Hg = TkH f . (2.3)

Conversely, if (2.3) holds for some k ∈ H∞(D) with ||k||∞ ≤ 1, then (2.1) holds for
all u, and hence Tφ is hyponormal. Consequently, Tφ is hyponormal if and only if
Hg = TkH f and also Hg = TkH f if and only if g= c+Th f for h= k∗, which completes
the proof. ⊓⊔

Theorem 2.4 (Nakazi-Takahashi Variation of Cowen’s Theorem). [NT] For φ ∈
L∞, put

E (φ) := {k ∈ H∞ : ||k||∞ ≤ 1 and φ − kφ ∈ H∞}.

Then Tφ is hyponormal if and only if E (φ) ̸= /0.

Proof. Let φ = f +g ∈ L∞ ( f ,g ∈ H2). By Cowen’s theorem, Tφ is hyponormal if
and only if g = c+ Tk f for some constant c and some k ∈ H∞ with ||k||∞ ≤ 1. If
φ = kφ + h (h ∈ H∞) then φ − kφ = g− k f + f − kg ∈ H∞. Thus g− k f ∈ H2, so
that P(g−k f ) = c (c = a constant), and hence g = c+Tk f for some constant c. Thus
Tφ is hyponormal. The argument is reversible.

2.1.2 Hyponormalityof trigonometric Toeplitz operators

In this section we consider the hyponormality of trigonometric Toeplitz operators,
i.e., Toeplitz operators with trigonometric polynomial symbols. To do this we first
review the dilation theory.

If B =

(
A ∗
∗ ∗

)
, then B is called a dilation of A and A is called a compression of

B. It was well-known that every contraction has a unitary dilation: indeed if ||A|| ≤ 1,
then

B ≡
(

A (I −AA∗)
1
2

(I −A∗A)
1
2 −A∗

)
is unitary. An operator B is called a power (or strong) dilation of A if Bn is a dilation
of An for all n = 1,2,3, · · ·. So if B is a (power) dilation of A then B should be of the

form B =

(
A 0
∗ ∗

)
. Sometimes, B is called a lifting of A and A is said to be lifted

to B. It was also well-known that every contraction has a isometric (power) dilation.
In fact, the minimal isometric dilation of a contraction A is given by
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B ≡


A 0 0 0 · · ·

(I −A∗A)
1
2 0 0 0 · · ·

0 I 0 0 · · ·
0 0 I 0 · · ·
...

...
...

. . .

 .

We then have:

Theorem 2.5 (Commutant Lifting Theorem). Let A be a contraction and T be a
minimal isometric dilation of A. If BA = AB then there exists a dilation S of B such
that

S =

(
B 0
∗ ∗

)
, ST = T S, and ||S||= ||B||.

Proof. See [GGK, p.658].

We next consider the following interpolation problem, called the Carathéodory-
Schur Interpolation Problem (CSIP): Given c0, · · · ,cN−1 in C, find an analytic func-
tion φ on D such that

(i) φ̂( j) = c j ( j = 0, · · · ,N −1);
(ii) ||φ||∞ ≤ 1.

The following is a solution of CSIP.

Theorem 2.6. ([FF], [Ga], [GGK])

CSIP is solvable ⇐⇒ C ≡


c0

c1 c0 O
c2 c1 c0
...

...
. . .

. . .
cN−1 cN−2 · · · c1 c0

 is a contraction.

Moreover, φ is a solution if and only if Tφ is a contractive lifting of C which com-
mutes with the unilateral shift.

Proof. (⇒) Assume that we have a solution φ . Then the condition (ii) implies that
Tφ is a contraction because ||Tφ ||= ||φ||∞ ≤ 1. So the compression of Tφ is also con-
tractive. In particular, C must have norm less than or equal to 1 for all n. Therefore
if CSIP is solvable, then ||C|| ≤ 1.

(⇐) Let ||C|| ≤ 1 and let

A :=


0
1 0

1 0
. . . . . .

1 0

 : CN → CN .
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Then A and C are contractions and AC = CA. Observe that the unilateral shift U
is the minimal isometric dilation of A. By the Commutant Lifting Theorem, C can
be lifted to a contraction S such that SU = US. But then S is an analytic Toeplitz
operator, i.e., S = Tφ with φ ∈ H∞. Since S is a lifting of C we must have φ̂( j) =
c j ( j = 0,1, · · · ,N −1). Since S is a contraction, it follows that ||φ||∞ = ||Tφ || ≤ 1.
⊓⊔

Now suppose φ is a trigonometric polynomial of the form

φ(z) =
N

∑
n=−N

anzn (aN ̸= 0).

If a function k ∈ H∞ satisfies φ − kφ ∈ H∞ then k necessarily satisfies

k
N

∑
n=1

anz−n −
N

∑
n=1

a−nz−n ∈ H2. (2.4)

From (2.4) one compute the Fourier coefficients k̂(0), · · · , k̂(N − 1) to be k̂(n) =
cn (n = 0,1, · · · ,N − 1), where c0,c1, · · · ,cN−1 are determined uniquely from the
coefficients of φ by the following relation

c0
c1
...
...

cN−1

=


a1 a2 a3 · · · aN
a2 a3 · · · ·
a3 · · · · · ·
... · · · O

aN


−1

a−1
a−2

...

...
a−N

 . (2.5)

Thus if k(z) = ∑∞
j=0 c jz j is a function in H∞ then φ − kφ ∈ H∞ if and only if

c0,c1, · · · ,cN−1 are given by (2.5). Thus by Cowen’s theorem, if c0,c1, · · · ,cN−1 are
given by (2.5) then the hyponormality of Tφ is equivalent to the existence of a func-
tion k ∈ H∞ such that k̂( j) = c j ( j = 0, · · · ,N −1) and ||k||∞ ≤ 1, which is precisely
the formulation of CSIP. Therefore we have:

Theorem 2.7. ([Zhu], [CCL]) If φ(z)=∑N
n=−N anzn, where aN ̸= 0 and if c0,c1, · · · ,cN−1

are given by (2.5) then

Tφ is hyponormal ⇐⇒ C ≡


c0

c1 c0 O
c2 c1 c0
...

...
. . .

. . .
cN−1 cN−2 · · · c1 c0

 is a contraction.
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2.1.3 Subnormality of scalar Toeplitz operators

If φ ∈ L∞, we write

φ+ ≡ Pφ ∈ H2 and φ− ≡ P⊥φ ∈ zH2.

Let BMO denote the set of functions of bounded mean oscillation in L1. Then L∞ ⊆
BMO ⊆ L2. It is well-known that if f ∈ L2, then H f is bounded on H2 whenever
P⊥ f ∈ BMO (cf. [Pe]). If φ ∈ L∞, then φ−,φ+ ∈ BMO, so that Hφ− and Hφ+ are
well understood.

Throughout this section we assume that both φ and φ are of bounded type. We
recall [Ab, Lemma 3] that if φ ∈ L∞, then

φ is of bounded type ⇐⇒ kerHφ ̸= {0} . (2.6)

From the Beurling’s Theorem, kerHφ− = θ0H2 and kerHφ+ = θ+H2 for some in-
ner functions θ0,θ+. We thus have b := φ−θ0 ∈ H2, and hence we can write
φ− = θ0b and similarly φ+ = θ+a for some a ∈ H2. In particular, if Tφ is hy-
ponormal then since [T ∗

φ ,Tφ ] =H∗
φ Hφ −H∗

φ Hφ =H∗
φ+

Hφ+−H∗
φ−

Hφ− , it follows that
||Hφ+ f || ≥ ||Hφ− f || for all f ∈ H2, and hence θ+H2 = kerHφ+ ⊆ kerHφ− = θ0H2,
which implies that θ0 divides θ+, i.e., θ+ = θ0θ1 for some inner function θ1. We
write, for an inner function θ ,

H (θ) := H2 ⊖θ H2.

Note that if f = θa ∈ L2, then f ∈ H2 if and only if a ∈ H(zθ); in particular, if
f (0) = 0 then a ∈ H(θ). Thus, if φ = φ−+φ+ ∈ L∞ is such that φ and φ are of
bounded type such that φ+(0) = 0 and Tφ is hyponormal, then we can write

φ+ = θ0θ1ā and φ− = θ0b̄,

where a∈H (θ0θ1) and b∈H (θ0). By Kronecker’s Lemma [Ni, p. 183], if f ∈H∞

then f is a rational function if and only if rankH f < ∞, which implies that

f is rational ⇐⇒ f = θb with a finite Blaschke product θ . (2.7)

Also, from the scalar-valued case of (1.6), we can see that if k ∈ E (φ) then

[T ∗
φ ,Tφ ] = H∗

φ Hφ −H∗
φ Hφ = H∗

φ Hφ −H∗
k φ Hk φ = H∗

φ(1− T̃kT ∗
k̃
)Hφ . (2.8)

The present section concerns the question: Which Toeplitz operators are sub-
normal ? Recall that a Toeplitz operator Tφ is called analytic if φ is in H∞, that
is, φ is a bounded analytic function on D. These are easily seen to be subnormal:
Tφ h = P(φh) = φh = Mφ h for h ∈ H2, where Mφ is the normal operator of mul-
tiplication by φ on L2. P.R. Halmos raised the following problem, so-called the
Halmos’s Problem 5 in his 1970 lectures “Ten Problems in Hilbert Space” [Hal1],
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[Hal2]:

Is every subnormal Toeplitz operator either normal or analytic ?

The question is natural because the two classes, the normal and analytic Toeplitz
operators, are fairly well understood and are obviously subnormal.

In 1976, M. Abrahamse [Ab] gave a general sufficient condition for the answer
to the Halmos’s Problem 5 to be affirmative.

Theorem 2.8 (Abrahamse’s Theorem). ([Ab]) If

(i) Tφ is hyponormal;
(ii) φ or φ is of bounded type;
(iii) ker[T ∗

φ ,Tφ ] is invariant for Tφ ,

then Tφ is normal or analytic.

Observe that if S is a subnormal operator on H and if N := mne(S) then

ker[S∗,S] = { f : < f , [S∗,S] f >= 0}= { f : ||S∗ f ||= ||S f ||}= { f : N∗ f ∈ H }.

Therefore, S(ker[S∗,S])⊆ ker[S∗,S].

By Theorem 2.8 and the preceding remark we get:

Corollary 2.1. If Tφ is subnormal and if φ or φ is of bounded type, then Tφ is normal
or analytic.

One may ask whether a weighted shift is unitarily equivalent to a Toepltz opera-
tor. The following is the first observation for this question.

Proposition 2.1. ([Ab]) If A is a weighted shift with weights a0,a1,a2, · · · such that

0 ≤ a0 ≤ a1 ≤ ·· ·< aN = aN+1 = · · ·= 1,

then A is not unitarily equivalent to any Toeplitz operator.

Recall that the Bergman shift (whose weights are given by
√

n+1
n+2 ) is subnormal.

The following question arises naturally:

Is the Bergman shift unitarily equivalent to a Toeplitz operator ? (2.9)

An affirmative answer to the question (2.9) gives a negative answer to Halmos’s
Problem 5. To see this, assume that the Bergman shift S is unitarily equivalent to
Tφ , then ess-ran(φ) ⊆ σe(Tφ) = σe(S) = T. Thus φ is unimodular. Since S is not
an isometry it follows that φ is not inner. Therefore Tφ is not an analytic Toeplitz
operator.

1983, S. Sun [Sun] has answered (2.9) in the negative.
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Theorem 2.9 (Sun’s Theorem). ([Sun]) Let T be a weighted shift with a strictly
increasing weight sequence {an}∞

n=0. If T is unitarily equivalent to Tφ then

an =
√

1−α2n+2 ||Tφ || (0 < α < 1).

Moreover we can say more:

Corollary 2.2. ([CoL]) If Tφ is unitarily equivalent to a weighted shift, then Tφ is
subnormal.

Proof. This follows at once from Theorem 2.9 together with the observation that the
weighted shift T ≡Wα with weights αn ≡ (1−α2n+2)

1
2 (0 < α < 1) is subnormal:

indeed, if we write rn := α2
0 α2

1 · · ·α2
n−1 for the moment of W and define a discrete

measure µ on [0,1] by

µ(z) =

{
Π ∞

j=1(1−α2 j) (z = 0)

Π ∞
j=1(1−α2 j) α2k

(1−α2)···(1−α2k)
(z = αk;k = 1,2, · · ·) ,

then rn =
∫ 1

0 tndµ , which by Berger’s theorem, T is subnormal. ⊓⊔

Now If Tφ is unitarily equivalent to a weighted shift, what is the form of φ ? A
careful analysis of the proof of Theorem 2.9 shows that

ψ = φ −αφ ∈ H∞.

But

Tψ = Tφ −αT ∗
φ =


0 −αa0
a0 0 −αa1

a1 0 −αa2

a2 0
. . .

. . . . . .



∼=


0 −α
1 0 −α

1 0 −α

1 0
. . .

. . . . . .

+K (K is compact)

∼= Tz−αz +K.

Thus ran(ψ) = σe(Tψ) = σe(Tz−αz) = ran(z−αz). Thus ψ is a conformal mapping
of D onto the interior of the ellipse with vertices ±i(1+α) and passing through
±(1−α). On the other hand, ψ = φ −αφ . So αψ = αφ −α2φ , which implies

φ =
1

1−α2 (ψ +αψ).



2.2 Bounded type functions and coprime-ness 15

1984, C. Cowen and J. Long [CoL] have announced to answer Halmos’s Problem
5 in the negative.

Theorem 2.10 (Cowen and Long’s Theorem). [CoL] For 0 < α < 1, let ψ be a
conformal map of D onto the interior of the ellipse with vertices ±i(1−α)−1 and
passing through ±(1+α)−1. Then Tψ+αψ is a subnormal weighted shift that is
neither analytic nor normal.

However, Cowen and Long’s idea does not give any general connection between
subnormality and Toeplitz operators. Thus we would like to ask:

Which Toeplitz operators are subnormal ?

2.2 Bounded type functions and coprime-ness

M. Abrahamse [Ab, Lemma 6] showed that if Tφ is hyponormal, if φ /∈ H∞, and if
φ or φ is of bounded type then both φ and φ are of bounded type. Its proof given
in [Ab] is somewhat intricate. However via Cowen’s theorem we can easily see it:
indeed, if Tφ is hyponormal and φ /∈ H∞ then there exists nonzero k ∈ H∞ such that
φ − kφ ∈ H∞, so that by (1.6), Hφ = Hkφ = Hφ Tk, which implies that kerHφ ̸= {0}
if and only if kerHφ ̸= {0}, and therefore if φ or φ is of bounded type then both
φ and φ are of bounded type. However, by contrast to the scalar case, Φ∗ may not
be of bounded type even though TΦ is hyponormal, Φ /∈ H∞

Mn
and Φ is of bounded

type. For example, let f ∈ H∞ be such that f is of bounded type, let g ∈ H∞ be such
that g is not of bounded type and let

Φ :=
(

f + f 0
0 g

)
.

Then Φ is not analytic and is of bounded type, but Φ∗ is not of bounded type.
Further since Φ is diagonal and hence it is normal, and

Φ −
(

1 0
0 0

)
Φ∗ =

(
0 0
0 g

)
,

which by Theorem 1.2, implies that TΦ is hyponormal. But we have a one-way im-
plication: if TΦ is hyponormal and Φ∗ is of bounded type then Φ is also of bounded
type (see [GHR, Corollary 3.5 and Remark 3.6]). Thus whenever we deal with hy-
ponormal Toeplitz operators TΦ with symbols Φ satisfying that both Φ and Φ∗ are
of bounded type (e.g., Φ is a matrix-valued rational function), it suffices to assume
that only Φ∗ is of bounded type. In spite of this, for convenience, we will assume
that Φ and Φ∗ are of bounded type whenever we deal with bounded type symbols.

For a matrix-valued function Φ ∈ H2
Mn×r

, we say that ∆ ∈ H2
Mn×m

is a left inner
divisor of Φ if ∆ is an inner matrix function such that Φ = ∆A for some A ∈ H2

Mm×r
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(m ≤ n). We also say that two matrix functions Φ ∈ H2
Mn×r

and Ψ ∈ H2
Mn×m

are left
coprime if the only common left inner divisor of both Φ and Ψ is a unitary constant
and that Φ ∈ H2

Mn×r
and Ψ ∈ H2

Mm×r
are right coprime if Φ̃ and Ψ̃ are left coprime.

Two matrix functions Φ and Ψ in H2
Mn

are said to be coprime if they are both left
and right coprime. We note that if Φ ∈ H2

Mn
is such that detΦ is not identically zero

then any left inner divisor ∆ of Φ is square, i.e., ∆ ∈ H2
Mn

: indeed, if Φ = ∆A with
∆ ∈ H2

Mn×r
(r < n) then for almost all z ∈ T, rankΦ(z)≤ rank∆(z)≤ r < n, so that

detΦ(z) = 0 for almost all z ∈ T. If Φ ∈ H2
Mn

is such that detΦ is not identically
zero then we say that ∆ ∈ H2

Mn
is a right inner divisor of Φ if ∆̃ is a left inner divisor

of Φ̃ .

The shift operator S on H2
Cn is defined by S := TzIn .

The following fundamental result will be useful in the sequel.

The Beurling-Lax-Halmos Theorem. A nonzero subspace M of H2
Cn is invariant

for the shift operator S on H2
Cn if and only if M =ΘH2

Cm , where Θ is an inner matrix
function in H∞

Mn×m
(m ≤ n). Furthermore, Θ is unique up to a unitary constant right

factor; that is, if M = ∆H2
Cr (for ∆ an inner function in H∞

Mn×r
), then m = r and

Θ = ∆W, where W is a (constant in z) unitary matrix mapping Cm onto Cm.

We traditionally assume that two matrix-valued functions A and B are equal if
they are equal up to a unitary constant right factor. Observe by (1.6) that for Φ ∈
L∞

Mn
, HΦ S = HΦ TzIn = HΦ ·zIn = HzIn·Φ = T ∗

zIn HΦ , which implies that the kernel of
a block Hankel operator HΦ is an invariant subspace of the shift operator on H2

Cn .
Thus, if kerHΦ ̸= {0}, then by the Beurling-Lax-Halmos Theorem,

kerHΦ =ΘH2
Cm

for some inner matrix function Θ . We note that Θ need not be a square matrix. For
example, let θi (i = 0,1,2) be a scalar inner function such that θ1 and θ2 are coprime
and let q ∈ L∞ be such that kerHq = {0}. Define

Θ :=
1√
2

(
θ0θ1
θ0θ2

)
and Φ :=

(
θ0θ1 θ0θ2
qθ2 −qθ1

)
.

Then a straightforward calculation shows that kerHΦ = ΘH2 (cf. [GHR, Example
2.9]). But it was known [GHR, Theorem 2.2] that for Φ ∈ L∞

Mn
, Φ is of bounded

type if and only if kerHΦ =ΘH2
Cn for some square inner matrix function Θ .

Let {Θi ∈ H∞
Mn

: i ∈ J} be a family of inner matrix functions. Then the greatest
common left inner divisor Θd and the least common left inner multiple Θm of the
family {Θi ∈ H∞

Mn
: i ∈ J} are the inner functions defined by

ΘdH2
Cp =

∨
i∈J

ΘiH2
Cn and ΘmH2

Cq =
∩
i∈J

ΘiH2
Cn .
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The greatest common right inner divisor Θ ′
d and the least common right inner mul-

tiple Θ ′
m of the family {Θi ∈ H∞

Mn
: i ∈ J} are the inner functions defined by

Θ̃ ′
dH2

Cr =
∨
i∈J

Θ̃iH2
Cn and Θ̃ ′

mH2
Cs =

∩
i∈J

Θ̃iH2
Cn .

The Beurling-Lax-Halmos Theorem guarantees that Θd and Θm are unique up to a
unitary constant right factor, and Θ ′

d and Θ ′
m are unique up to a unitary constant left

factor. We write

Θd = GCDℓ {Θi : i ∈ J}, Θm = LCMℓ {Θi : i ∈ J},
Θ ′

d = GCDr {Θi : i ∈ J}, Θ ′
m = LCMr {Θi : i ∈ J}.

If n = 1, then GCDℓ {·} = GCDr {·} (simply denoted GCD{·}) and LCMℓ {·} =
LCMr {·} (simply denoted LCM{·}). In general, it is not true that GCDℓ {·} =
GCDr {·} and LCMℓ {·}= LCMr {·}.

However, we have:

Lemma 2.1. Let Θi := θiIn for an inner function θi (i ∈ J).

(a) GCDℓ {Θi : i ∈ J}= GCDr {Θi : i ∈ J}= θdIn, where θd = GCD{θi : i ∈ J}.
(b) LCMℓ {Θi : i ∈ J}= LCMr {Θi : i ∈ J}= θmIn, where θm = LCM{θi : i ∈ J}.

Proof. This follows from at once from the definition. ⊓⊔

In view of Lemma 3.1, if Θi = θiIn for an inner function θi (i ∈ I), we can define
the greatest common inner divisor Θd and the least common inner multiple Θm of
the Θi by

Θd ≡ GCD{Θi : i ∈ J} := GCDℓ {Θi : i ∈ J}= GCDr {Θi : i ∈ J};
Θm ≡ LCM{Θi : i ∈ J} := LCMℓ {Θi : i ∈ J}= LCMr {Θi : i ∈ J} :

they are both diagonal matrices.

For Φ ∈ L∞
Mn

we write

Φ+ := Pn(Φ) ∈ H2
Mn

and Φ− :=
[
P⊥

n (Φ)
]∗ ∈ H2

Mn
.

Thus we can write Φ = Φ∗
−+Φ+ . Suppose Φ = [φi j] ∈ L∞

Mn
is such that Φ∗ is of

bounded type. Then we may write φi j = θi jbi j, where θi j is an inner function and
θi j and bi j are coprime. Thus if θ is the least common inner multiple of θi j’s then
we can write

Φ = [φi j] = [θi jbi j] = [θai j] =ΘA∗ (Θ = θ In, A ≡ [a ji] ∈ H2
Mn
). (2.10)

We note that in the factorization (2.10), A(α) is nonzero whenever θ(α) = 0. Let
Φ = Φ∗

−+Φ+ ∈ L∞
Mn

be such that Φ and Φ∗ are of bounded type. Then in view of
(2.10) we can write
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Φ+ =Θ1A∗ and Φ− =Θ2B∗,

where Θi = θiIn with an inner function θi for i = 1,2 and A,B ∈ H2
Mn

. In particular,
if Φ ∈ L∞

Mn
is rational then the θi can be chosen as finite Blaschke products, as we

observed in (2.7).
By contrast with scalar-valued functions, in (2.10) Θ and A need not be (right)

coprime: for instance, if Φ :=
(

z z
z z

)
then we can write

Φ =ΘA∗ =

(
z 0
0 z

)(
1 1
1 1

)
,

but Θ :=
(

z 0
0 z

)
and A :=

(
1 1
1 1

)
are not right coprime because 1√

2

(
z −z
1 1

)
is a

common right inner divisor, i.e.,

Θ =
1√
2

(
1 z
−1 z

)
· 1√

2

(
z −z
1 1

)
and A =

√
2
(

0 1
0 1

)
· 1√

2

(
z −z
1 1

)
.

(2.11)

On the other hand, the condition “(left/right) coprime factorization” is not so
easy to check in general. For example, consider a simple case: Φ− :=

(
z z
z z

)
. One

is tempted to write

Φ− :=
(

z 0
0 z

) (
1 1
1 1

)∗
.

But
(

z 0
0 z

)
and

(
1 1
1 1

)
are not right coprime as we have seen in the Introduction.

On the other hand, observe that (
1 1
1 1

)
≡ ∆B∗,

where

∆ :=
1√
2

(
1 z
−1 z

)
is inner and B :=

1√
2

(
0 2z
0 2z

)
.

Again, ∆ and B are not right coprime because kerH(
1 1
1 1

) = H2
C2 . Thus we might

choose
Φ− =

(
zI2 ∆

)
·B∗ or Φ− = ∆ ·

(
zI2 B

)∗
.

A straightforward calculation show that kerHΦ∗
− = ∆H2

C2 . Hence the latter of the
above factorizations is the desired factorization: i.e., ∆ and zI2 B are right coprime.

If Ω = GCDℓ {A,Θ} in the representation (2.10):

Φ =ΘA∗ = A∗Θ (Θ ≡ θ In for an inner function θ ),
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then Θ = ΩΩℓ and A = ΩAℓ for some inner matrix Ωℓ (where Ωℓ ∈ H2
Mn

because
detΘ is not identically zero) and some Al ∈ H2

Mn
. Therefore if Φ∗ ∈ L∞

Mn
is of

bounded type then we can write

Φ = Aℓ
∗Ωℓ, where Aℓ and Ωℓ are left coprime. (2.12)

A∗
ℓΩℓ is called the left coprime factorization of Φ ; similarly, we can write

Φ = ΩrA∗
r , where Ar and Ωr are right coprime. (2.13)

In this case, ΩrA∗
r is called the right coprime factorization of Φ .

Remark 2.1. ([GHR, Corollary 2.5]) As a consequence of the Beurling-Lax-
Halmos Theorem, we can see that

Φ = ΩrA∗
r (right coprime factorization) ⇐⇒ kerHΦ∗ = ΩrH2

Cn . (2.14)

In fact, if Φ = ΩrA∗
r (right coprime factorization) then it is evident that kerHΦ∗ ⊇

ΩrH2
Cn . From the Beurling-Lax-Halmos Theorem, kerHΦ∗ =ΘH2

Cn , for some inner
function Θ , and hence (I −P)(Φ∗Θ) = 0, i.e., Φ∗ = DΘ ∗, for some D ∈ H2

Cn . We
want to show that Ωr = Θ up to a unitary constant right factor. Since ΘH2

Cn ⊇
ΩrH2

Cn , we have (cf. [FF, p.240]) that Ωr = Θ∆ for some square inner function
∆ . Thus, DΘ ∗ = Φ∗ = ArΩ ∗

r = Ar∆ ∗Θ ∗, which implies Ar = D∆ , so that ∆ is
a common right inner factor of both Ar and Ωr. But since Ar and Ωr are right
coprime, ∆ must be a unitary constant. The proof of the converse implication is
entirely similar. ⊓⊔

From now on, for notational convenience we write

Iω := ω In (ω ∈ H2) and H2
0 := Iz H2

Mn
.

It is not easy to check the condition “B and Θ are coprime” in the factorization
F = B∗Θ (Θ ≡ Iθ is inner and B ∈ H2

Mn
). But if F is rational (and hence Θ is

given in a form Θ ≡ Iθ with a finite Blaschke product θ ) then we can obtain a
more tractable criterion. To see this, we need to recall the notion of finite Blaschke-
Potapov product. Let λ ∈ D and write

bλ (z) :=
z−λ
1−λ z

,

which is called a Blaschke factor. If M is a closed subspace of Cn then the matrix
function of the form

bλ PM +(I −PM) (PM :=the orthogonal projection of Cn onto M)

is called a Blaschke-Potapov factor ; an n× n matrix function D is called a finite
Blaschke-Potapov product if D is of the form
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D = ν
M

∏
m=1

(
bmPm +(I −Pm)

)
,

where ν is an n× n unitary constant matrix, bm is a Blaschke factor, and Pm is an
orthogonal projection in Cn for each m = 1, · · · ,M. In particular, a scalar-valued
function D reduces to a finite Blaschke product D = ν ∏M

m=1 bm, where ν = eiω . It
is also known (cf. [Po]) that an n×n matrix function D is rational and inner if and
only if it can be represented as a finite Blaschke-Potapov product.

Write Z (θ) for the set of zeros of an inner function θ . We then have:

Lemma 2.2. ([CHL1]) Let B ∈ H∞
Mn

be rational and Θ = Iθ with a finite Blaschke
product θ . Then the following statements are equivalent:

(a) B(α) is invertible for each α ∈ Z (θ);
(b) B and Θ are right coprime;
(c) B and Θ are left coprime.

Lemma 2.2 may be proved by a various way. An elementary proof of Lemma 2.2
is accomplished by using an interpolation problem as in [CHL1, Lemma 3.10].

The equivalence (b)⇔(c) in Lemma fails if Θ is not a constant diagonal matrix.
To see this, suppose a rational function B∈H∞

Mn
has a non-constant right inner factor.

Then we may write

B = G
(

bλ 0
0 1

)(
M

M⊥

)
,

where G∈H∞
Mn

, λ ∈D and M is a non-zero closed subspace of Cn. Thus kerB(λ )⊇
M ̸= {0}, so that if two rational functions B1 and B2 in H∞

Mn
have a common (non-

constant) right inner factor then

kerB1(λ ) ∩ kerB2(λ ) ̸= {0} for some λ ∈ D.

We now let

Θ1 :=
(

bα 0
0 1

)
and Θ2 :=

1√
2

(
z −z
1 1

)
.

Since

(Θ1Θ2)(α) =
1√
2

(
0 0
1 1

)
and Θ1(α) =

(
0 0
0 1

)
,

we have ker(Θ1Θ2)(α) = {(x,y)t : x+ y = 0} and kerΘ1(α) = {(x,y)t : y = 0}.
Therefore ker(Θ1Θ2)(β )∩ kerΘ1(β ) = {0} for any β ∈ D. Thus by the above
remark, Θ1Θ2 and Θ1 are right coprime even though evidently, they are not left
coprime.

2.3 Pseudo-hyponormality of block Toeplitz operators

If Φ ∈ L∞
Mn

, then by (3.2),
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[T ∗
Φ ,TΦ ] = H∗

Φ∗HΦ∗ −H∗
Φ HΦ +TΦ∗Φ−ΦΦ∗ .

Since the normality of Φ is a necessary condition for the hyponormality of TΦ ,
the positivity of H∗

Φ∗HΦ∗ −H∗
Φ HΦ is an essential condition for the hyponormality

of TΦ . Thus, we isolate this property as a new notion, weaker than hyponormality.
The reader will notice at once that this notion is meaningful for non-scalar symbols.

Definition 2.1. Let Φ ∈ L∞
Mn

. The pseudo-selfcommutator of TΦ is defined by

[T ∗
Φ ,TΦ ]p := H∗

Φ∗HΦ∗ −H∗
Φ HΦ .

TΦ is said to be pseudo-hyponormal if [T ∗
Φ ,TΦ ]p is positive semidefinite.

As in the case of hyponormality of scalar Toeplitz operators, we can see that
the pseudo-hyponormality of TΦ is independent of the constant matrix term Φ(0).
Thus whenever we consider the pseudo-hyponormality of TΦ we may assume that
Φ(0) = 0. Observe that if Φ ∈ L∞

Mn
then [T ∗

Φ ,TΦ ] = [T ∗
Φ ,TΦ ]p +TΦ∗Φ−ΦΦ∗ . Thus

TΦ is hyponormal if and only if TΦ is pseudo-hyponormal and Φ is normal and (via
Theorem 3.3 of [GHR]) TΦ is pseudo-hyponormal if and only if E (Φ) ̸= /0.

For Φ ≡ Φ∗
−+Φ+ ∈ L∞

Mn
, we write

C (Φ) :=
{

K ∈ H∞
Mn

: Φ −KΦ∗ ∈ H∞
Mn

}
.

Thus if Φ ∈ L∞
Mn

then K ∈ E (Φ) if and only if K ∈ C (Φ) and ||K||∞ ≤ 1. Also if
K ∈ C (Φ) then HΦ∗

− = HKΦ∗
+
= T ∗

K̃
HΦ∗

+
, which gives a necessary condition for the

nonempty-ness of C (Φ) (and hence the hyponormality of TΦ ): in other words,

K ∈ C (Φ) =⇒ kerHΦ∗
+
⊆ kerHΦ∗

− . (2.15)

We then have:

Proposition 2.2. Let Φ ≡ Φ∗
−+Φ+ ∈ L∞

Mn
be such that Φ and Φ∗ are of bounded

type. Thus we may write

Φ+ =Θ1A∗ and Φ− =Θ2B∗,

where Θi = Iθi for an inner function θi (i = 1,2) and A,B ∈ H2
Mn

. If C (Φ) ̸= /0, then
Θ2 is an inner divisor of Θ1, i.e., Θ1 =Θ0Θ2 for some inner function Θ0.

Proposition 2.2 shows that the hyponormality of Tφ with scalar-valued rational
symbol φ implies deg(φ−)≤ deg(φ+), which is a generalization of the well-known
result for the cases of the trigonometric Toeplitz operators, i.e., if φ = ∑N

n=−m anzn

is such that Tφ is hyponormal then m ≤ N (cf. [FL1]).

We conclude this section with the pull-back property on the symbols of pseudo-
hyponormal block Toeplitz operators.
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Proposition 2.3. (Pull-back symbols) Let Φ ∈ L∞
Mn

be of the form

Φ+ =Θ0Θ1A∗ and Φ− =Θ0B∗ (right coprime factorizations),

where Θ0 is an inner matrix function, Θ1 := Iθ1 with a finite Blaschke product θ1,
and A,B ∈ H2

Mn
. If Ω is an inner divisor of Θ1, then

C (Φ) =
{

KΩ : K ∈ C (Φ1,Ω )
}
, (2.16)

where Φ1,Ω := Φ∗
−+PH2

0
(Φ+Ω ∗). In particular,

TΦ is pseudo-hyponormal ⇐⇒ TΦ1,Ω is pseudo-hyponormal . (2.17)

Proposition 2.3 guarantees that the analytic part of the symbol Φ can be “pulled
back” to a function having the same inner part of the factorization as that of the
co-analytic part without losing the pseudo-hyponormality. In particular, if Φ is a
rational function (so the θi are finite Blaschke products) then Proposition 2.3 says
that the analytic part of the symbol Φ can be pulled back to a matrix-valued rational
function with the same degree as that of the co-analytic part. This generalizes the
cases where Φ is a scalar-valued trigonometric polynomial: If Φ ≡ f + g, where
f and g are analytic polynomials of degrees m and N (m ≤ N), respectively and if
Ψ ≡ f +TzN−m g then TΦ is hyponormal if and only if TΨ is hyponormal (cf. [CuL1,
Lemma 1.5]).



Chapter 3
Subnormality of Rational Toeplitz operators

3.1 Halmos’s Problem 5

The notion of subnormality was introduced by P.R. Halmos in 1950 and the study
of subnormal operators has been highly successful and fruitful (we refer to the book
[Con] for details). Indeed, the theory of subnormal operators has made significant
contributions to a number of problems in functional analysis, operator theory, math-
ematical physics, and other fields. Oddly however, the question Which operators
are subnormal ? is difficult to answer. In general, it is quite intricate to examine
whether a normal extension exists for an operator. On the other hand, Toeplitz op-
erators arise in a variety of problems in several fields of mathematics and physics,
and nowadays the theory of Toeplitz operators is a very wide area. Thus it is natural
and significant to elucidate the subnormality of Toeplitz operators. In 1970, P.R.
Halmos addressed a problem on the subnormality of Toeplitz operators Tφ on the
Hardy space H2 ≡ H2(T) of the unit circle T in the complex plane C. This is the
so-called Halmos’s Problem 5, presented in his lectures, Ten problems in Hilbert
space [Hal1], [Hal2]:

Halmos’s Problem 5. Is every subnormal Toeplitz operator either normal or ana-
lytic ?

A Toeplitz operator Tφ is called analytic if φ ∈ H∞. Any analytic Toeplitz oper-
ator is easily seen to be subnormal: indeed, Tφ h = P(φh) = φh = Mφ h for h ∈ H2,
where Mφ is the normal operator of multiplication by φ on L2. The question is natu-
ral because the two classes, the normal and analytic Toeplitz operators, are fairly
well understood and are subnormal. Halmos’s Problem 5 has been partially an-
swered in the affirmative by many authors (cf. [Ab], [AIW], [CuL1], [CuL2], [NT],
and etc). In 1984, Halmos’s Problem 5 was answered in the negative by C. Cowen
and J. Long [CoL]: they found an analytic function ψ for which Tψ+αψ (0 < α < 1)
is subnormal - in fact, this Toeplitz operator is unitarily equivalent to a subnormal
weighted shift Wβ with weight sequence β ≡ {βn}, where βn = (1−α2n+2)

1
2 for

n = 0,1,2, · · ·. Unfortunately, Cowen and Long’s construction does not provide an

23
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intrinsic connection between subnormality and the theory of Toeplitz operators. Un-
til now researchers have been unable to characterize subnormal Toeplitz operators in
terms of their symbols. On the other hand, surprisingly, as C. Cowen notes in [Co1]
and [Co2], some analytic Toeplitz operators are unitarily equivalent to non-analytic
Toeplitz operators; i.e., the analyticity of Toeplitz operators is not invariant under
unitary equivalence. In this sense, we might ask whether Cowen and Long’s non-
analytic subnormal Toeplitz operator is unitarily equivalent to an analytic Toeplitz
operator. To this end, we have:

Observation. Cowen and Long’s non-analytic subnormal Toeplitz operator Tφ is
not unitarily equivalent to any analytic Toeplitz operator.

Proof. Assume to the contrary that Tφ is unitarily equivalent to an analytic Toeplitz
operator Tf . Then by the above remark, Tf is unitarily equivalent to the subnormal
weighted shift Wβ with weight sequence β ≡ {βn}, where βn = (1−α2n+2)

1
2 (0 <

α < 1) for n = 0,1,2, · · ·; i.e., there exists a unitary operator V such that V ∗TfV =
Wβ . Thus if {en} is the canonical orthonormal basis for ℓ2 then V ∗TfVe j =Wβ e j =

β je j+1 for j = 0,1,2, · · ·. We thus have
(
V ∗T| f |2V

)
e j =W ∗

β Wβ e j = β 2
j e j, and hence,

T| f |2−β 2
j
(Ve j) = 0 for j = 0,1,2, · · ·. Fix j ≥ 0 and observe that Ve j ∈ ker(T| f |2−β 2

j
).

By Coburn’s Theorem [Cob], if | f |2 −β 2
j is nonzero then either T| f |2−β 2

j
or T ∗

| f |2−β 2
j

is one-one. It follows that | f |2 = β 2
j for j = 0,1,2, · · ·. This readily implies that

β0 = β1 = β2 = · · ·, a contradiction. ⊓⊔

Consequently, even if we interpret “is” in Halmos Problem 5 as “is up to unitary
equivalence,” the answer to Halmos Problem 5 is still negative.

We would like to reformulate Halmos’s Problem 5 as follows:
Halmos’s Problem 5 reformulated. Which Toeplitz operators are subnormal ?

Directly connected with Halmos’s Problem 5 is the following question:

Which subnormal Toeplitz operators are normal or analytic ? (3.1)

Partial answers to question (3.1) have been obtained by many authors (cf. [Ab],
[AIW], [Co1], [CoL], [CHL1], [CHL2], [CuL1], [CuL2], [CuL3], [ItW], [NT]).
The best answers are obtained in one of two ways: (i) by strengthening the as-
sumption of “subnormality,” and (ii) by restricting the symbol to a special class of
L∞. Indeed, in 1975, I. Amemiya, T. Ito and T.K. Wong showed that the answer to
Halmos’s Problem 5 is affirmative for quasinormal operators ([AIW]):

Amemiya, Ito and Wong’s Theorem ([AIW, Theorem]). Every quasinormal
Toeplitz operator is either normal or analytic.

On the other hand, a function φ ∈ L∞ is said to be of bounded type if there are ana-
lytic functions ψ1,ψ2 ∈ H∞ such that φ(z) = ψ1(z)

ψ2(z)
for almost all z ∈ T. Evidently,
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rational functions are of bounded type. In 1976, M.B. Abrahamse showed that the
answer is affirmative for Toeplitz operators with bounded type symbols ([Ab]):

Abrahamse’s Theorem ([Ab, Theorem]). Let φ ∈ L∞ be such that φ or φ is of
bounded type. If

(i) Tφ is hyponormal;
(ii)ker [T ∗

φ ,Tφ ] is invariant for Tφ ,

then Tφ is normal or analytic.

Consequently, since ker [T ∗,T ] is invariant for every subnormal operator T , it fol-
lows that if φ ∈ L∞ is such that φ or φ is of bounded type, then every subnormal
Toeplitz operator Tφ must be either normal or analytic.

We say that a block Toeplitz operator TΦ is analytic if Φ ∈ H∞
Mn

. Evidently, any
analytic block Toeplitz operator with a normal symbol is subnormal because the
multiplication operator MΦ is a normal extension of TΦ . As a first inquiry in the
above reformulation of Halmos’s Problem 5 the following question can be raised:

Which subnormal Toeplitz operators are normal or analytic ? (3.2)

In particular, we examine to what extent Abrahamse’s Theorem and Amemiya, Ito
and Wong’s Theorem remain valid for Toeplitz operators with matrix-valued sym-
bols.

3.2 Subnormality of rational Toeplitz operators

Let λ ∈ D and write

bλ (z) := ξ
z−λ
1−λ z

(ξ ∈ T) ;

b is called a Blaschke factor. If M is a nonzero closed subspace of Cn then the
matrix function of the form

bλ PM +(I −PM) (PM := the orthogonal projection of Cn onto M)

is called a Blaschke-Potapov factor ; an n× n matrix function D is called a finite
Blaschke-Potapov product if D is of the form

D = ν
d

∏
m=1

(
bmPm +(I −Pm)

)
, (3.3)

where ν is an n× n unitary constant matrix, bm is a Blaschke factor, and Pm is an
orthogonal projection in Cn for each m = 1, · · · ,d. In particular, a scalar-valued
function D reduces to a finite Blaschke product D = ν ∏d

m=1 bm, where ν = eiω . It
is known (cf. [Po]) that an n×n matrix function D is rational and inner if and only
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if it can be represented as a finite Blaschke-Potapov product. Thus if Φ ∈ L∞
Mn

is
rational then Θ1 and Θ2 can be chosen as finite Blaschke-Potapov products in the
right coprime factorizations of (2.10).

The condition “(left/right) coprime” for two matrix-valued functions is not easy
to check in general. However, if one of them is a rational function whose determi-
nant is not identically zero then we can obtain a more tractable criterion on their
(left/right) coprime-ness. To see this, we first observe:

Lemma 3.1. If F ∈ H2
Mn

and M is a non-zero closed subspace of Cn then

bλ PM +(I −PM) is a right inner divisor of F ⇐⇒ M ⊆ kerF(λ ). (3.4)

Proof. Immediate from a direct calculation. ⊓⊔

Corollary 3.1. If A,B ∈ H2
Mn

and B is a rational function such that detB is not iden-
tically zero then

A and B are right coprime ⇐⇒ kerA(α) ∩ kerB(α) = {0} for any α ∈ D.

From Corollary 3.1, we can see that if Θ = θ In for a finite Blaschke product θ ,
then for any A ∈ H2

Mn
,

A and Θ are right coprime ⇐⇒ A(α) is invertible for each zero α of θ (3.5)

(cf. [CHL2, Lemma 3.3]).

For an operator T ∈ B(H ), the essential norm ||T ||e is defined by

||T ||e := inf
{
||T −K|| : K is compact

}
.

It is known (cf. [Pe, Theorem I.5.3]) that if φ ∈ L∞ then the essential norm of a
Hankel operator Hφ can be computed from the formula

||Hφ ||e = distL∞

(
φ , H∞ +C

)
,

where C is the set of continuous functions on T. In particular, since Hφ is compact
if and only if φ ∈ H∞ +C, it follows that ||Hφ ||e = 0 if φ ∈ H∞ +C.

The following proposition provides important information on E (Φ) if Φ is a
matrix-valued rational function such that TΦ is hyponormal.

Proposition 3.1. ([CHKL]) Let Φ ∈ L∞
Mn

be a matrix-valued rational function such
that TΦ is hyponormal. Then E (Φ) contains an inner matrix function.

We now introduce the notion of a “matrix pole” for matrix-valued rational func-
tions.
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To do so, we first consider a representation for poles of scalar-valued rational
functions. Let φ ∈ L∞ be a rational function. Then we may write

φ− = θa (coprime factorization),

where θ is a nonconstant finite Blaschke product and a ∈ H2. Since φ = a
θ +φ+,

it follows that φ(z) has a pole at z = α ∈ D if and only if θ has a zero at z = α if
and only if the Blaschke factor bα is an inner divisor of θ . Observe that kerHφ =
kerHφ− = θH2 and that (z−α)H2 = bα H2 because 1−αz is an outer function, and
hence (1−αz)H2 = H2. We thus have

φ(z) has a pole at z = α ⇐⇒ kerHφ ⊆ (z−α)H2. (3.6)

On the other hand, block Hankel operators have been extensively exploited when
considering properties of matrix-valued functions in L∞

Mn
(e.g., matrix-valued ver-

sions of Neharis Theorem, Hartmans Theorem and Kroneckers Lemma). In particu-
lar, if Φ ∈ L∞

Mn
is a matrix-valued rational function, then it is known (cf. [Pe, p. 81])

that rank HΦ is equal to the McMillan degree of Φ−.
For the definition of matrix poles for matrix-valued rational functions, we will

adopt the idea in (3.6).

Definition 3.1. Let Φ ∈ L∞
Mn

be a matrix-valued rational function. Then we say that
Φ has a matrix pole at α ∈ D if

ker HΦ ⊆ (z−α)H2
Cn .

We shall say that an inner matrix function Θ ∈ H∞
Mn

is diagonal-constant if Θ is
of the form θ In, where θ is an inner function. We then have:

Lemma 3.2. Let Φ ≡ Φ∗
−+Φ+ ∈ L∞

Mn
be a matrix-valued rational function. Thus

in view of (2.10), we may write

Φ− =ΘB∗ (right coprime factorization).

Then Φ has a matrix pole if and only if Θ has a nonconstant diagonal-constant
inner divisor.

Remark 3.1. (i) Recall that if Φ ∈ L∞
Mn

is a matrix-valued rational function then Φ
is said to have a pole at α ∈ D if some entry of Φ(z) has a pole at z = α . We now
claim that for α ∈ D,

α is a matrix pole of Φ =⇒ α is a pole of Φ . (3.7)

Towards (5.1) we write

Φ− =ΘB∗ (right coprime factorization).
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Suppose α is a matrix pole of Φ . Then by Lemma 3.2, Θ = bα InΘ1 for some
inner function Θ1. Thus by (3.5), B(α) is invertible. Since Φ ≡ Φ∗

−+Φ+ = (B+
Φ+Θ)Θ ∗ and detΘ is inner, we have

det Φ =
det(B+Φ+Θ)

det Θ
=

det(B+Φ+Θ)

bn
α detΘ1

.

But since (B+Φ+Θ)(α) = B(α) is invertible, it follows that α is a pole of detΦ ,
which implies that some entry of Φ(z) has a pole at z = α . This proves (5.1).
However the converse of (5.1) is not true. For example if

Φ :=
( 1

z 0
0 1

)
,

then Φ has a pole at z = 0. But since

Φ− =

(
z 0
0 1

)(
1 0
0 1

)∗
(right coprime factorization)

and Θ ≡
(

z 0
0 1

)
has no inner divisor of the form bα I2, it follows that Φ has no

matrix pole. Of course, by definition, if n = 1 then a matrix pole reduces to a pole.

(ii) From the viewpoint of scalar-valued rational functions, we are tempted to
guess that if a matrix-valued rational function Φ ∈ L∞

Mn
has a matrix pole at z = α ∈

D, then Φ can be written as

Φ(z) =
∞

∑
k=−N

Ak(z−α)k (N ≥ 1; A−N is invertible), (3.8)

where “nonzero” in the scalar-valued case is interpreted as “invertible” in the matrix-
valued case. But this is not true. For example, consider the function

Φ(z) =
( 1

z2 + z2 0
0 1

z + z

)
.

Then since Φ−(z) =
(

z2 0
0 z

)
, it follows from Lemma 3.2 that Φ has a matrix pole

at z = 0, while Φ(z) = ∑2
k=−2 Akzk with A−2 ≡

(
1 0
0 0

)
non-invertible. However we

can easily check that (3.8) is a sufficient condition for Φ to have a matrix pole at
z = α . ⊓⊔

Lemma 3.3. Suppose Φ = Φ∗
−+Φ+ ∈ L∞

Mn
is such that Φ and Φ∗ are of bounded

type of the form

Φ+ = A∗Θ1 and Φ− = B∗Θ2 = B∗
ℓΩ2 (left coprime factorization),
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where Θi := Iθi with an inner function θi (i = 1,2). If TΦ is hyponormal, then Ω2 is
a right inner divisor of Θ1.

In the sequel, when we consider the symbol Φ = Φ∗
−+Φ+ ∈ L∞

Mn
, which is such

that Φ and Φ∗ are of bounded type, we will, in view of Lemma 3.3, assume that

Φ+ = A∗Ω1Ω2 and Φ− = B∗
ℓΩ2 (left coprime factorization),

where Ω1Ω2 = Θ ≡ Iθ . We also note that Ω2Ω1 = Θ : indeed, if Ω1Ω2 = Θ ≡ Iθ ,
then (Iθ Ω1)Ω2 = In, so that Ω1(Iθ Ω2) = In, which implies that (Iθ Ω2)Ω1 = In, and
hence Ω2Ω1 = Iθ ≡Θ .

Lemma 3.4. Suppose Φ = Φ∗
−+Φ+ ∈ L∞

Mn
is such that Φ and Φ∗ are of bounded

type of the form
Φ+ = ∆1A∗

r (right coprime factorization)

and
Φ− = ∆2B∗

r (right coprime factorization).

If TΦ is hyponormal, then ∆2 is a left inner divisor of ∆1, i.e., ∆1 = ∆2∆0 for some
∆0. Hence, in particular,

∆2H (∆0)⊆ cl ran [T ∗
Φ ,TΦ ]. (3.9)

Lemma 3.5. Let Φ ,Ψ ∈ L∞
Mn

. If Φ = Iφ or Ψ = Iψ for some φ,ψ ∈ L∞, then

HΦΨ = T ∗
Φ̃ HΨ +HΦ TΨ . (3.10)

In general, question (3.2) is more difficult to answer, in comparison with the
scalar-valued case. Indeed, Abrahamse’s Theorem does not hold for block Toeplitz
operators (even with matrix-valued trigonometric polynomial symbol): For instance,
if

Φ :=
(

z+ z 0
0 z

)
,

then

TΦ =

(
U++U∗

+ 0
0 U+

)
(U+ := the unilateral shift on H2)

is neither normal nor analytic, although TΦ is evidently subnormal. We believe this
is due to the absence of a “matrix pole” in the symbol Φ (see Definition 3.1). That
is, once we assume that a rational symbol has a matrix pole, we can get a version
of Abrahamse’s Theorem (Theorem 3.1 below). This concept is different from the
classical notion of “pole” for matrix-valued rational functions (i.e., some entry in the
matrix has a pole). The two notions coincide for scalar-valued rational functions.

Theorem 3.1. [CHKL] Let Φ ∈ L∞
Mn

be a matrix-valued rational function having a
“matrix pole,” i.e., there exists α ∈ D for which kerHΦ ⊆ (z−α)H2

Cn . If
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(i) TΦ is hyponormal;
(ii) ker [T ∗

Φ ,TΦ ] is invariant for TΦ ,

then TΦ is normal. Hence in particular, if TΦ is subnormal then TΦ is normal.

Remark. The assumption “Φ has a matrix pole” in Theorem 3.1 is automatically
satisfied if Φ is scalar-valued (i.e., when n = 1). Thus, if n = 1, Theorem 3.1 is a
special case of [Ab, Theorem].

On the other hand, in [CuL1, Theorem 3.2], it was shown that 2-hyponormality
and subnormality coincide for Toeplitz operators Tφ with trigonometric polynomial
symbols φ ∈ L∞. Also 2-hyponormality and subnormality enjoy some common
properties. The following is one of them.

Lemma 3.6. [CuL2] If T ∈ B(H ) is 2-hyponormal then ker [T ∗,T ] is invariant
for T .

In view of Lemma 3.6, Theorem 3.1 can be rephrased as:

Corollary 3.2. Let Φ ≡ Φ∗
−+Φ+ ∈ L∞

Mn
be a matrix-valued rational function. As-

sume Φ has a matrix pole, or equivalently, if we write

Φ− =ΘB∗ (right coprime factorization),

then Θ has a nonconstant diagonal-constant inner divisor. Then the following are
equivalent:

1. TΦ is 2-hyponormal;
2. TΦ is subnormal;
3. TΦ is normal.

In particular, [CuL1, Theorem 3.2] can be generalized to the matrix-valued case,
as follows.

Corollary 3.3. Let Φ ∈ L∞
Mn

be a matrix-valued trigonometric polynomial whose
co-analytic outer coefficient is invertible. Then the 2-hyponormality and the nor-
mality of TΦ coincide.

Proof. Using the notation of Corollary 3.2, write Φ− := ∑m
j=1 B− jz j, where B−m is

invertible. We have

Θ := zmIn and B = B∗
−m +B∗

−m+1z+ · · ·+B∗
−1zm−1,

and hence by (3.5) and our assumption, Θ and B are right coprime. The assertion
now follows at once from Corollary 3.2.

Since a nonzero coefficient in C is trivially invertible, Corollary 3.3 reduces to
[CuL1, Theorem 3.2] if n = 1.
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Example 3.1. Consider the following matrix-valued trigonometric polynomial

Φ :=
(

2z3 + z −2z3 − z
2z2 + z2 2z2 + z2

)
. (3.11)

Then

Φ− =

(
z z2

−z z2

)
and Φ+ = 2

(
z3 −z3

z2 z2

)
.

A straightforward calculation shows that Φ∗Φ = ΦΦ∗. If

K :=
1
4

(
−z+ z2 −z− z2

1+ z 1− z

)
,

then ||K||∞ ≤ 1 and Φ∗
− = KΦ∗

+. Thus by Lemma 1.2, TΦ is hyponormal. But a
direct calculation shows that TΦ is not normal. We note that

Φ− ≡
(

z z2

−z z2

)
=

(
1√
2

(
z z2

−z z2

))(
1√
2

(
1 0
0 1

))∗
, (3.12)

where Θ ≡ 1√
2

(
z z2

−z z2

)
and B ≡ 1√

2

(
1 0
0 1

)
are right coprime by Corollary

3.1. However, Θ ≡ 1√
2

(
z z2

−z z2

)
has a nonconstant diagonal inner divisor of the

form zI2, so that Φ has a matrix pole. But since TΦ is not normal, it follows from
Theorem 3.1 that TΦ is not subnormal.

Remark 3.2. Theorem 3.1 may fail if we drop the assumption “Φ has a matrix pole”,
or equivalently, “Θ has a nonconstant diagonal-constant inner divisor” in the right
coprime factorization Φ− =ΘB∗. To see this we again consider the function (3.13):

Φ ≡
(

z z+2z
z+2z z

)
.

We then have

Φ− =

(
z z
z z

)
=

(
1√
2

(
1 z
−1 z

))(
1√
2

(
0 2
0 2

))∗
,

where

Θ ≡ 1√
2

(
1 z
−1 z

)
and B ≡ 1√

2

(
0 2
0 2

)
are right coprime (by Corollary 3.1).

As we saw in (3.14), TΦ is quasinormal, and hence subnormal. But clearly, TΦ is
neither normal nor analytic. Here we note that Θ does not have any nonconstant
diagonal-constant inner divisor of the form θ In with a Blaschke factor θ .
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3.3 Quasinormality of rational Toeplitz operators

Amemiya, Ito and Wong’s Theorem does not hold for the cases of matrix-valued
symbols: indeed, if

Φ ≡
(

z z+2z
z+2z z

)
, (3.13)

then a straightforward calculation shows that

TΦ =

(
U∗
+ U∗

++2U+

U∗
++2U+ U∗

+

)
(3.14)

commutes with T ∗
Φ TΦ , i.e., TΦ is quasinormal, but TΦ is neither normal nor analytic.

However if W := 1√
2

(
1 −1
1 1

)
, then W is unitary and

W ∗TΦW = 2
(

U∗
++U+ 0

0 −U+

)
, (3.15)

which says that TΦ is unitarily equivalent to a direct sum of a normal operator, say
2(U∗

++U+) and an analytic Toeplitz operator, say −2U+. This phenomenon is not
an accident.

Since the self-commutator measures a form of deviation from normality, one
might expect that subnormal operators with finite rank self-commutators are well
behaved. Particular attention has been paid to the case of rank-one self-commutators.
For example, B. Morrel [Mo] showed that every pure subnormal operator with rank-
one self-commutator is unitarily equivalent to a linear function of the unilateral shift.
Subnormal operators with finite rank self-commutators have been much investigated
by many authors. Recently, D. Yakubovich [Ya] gave a nice characterization of sub-
normal operators with finite rank self-commutators under an assumption on their
normal extensions. An operator T ∈B(H ) is said to have no point masses if it has
a normal extension N that has no nonzero eigenvectors.

Yakubovich’s Theorem ([Ya, Theorem 2]) If T ∈ B(H ) is a pure subnormal op-
erator with finite rank self-commutator and without point masses then it is unitarily
equivalent to a Toeplitz operator with a matrix-valued analytic rational symbol.

By using Yakubovich’s Theorem, we first prove the following:

Theorem 3.2. [CHKL] Every pure quasinormal operator with finite rank self-
commutator is unitarily equivalent to a Toeplitz operator with a matrix-valued ana-
lytic rational symbol.

Theorem 3.3. (Amemiya, Ito and Wong’s Theorem for Matrix-Valued Rational Sym-
bols) [CHKL] Every pure quasinormal Toeplitz operator with a matrix-valued ra-
tional symbol is unitarily equivalent to an analytic Toeplitz operator.
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Proof. Let Φ ∈ L∞
Mn

be a rational function and suppose TΦ is quasinormal (and
hence hyponormal). Thus Φ is normal (cf. [GHR]), and hence we have

[T ∗
Φ ,TΦ ] = H∗

Φ∗HΦ∗ −H∗
Φ HΦ . (3.16)

On the other hand, since Φ is rational, it follows from the Kronecker’s lemma that
HΦ∗ and HΦ are of finite rank. Thus by (3.16), TΦ has finite rank self-commutator.
Now the theorem follows at once from Theorem 3.2. ⊓⊔

3.4 Square-hyponormality of rational Toeplitz operators

The study on the square-hyponormality was originated from [Hal3, Problem 209]. It
is easy to see that every power of a normal operator is normal and the same statement
is true for every subnormal operator. How about hyponormal operators? Problem
209 of [Hal3] shows that there exists a hyponormal operator whose square is not
hyponormal (e.g., U∗ + 2U for the unilateral shift U). However, as we remarked
in the preceding, there exist special classes of operators that square-hyponormality
and subnormality coincide. For those classes of operators, it suffices to check the
square-hyponormality to show the subnormality. This certainly gives a nice answer
to Halmos’s Problem 5 reformulated. Indeed, in [CuL1], it was shown that every
hyponormal trigonometric Toeplitz operator whose square is hyponormal must be
either normal or analytic, and hence it is subnormal. In this section we extend
this result to the block Toeplitz operators whose symbols are matrix-valued rational
functions.

Theorem 3.4. [CHL1] Let Φ ∈ L∞
Mn

be a matrix-valued rational function. Then we
may write

Φ− = B∗Θ ,

where B ∈ H2
Mn

and Θ := Iθ with a finite Blaschke product θ . Suppose B and Θ are
coprime. If both TΦ and T 2

Φ are hyponormal then TΦ is either normal or analytic.

Corollary 3.4. Let Φ ∈ L∞
Mn

be a matrix-valued trigonometric polynomial whose
co-analytic outer coefficient is invertible. If TΦ and T 2

Φ are hyponormal then TΦ is
normal.

Remark 3.3. In Theorem 3.4, the “coprime” condition is essential. To see this, let

TΦ :=
(

Tb +T ∗
b 0

0 Tb

)
(b is a finite Blaschke product).

Since Tb +T ∗
b is normal and Tb is analytic, it follows that TΦ and T 2

Φ are both hy-

ponormal. Obviously, TΦ is neither normal nor analytic. Note that Φ− ≡
(

b 0
0 0

)
=(

1 0
0 0

)∗
· Ib, where

(
1 0
0 0

)
and Ib are not coprime. ⊓⊔
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On the other hand, we have not been able to determine whether this phenomenon
is quite accidental. In fact we would guess that if Φ ∈L∞

Mn
is a matrix-valued rational

function such that TΦ is subnormal then TΦ is unitarily equivalent to TA ⊕TB, where
TA is normal and TB is analytic.



Chapter 4
Subnormality of Bounded Type Toeplitz
operators

This chapter focuses on subnormality for Toeplitz operators with matrix-valued
bounded type symbols.

4.1 A connection between left coprime-ness and right
coprime-ness

We first need to observe a connection between left coprime-ness and right coprime-
ness. We first recall the representation (2.12), and for Ψ ∈ L∞

Mn
such that Ψ ∗ is of

bounded type, write Ψ = Θ2B∗ = B∗Θ2. Let Ω be the greatest common left inner
divisor of B and Θ2. Then B = ΩBℓ and Θ2 = ΩΩ2 for some Bℓ ∈ H2

Mn
and some

inner matrix Ω2. Therefore we can write

Ψ = B∗
ℓΩ2, where Bℓ and Ω2 are left coprime: (4.1)

in this case, B∗
ℓΩ2 is called a left coprime factorization of Ψ . Similarly,

Ψ = ∆2B∗
r , where Br and ∆2 are right coprime: (4.2)

in this case, ∆2B∗
r is called a right coprime factorization of Ψ .

In the sequel, when we consider the symbol Φ = Φ∗
−+Φ+ ∈ L∞

Mn
, which is such

that Φ and Φ∗ are of bounded type and for which TΦ is hyponormal, we will, in
view of Proposition 2.2, assume that

Φ+ = A∗Ω1Ω2 and Φ− = B∗
ℓΩ2 (left coprime factorization), (4.3)

where Ω1Ω2 =Θ = θ In. We also note that Ω2Ω1 =Θ : indeed, if Ω1Ω2 =Θ = θ In,
then (θ InΩ1)Ω2 = In, so that Ω1(θ InΩ2) = In, which implies that (θ InΩ2)Ω1 = In,
and hence Ω2Ω1 = θ In =Θ .

35
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We recall the inner-outer factorization of vector-valued functions. If D and E are
Hilbert spaces and if F is a function with values in B(E,D) such that F(·)e∈H2

D(T)
for each e ∈ E, then F is called a strong H2-function. The strong H2-function F is
called an inner function if F(·) is an isometric operator from D into E. Write PE
for the set of all polynomials with values in E, i.e., p(ζ ) = ∑n

k=0 p̂(k)ζ k, p̂(k) ∈ E.
Then the function F p = ∑n

k=0 F p̂(k)zk belongs to H2
D(T). The strong H2-function

F is called outer if
clF ·PE = H2

D(T).

Note that every F ∈ H2
Mn

is a strong H2-function. We then have an analogue of the
scalar Inner-Outer Factorization Theorem.

Inner-Outer Factorization. (cf. [Ni]) Every strong H2-function F with values in
B(E,D) can be expressed in the form

F = F iFe,

where Fe is an outer function with values in B(E,D′) and F i is an inner function
with values in B(D′,D) for some Hilbert space D′.

We introduce a key idea which provides a connection between left coprime-ness
and right coprime-ness.

Definition 4.1. If ∆ ∈ H∞
Mn

is an inner function, we define

D(∆) := GCD
{

θ In : θ is inner and ∆ is a (left) inner divisor of θ In
}
,

where GCD(·) denotes the greatest common inner divisor.

Lemma 4.1. If ∆ ∈ H∞
Mn

is an inner function then

D(∆) = δ In for some inner funtion δ . (4.4)

Note that D(∆) is unique up to a diagonal-constant inner function of the form
eiξ In.

If one of two inner functions is diagonal-constant then the “left” coprime-ness
and the “right” coprime-ness between them coincide.

Lemma 4.2. Let ∆ ∈ H∞
Mn

be inner and Θ := θ In for some inner function θ . Then
the following are equivalent:

(a) Θ and ∆ are left coprime;
(b) Θ and ∆ are right coprime;
(c) Θ and D(∆) are coprime.

Lemma 4.3. Let A ∈ H2
Mn

be such that detA is not identically zero and Θ := θ In for
some inner function θ . Then the following are equivalent:

(a) Θ and A are left coprime;
(b) Θ and A are right coprime.
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In Lemma 4.3, if θ is given as a finite Blaschke product then the “determinant”
assumption may be dropped.

Lemma 4.4. Let A ∈ H2
Mn

and Θ := θ In for a finite Blaschke product θ . Then the
following are equivalent:

(a) Θ and A are left coprime;
(b) Θ and A are right coprime;
(c) A(α) is invertible for each zero α of θ .

Proof. Immediate from Lemma 4.3 and (3.5).

4.2 A matrix-valued version of Abrahamse’s Theorem

As a first inquiry in the reformulation of Halmos’s Problem 5 the following question
can be raised:

Is Abrahamse’s Theorem valid for block Toeplitz operators ?

In this section we provide two matrix-valued version of Abrahamse’s Theorem. We
first observe:

Lemma 4.5. Let θ0 be a nonconstant inner function. Then Hθ0 contains an outer
function that is invertible in H∞.

We are ready for:

Theorem 4.1. (Abrahamse’s Theorem for matrix-valued symbols, Version I) [CHL3]
Suppose Φ =Φ∗

−+Φ+ ∈ L∞
Mn

is such that Φ and Φ∗ are of bounded type and detΦ+

and detΦ− are not identically zero. Then in view of (4.1), we may write

Φ− = B∗Θ (left coprime factorization) .

Assume that Θ is a diagonal inner matrix function (which is not necessarily
diagonal-constant) and that Θ has a nonconstant diagonal-constant inner divisor
Ω ≡ ωIn (ω inner) such that Ω and ΘΩ ∗ are coprime. If

(i) TΦ is hyponormal; and
(ii) ker [T ∗

Φ ,TΦ ] is invariant under TΦ ,

then TΦ is either normal or analytic. Hence, in particular, if TΦ is subnormal then
it is either normal or analytic.

In Theorem 4.1, if Θ has a nonconstant diagonal-constant inner divisor of the
form ωIn with a Blaschke factor ω , then we can strengthen Theorem 4.1 by dropping
the “determinant” assumption.
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Corollary 4.1. Suppose Φ = Φ∗
−+Φ+ ∈ L∞

Mn
is such that Φ and Φ∗ are of bounded

type. Then in view of (4.1), we may write

Φ− = B∗Θ (left coprime factorization) , (4.5)

where Θ is a diagonal inner matrix function. Assume that Θ has a nonconstant
diagonal-constant inner divisor Ω ≡ ωIn with a finite Blaschke product ω such that
Ω and ΘΩ ∗ are coprime. If

(i) TΦ is hyponormal; and
(ii) ker [T ∗

Φ ,TΦ ] is invariant under TΦ ,

then TΦ is either normal or analytic. Hence, in particular, if TΦ is subnormal then
it is either normal or analytic.

Corollary 4.2. (Abrahamse’s Theorem for matrix-valued symbols, Version II) [CHL3]
Suppose Φ =Φ∗

−+Φ+ ∈ L∞
Mn

is such that Φ and Φ∗ are of bounded type and detΦ+

and detΦ− are not identically zero. Then in view of (4.3), we may write

Φ+ = A∗Θ0Θ2 and Φ− = B∗Θ2 ,

where Θ0Θ2 = θ In with an inner function θ . Assume that A,B and Θ2 are left
coprime and Θ2 has a nonconstant diagonal-constant inner divisor Ω ≡ ωIn (ω
inner). If

(i) TΦ is hyponormal; and
(ii) ker [T ∗

Φ ,TΦ ] is invariant under TΦ ,

then TΦ is either normal or analytic. Hence, in particular, if TΦ is subnormal then
it is either normal or analytic.



Chapter 5
A Subnormal Toeplitz Completion

Given a partially specified operator matrix with some known entries, the problem of
finding suitable operators to complete the given partial operator matrix so that the
resulting matrix satisfies certain given properties is called a completion problem.
Dilation problems are special cases of completion problems: in other words, the
dilation of T is a completion of the partial operator matrix

(
T ?
? ?

)
. In recent years,

operator theorists have been interested in the subnormal completion problem for
block Toeplitz matrices. In this chapter, we solve this completion problem.

A partial block Toeplitz matrix is simply an n×n matrix some of whose entries
are specified Toeplitz operators and whose remaining entries are unspecified. A
subnormal completion of a partial operator matrix is a particular specification of the
unspecified entries resulting in a subnormal operator. For example(

Tz 1−TzTz
0 Tz

)
(5.1)

is a subnormal (even unitary) completion of the 2×2 partial operator matrix(
Tz ?
? Tz

)
.

A subnormal Toeplitz completion of a partial block Toeplitz matrix is a subnormal
completion whose unspecified entries are Toeplitz operators. Then the following
question (the most simple case) comes up at once: Does there exist a subnormal
Toeplitz completion of

(
Tz ?
? Tz

)
? Evidently, (5.1) is not such a completion. To

answer this question, let

Φ ≡
(

z φ
ψ z

)
(φ,ψ ∈ L∞).

If TΦ is hyponormal then by Theorem 1.2, Φ should be normal. Thus a straightfor-
ward calculation shows that |φ |= |ψ| and z(φ +ψ) = z(φ +ψ), which implies that

39
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φ =−ψ . Thus a direct calculation shows that

[T ∗
Φ , TΦ ] =

(
∗ ∗
∗ TzTz −1

)
,

which is not positive semi-definite because TzTz − 1 is not. Therefore, there are
no hyponormal Toeplitz completions of

(
Tz ?
? Tz

)
. However the following prob-

lem is a nontrivial: Complete the unspecified Toeplitz entries of the partial block
Toeplitz matrix A :=

(
Tz ?
? Tz

)
to make A subnormal. Unexpectedly, the answer to

this problem is very difficult and complicated. In this chapter we are interested in
the following problem which is a more general version:

Problem 5.1. Let bλ be a Blaschke factor of the form bλ (z) := z−λ
1−λ z

(λ ∈ D). Com-
plete the unspecified Toeplitz entries of the partial block Toeplitz matrix

A :=
(

Tbα
?

? Tbβ

)
(α,β ∈ D)

to make A subnormal.

We begin with:

Lemma 5.1. Let

Φ ≡
(

bα φ
ψ bβ

)
(φ,ψ ∈ L∞)

be such that TΦ is hyponormal. Then α = β .

Theorem 5.1. [CHL3] Let φ,ψ ∈ L∞ and consider

A :=
(

Tbα
Tφ

Tψ Tbβ

)
(α,β ∈ D) ,

where bλ is a Blaschke factor of the form bλ (z) := z−λ
1−λ z

(λ ∈ D). The following
statements are equivalent.

(a) A is normal.
(b) A is subnormal.
(c) A is 2-hyponormal.
(d) α = β and one of the following conditions holds:

1. φ = eiθ bα +ζ and ψ = eiω φ (ζ ∈ C; θ ,ω ∈ [0,2π));
2. φ = µ bα + eiθ

√
1+ |µ|2 bα + ζ and ψ = ei(π−2arg µ)φ (µ,ζ ∈ C, µ ̸= 0,

|µ| ̸= 1, θ ∈ [0,2π)),
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except in the following special case:

φ− = bα θ ′
0a and ψ− = bα θ ′

1b with (ab)(α) = (θ ′
0θ ′

1)(α) ̸= 0 . (5.2)

However, if we also know that φ,ψ ∈ L∞ are rational functions having the same
number of poles then either (2) holds for |µ|= 1 or

φ = eiθ bα +2eiω bα +ζ and ψ = e−2iθ φ (θ ,ω ∈ [0,2π), ζ ∈ C) : (5.3)

in this case, A+ e−iθ ζ is quasinormal.

Remark 5.1. We would also ask whether there is a subnormal non-Toeplitz com-
pletion of

(
Tz ?
? Tz

)
. Unexpectedly, there is a normal non-Toeplitz completion of(

Tz ?
? Tz

)
. To see this, let B be a selfadjoint operator and put

T =

(
Tz Tz +B

Tz +B Tz

)
.

Then

[T ∗,T ] =
(

TzB+BTz − (TzB+BTz) TzB+BTz − (TzB+BTz)
BTz +TzB− (BTz +TzB) TzB+BTz − (TzB+BTz)

)
,

so that T is normal if and only if

TzB+BTz = TzB+BTz, i.e., [Tz,B] = [Tz,B]. (5.4)

We define

α1 := 0 and αn :=−2
3

(
1−

(
−1

2

)n)
for n ≥ 2.

Let D ≡ diag(αn), i.e., a diagonal operator whose diagonal entries are αn (n =
1,2, · · ·) and for each n = 1,2 · · ·, let Bn be defined by

Bn =− 1
2n−1 diag(αn−1)T ∗

z2n .

Then
||Bn|| ≤

1
2n−1 sup{αn−1}<

1
2n−1 ,

which implies that ∣∣∣∣∣
∣∣∣∣∣ ∞

∑
n=1

Bn

∣∣∣∣∣
∣∣∣∣∣≤ 2.

We define C by
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C :=
∞

∑
n=1

Bn.

Then C looks like:

C =



0 0 1 0 1
2 0 1

22 0 · · ·
0 0 0 1

2 0 1
22 0 1

23 · · ·
0 0 0 0 3

22 0 3
23 0 · · ·

0 0 0 0 0 5
23 0 5

24 · · ·
0 0 0 0 0 0 11

24 0 · · ·
0 0 0 0 0 0 0 21

25 · · ·
0 0 0 0 0 0 0 0 · · ·
0 0 0 0 0 0 0 0 · · ·
0 0 0 0 0 0 0 0 · · ·
...

...
...

...
...

...
...

...
. . .


.

Note that C is bounded. If we define B by

B := D+C+C∗,

then a straightforward calculation shows that B satisfies equation (5.4). Therefore
the operator

T =

(
Tz Tz +B

Tz +B Tz

)
is normal. We note that Tz +B is not a Toeplitz operator. ⊓⊔



Chapter 6
Unsolved problems

6.1 The scalar case

Even though C. Cowen and J. Long have answered Halmos’s Problem 5 in the neg-
ative, we don’t know any more knowledge on the subnormality of Toeplitz opera-
tors. Indeed, Cowen and Long’s subnormal Toeplitz operator Tf+λ f (0 < λ < 1,
f ≡ ψ -so called the ellipse map- is given by Theorem 2.10) is the (originally) only
non-analytic and non-normal subnormal Toeplitz operator. Thus the following two
problems are interesting and the affirmative answers for these problems provide a
good chance to understand the subnormality of Toeplitz operators.

Problem 6.1. For which f ∈ H∞, is there λ (0 < λ < 1) with Tf+λ f subnormal ?

Problem 6.2. Suppose ψ is as in Theorem 2.10 (i.e., the ellipse map). Are there
g ∈ H∞, g ̸= λψ + c, such that Tψ+g is subnormal ?

On the other hand, if Tφ is the subnormal operator in the Cowen and Long’s
Theorem then E (φ) = {λ} with |λ |< 1. Also it is easily check that if Tφ is normal
then E (φ) = {eiθ}. Thus we are tempted to guess that if Tφ is subnormal and non-
normal then E (φ) = {λ} with |λ |< 1. However we were unable to decide whether
or not it is true.

Problem 6.3. If Tφ is subnormal, does it follow that E (φ) = {λ} with |λ |< 1 ?

If the answer to Problem 6.3 is affirmative then for φ = g+ f , the subnormality
of Tφ implies g−λ f ∈ H2 with |λ | < 1, so that g = λ f + c (c a constant), which
says that the answer to Problem 6.2 is negative.

From Lemma 3.6, if T ∈ B(H ) is 2-hyponormal then ker [T ∗,T ] is invariant
for T . / Thus this fact together with Abrahamse’s Theorem says that if Tφ is 2-
hyponormal and if φ or φ̄ is of bounded type then Tφ is subnormal, so that Tφ has a
nontrivial invariant subspace. The following question is naturally raised:

43
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Problem 6.4. Does every 2-hyponormal Toeplitz operator have a nontrivial invari-
ant subspace ? More generally, does every 2-hyponormal operator have a nontrivial
invariant subspace ?

Write C(K) for the set of all complex-valued continuous functions on K and
R(K) for the uniform closure of all rational functions with poles off K in C(K).
It is well known ([Bro]) that if T is a hyponormal operator such that R(σ(T )) ̸=
C(σ(T )) then T has a nontrivial invariant subspace. But it remains still open whether
every hyponormal operator with R(σ(T )) = C(σ(T )) (i.e., a thin spectrum) has
a nontrivial invariant subspace. Recall that T ∈ B(H ) is called a von-Neumann
operator if σ(T ) is a spectral set for T , or equivalently, f (T ) is normaloid (i.e.,
norm equals spectral radius) for every rational function f with poles off σ(T ). B.
Prunaru [Pru] has proved that polynomially hyponormal operators have nontrivial
invariant subspaces. It was also known ([Ag]) that von-Neumann operators enjoy
the same property. The following is a sub-question of Problem 6.4.

Problem 6.5. Is every 2-hyponormal operator with thin spectrum a von-Neumann
operator ?

Although the existence of a non-subnormal polynomially hyponormal weighted
shift was established in [CP1] and [CP2], it is still an open question whether the
implication “polynomially hyponormal ⇒ subnormal” can be disproved with a
Toeplitz operator.

Problem 6.6. Does there exist a Toeplitz operator which is polynomially hyponor-
mal but not subnormal ?

In [CuL2] it was shown that every pure 2-hyponormal operator with rank-one
self-commutator is a linear function of the unilateral shift. McCarthy and Yang
[McCYa] classified all rationally cyclic subnormal operators with finite rank self-
commutators. However it remains still open what are the pure subnormal operators
with finite rank self-commutators. Now the following question comes up at once:

Problem 6.7. If Tφ is a 2-hyponormal Toeplitz operator with nonzero finite rank
self-commutator, does it follow that Tφ is analytic ?

For affirmativeness to Problem 6.7 we shall give a partial answer. To do this we
recall Theorem 15 in [NT] which states that if Tφ is subnormal and φ = qφ̄ , where
q is a finite Blaschke product then Tφ is normal or analytic. But from a careful
examination of the proof of the theorem we can see that its proof uses subnormality
assumption only for the fact that ker [T ∗

φ ,Tφ ] is invariant under Tφ . Thus in view of
Lemma 3.6, the theorem is still valid for “2–hyponormal” in place of “subnormal”.
We thus have:

Corollary 6.1. If Tφ is 2–hyponormal and φ = qφ̄ , where q is a finite Blaschke
product then Tφ is normal or analytic.

Corollary 6.2. If Tφ is 2-hyponormal and E (φ) contains at least two elements then
Tφ is normal or analytic.
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Proof. This follows from Corollary 6.1 and the fact ([NT, Proposition 8]) that if
E (φ) contains at least two elements then φ is of bounded type.

We now give a partial answer to Problem 6.7.

Proposition 6.1. Suppose log |φ| is not integrable. If Tφ is a 2–hyponormal operator
with nonzero finite rank self-commutator then Tφ is analytic.

Proof. If Tφ is hyponormal such that log |φ| is not integrable then by an argument
of [NT, Theorem 4], φ = qφ̄ for some inner function q. Also if Tφ has a finite rank
self-commutator then by [NT, Theorem 10], there exists a finite Blaschke product
b ∈ E (φ). If q ̸= b, so that E (φ) contains at least two elements, then by Corollary
6.2, Tφ is normal or analytic. If instead q= b then by Corollary 6.1, Tφ is also normal
or analytic. ⊓⊔

Proposition 6.1 reduces Problem 6.7 to the class of Toeplitz operators such that
log |φ | is integrable. If log |φ| is integrable then there exists an outer function e such
that |φ|= |e|. Thus we may write φ = ue, where u is a unimodular function. Since
by the Douglas-Rudin theorem (cf. [Ga, p.192]), every unimodular function can be
approximated by quotients of inner functions, it follows that if log |φ| is integrable
then φ can be approximated by functions of bounded type. Therefore if we could
obtain such a sequence ψn converging to φ such that Tψn is 2–hyponormal with finite
rank self-commutator for each n, then we would answer Problem J affirmatively. On
the other hand, if Tφ attains its norm then by a result of Brown and Douglas [BD],
φ is of the form φ = λ ψ

θ with λ > 0, ψ and θ inner. Thus φ is of bounded type.
Therefore by Corollary 6.2, if Tφ is 2–hyponormal and attains its norm then Tφ is
normal or analytic. However we were not able to decide that if Tφ is a 2–hyponormal
operator with finite rank self-commutator then Tφ attains its norm.

6.2 The block case

6.2.1. Nakazi-Takahashi’s Theorem for matrix-valued symbols. T. Nakazi and
K. Takahashi [NT] have shown that if φ ∈ L∞ is such that Tφ is a hyponormal
operator whose self-commutator [T ∗

φ ,Tφ ] is of finite rank then there exists a finite
Blaschke product b ∈ E (φ) such that deg(b) = rank [T ∗

φ ,Tφ ]. What is the matrix-
valued version of Nakazi and Takahashi’s Theorem ? A candidate is as follows: If
Φ ∈ L∞

Mn
is such that TΦ is a hyponormal operator whose self-commutator [T ∗

Φ ,TΦ ] is
of finite rank then there exists a finite Blaschke-Potapov product B∈ E (Φ) such that
deg(B) = rank [T ∗

Φ ,TΦ ]. We recall that the degree of the finite Blaschke-Potapov
product B is defined by

deg(B) := dimH (B) = deg(detB). (6.1)

In this sense, we would pose the following question:
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Problem 6.8. If Φ ∈ L∞
Mn

is such that TΦ is a hyponormal operator whose self-
commutator [T ∗

Φ ,TΦ ] is of finite rank, does there exist a finite Blaschke-Potapov

product B ∈ E (Φ) such that rank [T ∗
Φ ,TΦ ] = deg

(
detB

)
?

On the other hand, in [NT], it was shown that if φ ∈ L∞ is such that Tφ is subnor-
mal and φ = qφ , where q is a finite Blaschke product then Tφ is normal or analytic.
We now we pose its block version:

Problem 6.9. If Φ ∈ L∞
Mn

is such that TΦ is subnormal and Φ = BΦ∗, where B is a
a finite Blaschke-Potapov product, does it follow that TΦ is normal or analytic ?

6.2.2. Subnormality of block Toeplitz operators. In Remark 3.3 we have shown
that if the “coprime” condition of Theorem 3.4 is dropped, then Theorem 3.4 may
fail. However we note that the example given in Remark 3.3 is unitarily equivalent
to a direct sum of a normal Toeplitz operator and an analytic Toeplitz operator.
Based on this observation, we have:

Problem 6.10. Let Φ ∈ L∞
Mn

be a matrix-valued rational function. If TΦ and T 2
Φ are

hyponormal, but TΦ is neither normal nor analytic, does it follow that TΦ is unitarily
equivalent to the form(

TA 0
0 TB

)
(where TA is normal and TB is analytic)?

From the view point that if T ∈ B(H ) is subnormal then ker [T ∗,T ] is invariant
under T , we might be tempted to guess that if the condition “TΦ and T 2

Φ are hy-
ponormal”is replaced by “TΦ is hyponormal and ker [T ∗

Φ ,TΦ ] is invariant under TΦ ,”
then the answer to Problem 6.10 is affirmative. But this is not the case. Indeed,
consider

TΦ =

(
2U +U∗ U∗

U∗ 2U +U∗

)
.

Then a straightforward calculation shows that TΦ is hyponormal and ker [T ∗
Φ ,TΦ ]

is invariant under TΦ , but TΦ is never normal. However, if the condition “TΦ and
T 2

Φ are hyponormal” is strengthened to “TΦ is subnormal”, what conclusion do you
draw ?

6.2.3. Subnormal completion problem. Theorem 5.1 provides the subnormal
Toeplitz completion of(

U∗ ?
? U∗

)
(U is the shift on H2). (6.2)

Moreover Remark 5.1 shows that there is a normal non-Toeplitz completion of (6.2).
However we were unable to find all subnormal completions of (6.2).

Problem 6.11. Let U be the shift on H2. Complete the unspecified entries of the

partial block matrix
(

U∗ ?
? U∗

)
to make it subnormal.
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