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1. Lecture 1. Introduction to weak Hopf algebras

Abstract.

We begin with an explanation why weak Hopf algebras are interesting and give
basic definitions and examples of finite dimensional weak Hopf algebras. Then we
discuss their most important properties and describe the fundamental results of
the weak Hopf algebra theory. Motivated by applications, we especially focus on
semisimple and C*-weak Hopf algebras.

We use Sweedler’s leg notation for comultiplication : ∆(b) = b(1)⊗ b(2). Let k be
a field. For simplicity, one can suppose k = C.

Definitions.

Definition 1.0.1. [BNSz] A finite quantum groupoid or a weak Hopf algebra is a
finite dimensional k-vector space H that has structures of an algebra (H, m, 1) and
a coalgebra (H, ∆, ε) related as follows :

∆ is a (not necessarily unit-preserving) homomorphism :

(1) ∆(hg) = ∆(h)∆(g),

The unit and counit satisfy the identities :

ε(hgf) = ε(hg(1))ε(g(2)f) = ε(hg(2))ε(g(1)f),(2)

(∆⊗ id)∆(1) = (∆(1)⊗ 1)(1⊗∆(1)) = (1⊗∆(1))(∆(1)⊗ 1),(3)

There is a linear map S : H → H, called an antipode, such that

m(id⊗ S)∆(h) = (ε⊗ id)(∆(1)(h⊗ 1)),(4)

m(S ⊗ id)∆(h) = (id⊗ ε)((1⊗ h)∆(1)),(5)

m(m⊗ id)(S ⊗ id⊗ S)(∆⊗ id)∆(h) = S(h),(6)

for all h, g, f ∈ H.

A morphism between quantum groupoids H1 and H2 is a map α : H1 → H2

which is both algebra and coalgebra homomorphism and which intertwines the
antipodes of H1 and H2, i.e., α ◦ S1 = S2 ◦ α.
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The dual quantum groupoid

It is not hard to see that the set of axioms of Definition 1.0.1 is self-dual. This
allows to define a natural quantum groupoid structure, Ĥ, on the dual vector space
Ĥ by the usual procedure of “reversing the arrows” :

〈φψ, h 〉 = 〈φ⊗ ψ, ∆(h) 〉,(7)

〈 ∆̂(φ), h⊗ g 〉 = 〈φ, hg 〉,(8)

〈 Ŝ(φ), h 〉 = 〈φ, S(h) 〉,(9)

for all φ, ψ ∈ Ĥ, h, g ∈ H. The unit 1̂ of Ĥ is ε and counit ε̂ is φ 7→ 〈φ, 1 〉.

Counital maps and subalgebras

The linear maps defined in (4) and (5) are called target and source counital maps
(see examples below for explanation of the terminology) and denoted εt and εs
respectively :

εt(h) = (ε⊗ id)(∆(1)(h⊗ 1)),(10)

εs(h) = (id⊗ ε)((1⊗ h)∆(1)).(11)

In the next proposition we collect several useful properties of counital maps.

Proposition 1.0.2. For all h, g ∈ H we have

(i) Counital maps are idempotents in Endk(H) :

εt(εt(h)) = εt(h), εs(εs(h) = εs(h),

(ii) the relation between εt, εs and comultiplication is as follows

(id⊗ εt)∆(h) = 1(1)h⊗ 1(2), (εs ⊗ id)∆(h) = 1(1) ⊗ h1(2),

(iii) the images of counital maps are characterized by

h = εt(h) iff ∆(h) = 1(1)h⊗ 1(2), h = εs(h) iff ∆(h) = 1(1) ⊗ h1(2),

(iv) εt(H) and εs(H) commute.

(v) we also have identities dual to (ii) :

hεt(g) = ε(h(1)g)h(2), εs(h)g = h(1)ε(gh(2)).

Proof. We prove the identities containing the target counital map, the proofs
of their source counterparts are similar. Using the axioms (3) and (2) we compute

εt(εt(h)) = ε(1(1)h)ε(1′(1)1(2))1
′
(2) = ε(1(1)h)ε(1(1))1(3) = εt(h),

where 1′ stands for the second copy of the unit, proving (i). For (ii) we have

h(1) ⊗ εt(h(2)) = h(1)ε(1(1)h(2))⊗ 1(2)

= 1(1)h(1)ε(1(2)h(2))⊗ 1(3) = 1(1)h⊗ 1(2).

To prove (iii) we observe that

∆(εt(h)) = ε(1(1)h)1(2) ⊗ 1(3) = ε(1(1)h)1′(1)1(2) ⊗ 1′(2) = 1′(1)εt(h)⊗ 1′(2),



FINITE DIMENSIONAL WEAK HOPF ALGEBRAS AND THEIR APPLICATIONS 3

on the other hand, applying (ε ⊗ id) to both sides of ∆(h) = 1(1)h ⊗ 1(1), we
get h = εt(h). (iv) is immediate in view of the identity 1(1) ⊗ 1′(1)1(2) ⊗ 1′(2) =

1(1) ⊗ 1(2)1
′
(1) ⊗ 1′(2). Finally, we show (v) :

ε(h(1)g)h(2) = ε(h(1)g(1))h(2)εt(g(2))

= ε(h(1)g(1))h(2)g(2)S(g(3))

= hg(1)S(g(2)) = hεt(g),

where the antipode axiom (4) is used. �
The images of counital maps

Ht = εt(H) = {h ∈ H | ∆(h) = 1(1)h⊗ 1(2)},(12)

Hs = εs(H) = {h ∈ H | ∆(h) = 1(1) ⊗ h1(2)}(13)

play the role of “non-commutative” bases of H. The next proposition summarizes
their properties.

Proposition 1.0.3. Ht (resp. Hs) is a left (resp. right) coideal subalgebra of H.
These subalgebras commute with each other ; moreover

Ht = {(φ⊗ id)∆(1) | φ ∈ Ĥ},
Hs = {(id⊗ φ)∆(1) | φ ∈ Ĥ},

i.e., Ht (resp. Hs) is generated by the right (resp. left) tensorands of ∆(1).

Démonstration. Clearly, Ht and Hs are coideals by Proposition 1.0.2(iii), that com-
mute by 1.0.2(iv).

We have : Ht = ε(1(1)H)1(2) ⊂ {(φ⊗ id)∆(1) | φ ∈ Ĥ}, conversely φ(1(1))1(2) =

φ(1(1))εt(1(2)) ⊂ Ht, therefore Ht = {(φ ⊗ id)∆(1) | φ ∈ Ĥ}. Too see that it
is an algebra we note that 1 = εt(1) ∈ Ht and for all h, g ∈ H compute, using
Proposition 1.0.2(ii) and (v) :

εt(h)εt(g) = ε(εt(h)(1)g)εt(h)(2)

= ε(1(1)εt(h)g)1(2) = εt(εt(h)g) ∈ Ht.

The statements about Hs are proven similarly. �

Definition 1.0.4. We will call Ht (resp. Hs) a target (resp. source) counital sub-
algebra.

Properties of the antipode

They are the same as the properties of the antipode of a finite-dimensional Hopf
algebra.

Proposition 1.0.5. The antipode S is unique and bijective. Also, it is both algebra
and coalgebra anti-homomorphism.

Proof. Let f ∗ g = m(f ⊗ g)∆ be the convolution of f, g ∈ Endk(H). Then
S ∗ id = εs, id ∗ S = εt, and S ∗ id ∗ S = S. If S′ is another antipode of H then

S′ = S′ ∗ id ∗ S′ = S′ ∗ id ∗ S = S ∗ id ∗ S = S.
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To check that S is an algebra anti-homomorphism, we compute

S(1) = S(1(1))1(2)S(1(3)) = S(1(1))εt(1(2)) = εt(1) = 1,

S(hg) = S(h(1)g(1))εt(h(2)g(2))

= S(h(1)g(1))h(2)εt(g(2))S(h(3))

= εs(h(1)g(1))S(g(2))S(h(2))

= S(g(1))εs(h(1))εt(g(2))S(h(2)) = S(g)S(h),

for all h, g ∈ H, where we used Proposition 1.0.2(iv) and easy identities εt(hg) =
εt(hεt(g)) and εs(hg) = εt(εs(h)g). Dualizing the above arguments we show that S
is also a coalgebra anti-homomorphism :

ε(S(h)) = ε(S(h(1))εt(h(2))) = ε(S(h(1))h(2)) = ε(εt(h)) = ε(h),

∆(S(h)) = ∆(S(h(1))εt(h(2)))

= ∆(S(h(1)))(εt(h(2))⊗ 1)

= ∆(S(h(1)))(h(2)S(h(4))⊗ εt(h(3)))

= ∆(εs(h(1)))(S(h(3))⊗ S(h(2)))

= S(h(3))⊗ εs(h(1))S(h(2)) = S(h(2))⊗ S(h(1)).

The proof of the bijectivity of S can be found in ([BNSz], 2.10). �
Next, we investigate the relations between the antipode and counital maps.

Proposition 1.0.6. We have S ◦ εs = εt ◦ S and εs ◦ S = S ◦ εt. The restriction
of S defines an algebra anti-isomorphism between counital subalgebras Ht and Hs.

Proof. Using results of Proposition 1.0.5 we compute

S(εs(h)) = S(1(1))ε(h1(2)) = ε(1(1)S(h))1(2) = εt(S(h)),

for all h ∈ H. The second identity is proven similarly. Clearly, S maps Ht to Hs

and vice versa. Since S is bijective, and dimHt = dimHs by Proposition 1.0.3,
therefore S|Ht and S|Hs are anti-isomorphisms. �

Proposition 1.0.7. Any morphism α : H → K between quantum groupoids pre-
serves counital subalgebras, i.e. Ht

∼= Kt and Hs
∼= Ks. In other words, quantum

groupoids with a given target (source) counital subalgebra form a full subcategory.

Proof. It is clear that α|Ht : Ht → Kt is a homomorphism. If we write ∆(1H) =
Σni=1 wi⊗zi with {wi}ni=1 and {zi}ni=1 linearly independent, then ∆(1K) = Σni=1 α(wi)
⊗α(zi). By Proposition 1.0.3, Kt = span{α(zi)}, i.e., α|Ht is surjective. Since zj =
εt(zj) = Σni=1 ε(wizj)zi, then ε(wizj) = δij , therefore, dimHt = n = Σni=1 εH(wizi) =
Σni=1 εH(wiS(zi)) = εH(εt(1H)) = εH(1H) = εK(1K) = dimKt, so α|Ht is bijective.
The proof for source subalgebras is similar. �

Integrals and semisimplicity

Definition 1.0.8 ([BNSz], 3.1). A left (right) integral in H is an element l ∈ H
(r ∈ H) satisfying, for all h ∈ H, relation

(14) hl = εt(h)l, (rh = rεs(h)).

These notions generalize the corresponding notions for Hopf algebras. We denote∫ l
H

(respectively,
∫ r
H

) the space of left (right) integrals in H and by
∫
H

=
∫ l
H
∩
∫ r
H

the space of two-sided integrals.
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An integral in H (left or right) is called non-degenerate if it defines a non-

degenerate functional on Ĥ. A left integral l is called normalized if εt(l) = 1.
Similarly, r ∈

∫ r
H

is normalized if εs(r) = 1.
A dual notion to that of left (right) integral is the left (right) invariant measure.

Namely, a functional φ ∈ Ĥ is said to be a left (right) invariant measure on H if

(id⊗ φ)∆ = (εt ⊗ φ)∆, (resp., (φ⊗ id)∆ = (φ⊗ εs)∆).

A left (right) invariant measure is said to be normalized if (id⊗ φ)∆(1) = 1 (resp.,
(φ⊗ id)∆(1) = 1).

The next proposition gives a description of the set of left integrals.

Proposition 1.0.9 ([BNSz], 3.2). The following conditions for l ∈ H are equiva-
lent :

(i) l ∈
∫ l
H

,

(ii) (1⊗ h)∆(l) = (S(h)⊗ 1)∆(l) for all h ∈ H,

(iii) (id⊗ l)∆(Ĥ) = Ĥt,

(iv) (Ker εt)l = 0,

(v) S(l) ∈
∫ r
H

.

Proof. The proof is a straightforward application of Definitions 1.0.1, 1.0.8,
Propositions 1.0.2 and 1.0.6, we leave it as an exercise. �

Definition 1.0.10. A quantum groupoid is said to be semisimple if its algebra
H is semisimple. A ∗-quantum groupoid is a quantum groupoid such that H is a
∗-algebra over the field C of complex numbers and ∆ is a ∗-homomorphism. A
C∗-quantum groupoid is a ∗-quantum groupoid such that H is a finite-dimensional
C∗-algebra.

Let us recall that a unital algebra A is said to be separable [P] if there is a
separability element e ∈ A⊗A such that m(e) = 1 and (a⊗1)e = e(1⊗a), (1⊗a)e =
e(a⊗ 1) for all a ∈ A. A semisimple algebra over C is separable.

Let us note that the algebras Ht and Hs are separable with the separability
elements (S ⊗ id)∆(1) and (id⊗ S)∆(1), respectively.

Maschke’s Theorem

We have the following generalization of Maschke’s Theorem, well-known for Hopf
algebras ([M], 2.2.1).

Theorem 1.0.11 ([BNSz], 3.13). Let H be a finite quantum groupoid, then the
following conditions are equivalent :

(i) H is semisimple,

(ii) There exists a normalized left integral l in H,

(iii) H is separable.

Proof. (i)⇒ (ii) : Suppose that H is semisimple, then since Ker εt is a left ideal
in H we have Ker εt = Hp for some idempotent p. Therefore, Ker εt(1 − p) = 0
and l = 1 − p is a left integral by Lemma 1.0.9(iv). It is normalized since εt(l) =
1 − εt(p) = 1. (ii) ⇒ (iii) : if l is normalized then l(1) ⊗ S(l(2)) is a separability
element of H by Lemma 1.0.9(ii). (iii) ⇒ (i) : this is a standard result [P]. �
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Now we will describe the class of quantum groupoids possessing Haar integrals,
i.e., normalized two-sided integrals (note that if such an integral exists then it is
unique and is an S-invariant idempotent).

Theorem 1.0.12 ([BNSz], 3.27). Let H be a finite quantum groupoid over an
algebraically closed field k. Then the following conditions are equivalent :

(i) There exists a Haar integral,

(ii) H is semisimple and there exists an invertible element g ∈ H implementing
the antipode : gxg−1 = S(x) for all x ∈ H, and such that trπα(g−1) 6= 0 for
all irreducible representations πα of H (here tr is a usual trace on a matrix
algebra).

Inclusion matrix, Bratteli diagram and index

Let H be a semisimple quantum groupoid over algebraically closed field k.
Then H = ⊕Lα=1Mmα(k), Ht = ⊕Kβ=1Mnβ (k). Let us introduce the correspon-

ding dimension vectors m := (m1, ..., mL) and n := (n1, ..., nK). Clearly ||n||2 =
dimHt, ||m||2 = dimH. In what follows we consider the inclusion matrix Λ, the
Bratteli diagram and the index [H : Ht] of the inclusion Ht ⊂ H - for their defini-
tions and properties see, for example, [JS], 3.2, [GHJ], 2.1.

Since the inclusion above is unital, we have : m = nΛ, which gives inequality
[H : Ht] ≥ dimH/dimHt. Indeed, for any vector f ∈ RK we have :

[H : Ht] = ||Λ||2 = (max
f 6=0
||fΛ||/||f ||)2 ≥ (||nΛ||/||n||)2

= (||m||/||n||)2 = dimH/dimHt.

Let us show a more specific property of inclusion matrices of connected quantum
groupoids, i.e., such that Ht ∩ Z(H) = C (or, equivalently, Hs ∩ Z(H) = C) ; any
of these conditions implies the irreducibility of the trivial left H-module Ht given
by x · εt(y) := εt(xy) for all x, y ∈ H (see ([BNSz], 2.4, [NV1], 2.2).

Indeed, let π1, . . . πK (resp. ρ1, . . . ρL) be all the classes of irreducible representa-
tions of Ht (resp. H), and assume that ρ1 is the trivial representation of H acting
on Ht. Then Λij , the ij-th entry of Λ, equals to the multiplicity of πi in ρj |Ht .

Since ρ1|Ht is equivalent to the left regular representation of Ht on itself, we
have Λi1 = ni for all i = 1 . . .K, so

(ΛΛt)ik = Σj ΛijΛkj ≥ Λi1Λk1 ≥ nink.

Lemma 1.0.13. The following inequalities hold true for any semisimple connected
quantum groupoid over algebraically closed field :

(i) [H : Ht] ≥ dimHt ;

(ii) [H : Ht]
2 ≥ dimH.

Proof. (i) The above mentioned inequality for the entries of K × K matrices
ΛΛt and N , whose entries are ninj , gives :

[H : Ht] = ||ΛΛt|| = maxf ||fΛΛt||/||f || ≥

||nΛΛt||/||n|| ≥ ||nN ||/||n|| = ||n||2 = dimHt.

(ii) This is a trivial corollary of the two above mentioned inequalities. �
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C∗-quantum groupoids

Definition 1.0.10 and the uniqueness of the unit, counit and the antipode (see
Proposition 1.0.5) imply that

1∗ = 1, ε(x∗) = ε(x), (S ◦ ∗)2 = id

for all x in any ∗-quantum groupoid. It is also easy to check the relations

εt(x)∗ = εt(S(x)∗), εt(x)∗ = εt(S(x)∗),

therefore, Ht and Hs are ∗-subalgebras, and to show that the dual, Ĥ, is also a
∗-quantum groupoid with respect to the ∗-operation

< φ∗, x >= < φ, S(x)∗ > for all φ ∈ Ĥ, x ∈ H.
The ∗-operation allows to simplify the axioms of a quantum groupoid (cf. the

axioms used in [NV1], [N1]). The second parts of equalities (2) and (3) of Defi-
nition 1.0.1 follow from the rest of the axioms, also S ∗ id = εs is equivalent to
id ∗ S = εt. Alternatively, under the condition that the antipode is both algebra
and coalgebra anti-homomorphism, the axioms 2 and 3 can be replaced by the
identities of Proposition 1.0.2 (ii) and (v) involving the target counital map.

The proof of the following elementary lemma can be found in [BNSz], 4.4 :

Lemma 1.0.14. Let H be a finite-dimensional C∗-algebra and S : H → H an
algebra anti-isomorphism such that (S ◦ ∗)2 = id. Then there exists an invertible
positive element g ∈ H such that :

(i) S2(x) = gxg−1, for all x ∈ H;

(ii) trπα(g−1) = trπα(g) for all irreducible representations πα of H (here tr is
a usual trace on a matrix algebra) ;

(iii) S(g) = g−1.

We call this element the canonical group-like element.

Theorem 1.0.15. ([BNSz], 4.5) In a C∗-quantum groupoid Haar integral h exists,
h = h∗ and

(φ, ψ) :=< φ∗ψ, h >, φ, ψ ∈ Ĥ
is a scalar product making Ĥ a Hilbert space where the left regular representation
of Ĥ is faithful. Thus, Ĥ is a C∗-quantum groupoid, too.

Proof. Clearly, H and the element g from Lemma 1.0.14 verify all the conditions
of Theorem 1.0.12, from where the existence of Haar integral follows. Since h is non
degenerate, the scalar product (·, ·) is also non degenerate. The equality

(φ, φ) =< φ∗φ, h >= < φ, S(h(1))∗ > < φ, h(2) >,

implies the positivity of (·, ·). �
We will denote by ĥ the Haar measure of Ĥ.

Lemma 1.0.16. ε is a positive functional, i.e., ε(x∗x) ≥ 0 for all x 6= 0.

Proof. For all x ∈ H we have

ε(x∗x) = ε(x∗1(1))ε(1(2)1
′
(2))ε(1

′
(1)x) = ε(εt(x)∗εt(x))

= < ĥ, εt(x)∗εt(x) >≥ 0,
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where we used ĥ|Ht = ε|Ht , which follows from

< ĥ, z >=< ε̂t(ĥ), z >=< 1̂, z >

for all z ∈ Ht. �

Lemma 1.0.17. There is a is positive and invertible gt ∈ Ht such that the canonical
group-like element of H can be written as g = gtS(g−1

t ).

The following property of g is now obvious :

∆(g) = (g ⊗ g)∆(1) = ∆(1)(g ⊗ g).

Examples : groupoid algebras and their duals

As group algebras and their duals are the easiest examples of Hopf algebras,
groupoid algebras and their duals provide ”trivial” examples of quantum groupoids.

Let G be a finite groupoid (a category with finitely many morphisms, such that
each morphism is invertible) then the groupoid algebra kG (generated by morphisms
g ∈ G with the product of two morphisms being equal to their composition if the
latter is defined and 0 otherwise) is a quantum groupoid via :

(15) ∆(g) = g ⊗ g, ε(g) = 1, S(g) = g−1, g ∈ G.

The counital subalgebras of kG are equal to each other and coincide with the abelian
algebra spanned by the identity morphisms : (kG)t = (kG)s = span{gg−1 | g ∈ G}.
The target and source counital maps are given by the operations of taking the
target (resp. source) object of a morphism :

εt(g) = gg−1 = idtarget(g) and εs(g) = g−1g = idsource(g).

The dual quantum groupoid (kG)∗ is isomorphic to the algebra of functions on
G, i.e., it is generated by idempotents pg, g ∈ G such that pgph = δg,hpg, with the
following structure operations

(16) ∆(pg) =
∑
uv=g

pu ⊗ pv, ε(pg) = δg,gg−1 , S(pg) = pg−1 .

The target (resp. source) counital subalgebra is precisely the algebra of functions
constant on each set of morphisms of G having the same target (resp. source) object.
The target and source maps are

εt(pg) = Σvv−1=g pv and εs(pg) = Σv−1v=g pv.

One can show that a C∗-quantum groupoid with a commutative algebra H (resp.,
co-commutative coproduct ∆) is isomorphic to the object described by the second
(resp., first) example above.

Groupoid algebras and their duals give examples of commutative and cocom-
mutative semisimple quantum groupoids, which are C∗-quantum groupoids if the
ground field is C (in the last case g∗ = g−1 for all g ∈ G).

Example 1.0.18. (i) Let G0 be the set of units of a finite groupoid G, then the

elements le =
∑
gg−1=e g (e ∈ G0) span

∫ l
kG

and elements re =
∑
g−1g=e g (e ∈ G0)

span
∫ r
kG

.

(ii) If H = (kG)∗ then
∫ l
H

=
∫ r
H

= span{pe, e ∈ G0}.
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Temperley-Lieb algebras

Generators and relations :

e2
i = ei = e∗i : eiei±1ei = λei, eiej = ejei

if |i− j| ≥ 2, here λ 6= 0 is real, i, j = 1, 2, ....

For fixed n ≥ 2 and λ−1 = 4 cos2 π
n+3 , it is known that

H = Alg{1, e1, ..., e2n−1} is a finite dimensional C∗-algebra,
let us put
Ht = Alg{1, e1, ..., en−1}, Hs = Alg{1, en+1, ..., e2n−1}

In particular, if n = 2 : H = Alg{1, e1, e2, e3} 'M2(C)⊕M3(C),
(so dim(H) = 13), Ht = Alg{1, e1} ' Hs = Alg{1, e3} ' C⊕ C,

λ−1 = 4 cos2 π
5 .

One can write down explicitly ∆, S and ε. One can show that H ∼= Ĥ.

2. Lecture 2. Representations of weak Hopf algebras and fusion
categories

Abstract.

We construct and study the category of representations of a weak Hopf algebra.
Independently, we give a definition of a fusion category, discuss the properties of
these categories and give a number of concrete examples. Finally, we explain, using
reconstruction theorems, the relation between fusion categories and the categories
of representations of semisimple weak Hopf algebras.

Representation categories of quantum groupoids were studied in [NTV], see also
[BSz2] for the C∗-case. We do not discuss here quasitriangular, ribbon and modular
WHA’s as well as the Drinfeld Double construction for WHA’s (see [NTV]).

Basic definitions.

Let us recall the definitions of a tensor (monoidal) category and the tensor (mo-
noidal) functor as well as the definition of a fusion category.

A tensor category C is a category equipped with
– Tensor product - a bifunctor C ⊗ C → C with associativity isomorphisms
α(X,Y, Z) : (X ⊗ Y ) ⊗ Z 7→ X ⊗ (Y ⊗ Z) (∀ X,Y, Z ∈ Ob(C)) satisfying the
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Pentagon condition :

((W ⊗X)⊗ Y )⊗ Z
α(W,X,Y )⊗idZ //

��

(W ⊗ (X ⊗ Y ))⊗ Z

α(W,X⊗Y,Z)

��
α(W ⊗X,Y, Z)

��

W ⊗ ((X ⊗ Y )⊗ Z)

idW⊗α(X,Y,Z)

��
(W ⊗X)⊗ (Y ⊗ Z)

α(W,X,Y⊗Z) // W ⊗ (X ⊗ (Y ⊗ Z))

– Unit object 1 with left and right unit isomorphisms lX : 1 ⊗ X → X and
rX : X ⊗ 1→ X satisfying theTriangle condition.

A functor between tensor categories

Let (C,⊗,1, α) and (D,⊗′,1′, α′) be two tensor categories. A functor F : C → D
is called a tensor functor if it is equipped with a family of isomorphisms {FX,Y :
F(X)⊗′F(Y )→ F ′(X⊗Y ) |∀X,Y ∈ Ob(C)} such that F(1) ∼= 1′ and the diagram

(F(X)⊗′ F(Y ))⊗′ F(Z)
α′(F(X),F(Y ),F(Z)) //

��

F(X)⊗′ (F(Y )⊗′ F(Z))

idF(X)⊗′FY,Z
��

F(X ⊗ Y )⊗′ F(Z)

��

F(X)⊗′ F(Y ⊗ Z)

FX,Y⊗Z
��

F((X ⊗ Y )⊗ Z)
F(α(X,Y,Z)) // F(X ⊗ (Y ⊗ Z))

is commutative.
A fusion category is a tensor category with
– Duality (rigidity) : for any X ∈ Ob(C), there are left and right dual objects,
∗X and X∗, with their evaluation and coevaluation morphisms. In particular,
for X∗ :

dX : X∗ ⊗X 7→ 1, bX : 1 7→ X ⊗X∗

satisfy relations :

(idX ⊗ dX)(bX ⊗ idx) = idX , (dX ⊗ idX∗)(idX∗ ⊗ bX) = idX∗ .

– Finite semisimplicity :
The set Irr(C) of (classes of) simple objects (Xi)i=1,..,rk(C) (i.e., End(Xi) =

C) is finite. Any X ∈ Ob(C) is isomorphic
to a direct sum of Xi (with multiplicities). In particular :

Xi ⊗Xj = ⊕
k
Nk
ijXk (fusion rule) and 1 = Xi0 .

– Finally, we suppose that Hom(X,Y ) are finite dimensional vector spaces over
C, for all X,Y ∈ Ob(C).
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Dimensions of objects.

Frobenius-Perron dimension of Xi - the largest
nonnegative eigenvalue of the matrix (Nk

ij)j,k. We have

FPdim(Xi ⊗Xj) = FPdim(Xi)FPdim(Xj),

FPdim(Xi ⊕Xj) = FPdim(Xi) + FPdim(Xj)

which gives a homomorphism of the fusion ring of C to R.
By definition, FPdim(C) = ΣiFPdim(Xi)

2.

Proposition (Etingof, Nikshych, Ostrik, 2005)
If FPdim(C) ∈ N, then :

1) C admits a unique pivotal structure (i.e., a family of isomorphisms aX :
X 7→ X∗∗ such that aX⊗Y = aX ⊗ aY )
satisfying Tr(aX) = FPdim(X), where Tr(aX) := dX∗◦ ◦(aX ⊗ idX∗) ◦ bX ∈
End(1) ∼= C, X,Y ∈ Ob(C).
Such categories are called pseudo-unitary, they are
automatically spherical, i.e., Tr(aX) = Tr(aX∗).

2) Tr(aXi) = FPdim(Xi) =
√
N i, where Ni ∈ N.

Examples of fusion categories.

1. The category V ecf of finite dimensional vector spaces over C with usual ⊗,
1 = C, for any V ∈ Ob(V ecf ), ∗V = V ∗ is the usual dual vector space, the only
simple object is 1, so rk(V ecf ) = 1. The associativity isomorphisms are identities.

2. Let G be a finite group, ω : G×G×G→ C a 3-cocycle. V ecωG is the semisimple
category whose simple objects are elements of G,

g ⊗ h = gh, ∗g = g∗ = g−1, 1 = e ∈ G,

αg,h,k = ω(g, h, k)idghk , for all g, h, k ∈ G.
The pentagon condition follows from the 3-cocycle equality :

ω(gh, k, l)ω(g, h, kl) = ω(g, h, k)ω(g, hk, l)ω(h, k, l), ∀g, h, k, l ∈ G.

3. Representation category Rep(G) with usual ⊗, 1 is the trivial representation,
for any π ∈ Ob(V ecf ), ∗π = π∗ is the conjugate representation. The associativity
isomorphisms are identities.

4. Similarly : representation category of a finite dimensional semisimple Hopf
algebra.

5. Representation category of a connected semisimple WHA.

For a quantum groupoid H let Rep(H) be the category of representations of
H, whose objects are H-modules of finite rank and whose morphisms are H-linear
homomorphisms. We show that, as in the case of Hopf algebras, Rep(H) has a
natural structure of a monoidal category with duality.
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For objects V,W of Rep(H) set

V ⊗W = {x ∈ V ⊗W | x = ∆(1) · x},

with the obvious action of H via the comultiplication ∆. The tensor product of
morphisms is the standard tensor product of homomorphisms. The associativity
isomorphisms ΦU,V,W : (U ⊗V )⊗W → U ⊗ (V ⊗W ) are functorial and satisfy the
pentagon condition, since ∆ is coassociative. We will suppress these isomorphisms
and write simply U ⊗ V ⊗W .

The target counital subalgebra Ht ⊂ H has an H-module structure given by
a · z = εt(az), where a ∈ H, z ∈ Ht.

Lemma 2.0.19. Ht is the unit object of Rep(H).

Proof. Define a left unit homomorphism lV : Ht ⊗ V → V by

lV (1(1) · z ⊗ 1(2) · v) = z · v, z ∈ Ht, v ∈ V.

This map is H-linear, since

lV (a · (1(1) · 1⊗ 1(2) · v)) = lV (a(1) · ⊗a(2) · v)

= εt(a(1)z)a(2) · v = az · v
= a · lV (1(1) · 1⊗ 1(2) · v),

for all a ∈ H. The inverse map l−1
V : V → Ht ⊗ V is given by

l−1
V (v) = S(1(1))⊗ 1(2) · v.

Moreover, the collection {lV }V gives a natural equivalence between the functor
Ht⊗( ) and the identity functor. Indeed, for anyH-linear homomorphism f : V → U
we have :

lU ◦ (id⊗ f)(1(1) · 1⊗ 1(2) · v) = lU (1(1) · 1⊗ 1(2) · f(v))

= z · f(v) = f(z · v)

= f ◦ lV (1(1) · 1⊗ 1(2) · v)

Similarly, one can check that the right unit homomorphism rV : V ⊗ Ht → V
defined by

rV (1(1) · v ⊗ 1(2) · z) = S(z) · v, z ∈ Ht, v ∈ V,
has the inverse r−1

V (v) = 1(1) ·v⊗1(2) and satisfies the necessary properties. Finally,
we verify the triangle axiom. For all objects V,W of Rep(H) and v ∈ V, w ∈W we
have

(idV ⊗ lW )(1(1) · v ⊗ 1′(1)1(2) · z ⊗ 1′(2) · w)

= 1(1) · v ⊗ 1(2)z · w
= 1(1)S(z) · v ⊗ 1(2) · w
= (rV ⊗ idW )(1′(1) · v ⊗ 1′(2)1(1) · z ⊗ 1(2) · w),

therefore idV ⊗ lW = rV ⊗ idW as functors. �

Using the antipode S of H, we can provide Rep(H) with a duality. For any object
V of Rep(H) define the action of H on V ∗ = Homk(V, k) by (a ·φ)(v) = φ(S(a) ·v),
where a ∈ H, v ∈ V, φ ∈ V ∗. For any morphism f : V → W let f∗ : W ∗ → V ∗ be
the homomorphism dual to f .
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For any V in Rep(H) define the duality homomorphisms

dV : V ∗ ⊗ V → Ht, bV : Ht → V ⊗ V ∗

as follows. For Σj φ
j ⊗ vj ∈ V ∗ ⊗ V set

dV (Σj φ
j ⊗ vj) = Σj φ

j(1(1) · vj)1(2).

Let {gi}i and {γi}i be bases of V and V ∗ respectively, dual to each other. The
element Σi gi ⊗ γi does not depend on the choice of these bases ; moreover, for all
v ∈ V, φ ∈ V ∗ one has φ = Σi φ(gi)γ

i and v = Σi giγ
i(v). Set

bV (z) = Σi z(1) · gi ⊗ z(2) · γi.

Proposition 2.0.20. The category Rep(H) is a monoidal category with duality.

Proof. We have already seen that Rep(H) is monoidal, it remains to prove that
dV and bV are H-linear and satisfy the identities

(idV ⊗ dV )(bV ⊗ idV ) = idV , (dV ⊗ idV ∗)(idV ∗ ⊗ bV ) = idV ∗ .

Take Σj φ
j ⊗ vj ∈ V ∗⊗V, z ∈ Ht, a ∈ H. Using the axioms of a quantum groupoid,

we have

a · dV (Σj φ
j ⊗ vj) = Σj φ

j(1(1) · v)εt(a1(2))

= Σj φ
j(εs(1(1)a) · vj)1(2)

= Σj φ
j(S(a(1))1(1)a(2) · vj)1(2)

= Σj (a(1) · φj)(1(1) · (a(2) · vj))1(2)

= Σj dV (a(1) · φj · a(2) · vj)
= dV (a · Σj φj ⊗ vj),

therefore, dV is H-linear. To check the H-linearity of bV we have to show that
a · bV (z) = bV (a · z), i.e., that

Σi a(1)z · gi ⊗ a(2) · γi = Σi 1(1)εt(az) · gi ⊗ 1(2) · γi.

Since the both sides of the above equality are elements of V ⊗k V ∗, evaluating the
second factor on v ∈ V , we get the equivalent condition

a(1)zS(a(2)) · v = 1(1)εt(az)S(1(2)) · v,

which is easy to check. Thus, bV is H-linear. Using the isomorphisms lV and rV
identifying Ht ⊗ V , V ⊗Ht and V , for all v ∈ V and φ ∈ V ∗ we have :

(idV ⊗ dV )(bV ⊗ idV )(v) = (idV ⊗ dV )(bV (1(1) · 1)⊗ 1(2) · v)

= (idV ⊗ dV )(bV (1(2))⊗ S(1(1)) · v)

= Σi (idV ⊗ dV )(1(2) · gi ⊗ 1(3) · γi ⊗ S(1(1)) · v)

= Σi 1(2) · gi(1(3) · γi)(1′(1)S(1(1)) · v)⊗ 1′(2)

= 1(2)S(1(3))1
′
(1)S(1(1)) · v ⊗ 1′(2) = v,

(dV ⊗ idV ∗)(idV ∗ ⊗ bV )(φ) = (dV ⊗ idV ∗)(1(1) · φ⊗ bV (1(2)))

= Σi (dV ⊗ idV ∗)(1(1) · φ⊗ 1(2) · gi ⊗ 1(3) · γi)
= Σi (1(1) · φ)(1′(1)1(2) · gi)1′(2) ⊗ 1(3) · γi

= 1′(2) ⊗ 1(3)1(1)S(1′(1)1(2)) · φ = φ,
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therefore, the proof is complete. �

In order to make Rep(H) a finite semisimple category, we have to require H to
be semisimple.

Finally, one can show that Ht is a simple H-module if and only if H is connected
(i.e., Ht ∩ Z(H) = C).

Thus, the representation category of a connected semisimple WHA is a fusion
category.

Classification of fusion categories of rank 2 (V. Ostrik, 2003).

Irr(C) = {1, X}, ∗1 = 1∗ = 1, ∗X = X∗ = X.

All possible fusion rules : 1⊗X = X ⊗ 1 = X, X ⊗X = 1 + nX, n = 0, 1, 2, ...

1) If n = 0, then C ∼= V ecωG, where G = Z/2Z (2 categories).

2) If n = 1, there are two fusion categories with dimX = 1±
√

5
2 (because

(dimX)2 = 1 + dimX) one of them (with +) is equivalent to the representa-
tion category of the Temperley-Lieb C∗-WHA with n = 2- Yang-Lee fusion
category.

3) If n > 1, there is no fusion category.

From fusion categories to Weak Hopf Algebras.

1. Hayashi’s canonical tensor functor.

Given a fusion category C with Ω := Irr(C), define a commutative algebra R :=
⊕x∈ΩCpx, where pxpy = δx,ypx. The canonical Hayashi’s tensor functor F : C →
R−Bimod, where R−Bimod is the tensor category of R-bimodules with ⊗R and
unit object R :

(i) F(x) := ⊕y,z∈ΩHom(z, y ⊗ x),∀x ∈ Ω - R-bimodule via :

py · F(x) · pz = Hom(z, y ⊗ x).

(ii) If x, y ∈ Ω, f ∈ Hom(x, y), put F(f)(ϕ) := (idz ⊗ f) ◦ ϕ, for any ϕ ∈
pz · F(x) · pt = Hom(t, z ⊗ x), where z, t ∈ Ω.

The structure of a tensor functor on F :

(iii) Fx,y : F(x)⊗F(y)→ F(x⊗ y) is given by

Fx,y(ϕ⊗ ψ) := αz,x,y ◦ (ϕ⊗ idy) ◦ ψ,

for all ϕ ∈ pz · F(x) · pt, ψ ∈ pt · F(y) · ps, z, s, t ∈ Ω.

(iv) F−1
1 : R→ F(1) is defined by F(px) := r−1

x , ∀x ∈ Ω.

2. Szlachányi’s reconstruction theorem

Let C,Ω, R, and F : C → R−Bimod be as above. Define

H := ⊕x∈ΩEndC(F(x))
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and inclusions s : R→ H and t : R→ H compatible with left and right actions of
R, i.e., s(r)h = h · r, t(r)h = r · h, ∀r ∈ R, h ∈ H. Denote J := ⊕x,y∈ΩF−1

x,y with
Fx,y as above. Then the algebra H has a semisimple connected WHA structure
with the coproduct

∆(h) := Σx∈Ω(s(px)⊗ t(px))J ◦ h ◦ J−1, ∀h ∈ H.

In particular, ∆(h) := Σx∈Ω(s(px) ⊗ t(px)), Ht = V ec{t(px))|x ∈ Ω}, Hs =
V ec{s(px))|x ∈ Ω}.

ε, εt, εs, and S can be found from relations (ε⊗ id)∆ = (id⊗ ε)∆ = id, εt(h) =
ε(1(1)h)1(2), εs(h) = 1(1)ε(h1(2)), m(S ⊗ id)∆ = εs, m(id⊗ S)∆ = εt.

Finally, C ' Rep(H).

So, we can construct quantum groupoids from fusion categories.

Example : Tambara-Yamagami fusion categories

Let G be an abelian finite group, χ : G×G→ C a non
degenerate symmetric bicharacter, and β = ±(

√
|G|)−1.

– simple objects are elements of G and an element m ;
– fusion rules and duality :

g ⊗ h = g + h, ∗g = g∗ = −g, 1 = 0 ∈ G,

g ⊗m = m⊗ g = m = m∗, m⊗m = ⊕
g∈G

g;

– the associativity isomorphisms are identities except for ag,m,h = χ(g, h)idm ,
for all g, h ∈ G,

am,g,m =
⊕
h∈G

χ(g, h)idh, for all g ∈ G,

am,m,m =
(
βχ(g, h)−1idm

)
g,h

.

Weak C∗-Hopf algebras associated with Tambara-Yamagami categories
(C. Mével, 2010)

Given a Tambara-Yamagami category, denote n = |G| and Ω = G ∪ {m}. Then
the canonical weak C∗-Hopf algebra is

H =
⊕
g∈G

Mn+1(C)⊕M2n(C),

the coproduct and antipode are written in terms of χ and β.
H is self-dual : H ' Ĥ

The target counital subalgebra is of the form Ht =
⊕
x∈Ω

Cex

(ex are minimal idempotents).
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The inclusion matrix of Ht ⊂ H :

1 1 ... 1 1
. . ... . .
. . ... . .
. . ... . .
1 1 ... 1 1
1 1 ... 1 n

The index of the inclusion Ht ⊂ H equals to (n+
√
n)2 and

its Bratteli diagram is as follows :

eg1 = e0 H0

eg2 Hg2

egn Hgn

em Hm

Figure 1

n

3. Lecture 3. Applications of weak Hopf algebras to von Neumann
algebras

Abstract.

We recall basic definitions and facts of the von Neumann algebra theory and, in
particular, of the subfactor theory. Then we explain how a finite index and depth 2
subfactor generates a C*-weak Hopf algebra and, more generally, how to describe
a structure of a finite index and finite depth subfactor in terms of a C*-weak Hopf
algebra associated with it. A number of concrete examples is discussed.

Recall that a II1-factor is a von Neumann algebra with trivial center admitting
a tracial state. An example of such a factor is the group von Neumann algebra of a
discrete group whose every non-trivial conjugacy class is infinite, the corresponding
trace being generated by its Haar measure. It is also known, that there exists a
unique (up to isomorphism) a hyperfinite II1-factor R (i.e., containing an increasing
sequence of finite-dimensional C∗-algebras, whose union is weakly dense in R).
There is a notion of index for an inclusion of von Neumann algebras, generalizing
a usual notion of index of a subgroup in a group. For the basic results, examples
and terminology of the subfactor theory see [GHJ], [JS]).
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A II1-factor is (an inifnite-dimensional) von Neumann algebra M

such that Z(M) = C1 equipped with a faithful normal finite trace,

i.e., a linear form τ : M → C such that τ(ab) = τ(ba), τ(1) = 1

and, for all a ∈M+, we have τ(a) ≥ 0, τ(a) = 0⇒ a = 0.

Example of a II1 factor : M = L(H) acting on l2(H), where H a

discrete ICC group (in particular, free group with 2 generators),

τ(m) =< m†δe, δe >.

A subfactor : M0 ⊂ (M1, τ) −→ e : L2(M1, τ) → M0

Main Problem : To study subfactors of a given factor M1, in particular, when
M1 is a hyperfinite II1-factor.

Index : [M1 : M0] := τ(e)−1

V.Jones theorem :

[M1 : M0] ∈ {4 cos2 π

n
|n ≥ 3} ∪ [4,∞]

Fundamental construction :

M2 = {M1, e} is a factor and [M2 : M1] = [M1 : M0].

M0 ⊂M1 ⊂M2 ⊂ ... - V.Jones tower

Derived tower : M ′0 ∩M1 ⊂M ′0 ∩M2 ⊂M ′0 ∩M3 ⊂ ...

these C∗-algebras are finite-dimensional if [M1 : M0] <∞.

Depth k - fundamental construction from step k in the

derived tower. Other invariants : Principal and dual graphs.

Example : A finite group action on a II1-factor

(MG)′ ∩M = C1.

Then the tower of factors :

MG ⊂M ⊂M oG ⊂ (M oG) o Ĝ ⊂ ....
is of depth 2 and of index [M : MG] = [M oG : M ] = ... = |G|.

Here Ĝ is the Pontryagin dual of G if G is abelian, and if not

we have to view G as a C*-Hopf (more exactly, G.I. Kac) algebra :

H = CG,∆ : g 7→ g ⊗ g, S : g 7→ g−1, ε : g 7→ 1, then Ĥ is the

dual G.I. Kac algebra (of fuctions on G).

Galois correspondence : MG ⊂ K ⊂M iff K = ML for some
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subgroup L of G.

Quantum groups and subfactors

Theorem (R. Longo, W. Szymanski, M.-C. David, 1994 - 1996)

M0 ⊂ M1 : type II1 subfactor of finite index λ and depth 2, irreducible :

M ′0 ∩M1 = C1, M0 ⊂M1

e1⊂M2

e2⊂M3....... Jones tower, then :

– H = M ′0 ∩M2, Ĥ = M ′1 ∩M3 : Kac algebras in duality

– Ĥ acts on M2 and M1 = M Ĥ
2 , M3 = θ(M2 o Ĥ)

– [Mk : Mk−1] = dimH = dim Ĥ (k = 1, 2, ..)

Duality : < a, b >= λ−2τ(ae2e1b).

< ∆(a), b⊗ c >=< a, bc >

< S(a), b >= < a∗, b∗ >

ε(a) =< a,1 >

Further motivation : M ′0 ∩M1 6= C1, non integer index

3.1. Actions of C∗-quantum groupoids on von Neumann algebras.

Definition 3.1.1. An algebra A is a (left) H-module algebra if A is a left H-module
via h⊗ a→ h . a and

1) h . (ab) = (h(1) . a)(h(2) . b),

2) h . 1 = εt(h) . 1.

If A is an H-module algebra we will also say that H acts on A.

Definition 3.1.2. An algebra A is a (right) H-comodule algebra if A is a right
H-module via ρ : a→ a(0) ⊗ a(1) and

1) ρ(ab) = a(0)b(0) ⊗ a(1)b(1),

2) ρ(1) = (id⊗ εt)ρ(1).

It follows immediately that A is a left H-module algebra if and only if A is a
right Ĥ-comodule algebra.

Example 3.1.3. (i) The target counital subalgebra Ht is a trivial H-module
algebra via h . z = εt(hz), h ∈ H, z ∈ Ht.

(ii) H is an Ĥ-module algebra via the dual action φ . h = h(1)〈φ, h(2) 〉, φ ∈
Ĥ, h ∈ H.

(iii) Let A = CH(Hs) = {h ∈ H | hy = yh∀y ∈ Hs}, be the centralizer of
Hs in H, then A is an H-module algebra via the adjoint action h . a =
h(1)aS(h(2)).

Let A be an H-module algebra, then a smash product algebra AoH is defined
on a k-vector space A⊗HtH (relative tensor product), where H is a left Ht-module
via multiplication and A is a right Ht-module via

a · z = S−1(z) . a = a(z . 1), a ∈ A, z ∈ Ht.
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Let a o h be the class of a ⊗ h in A ⊗Ht H, then the multiplication in A o H is
given by the familiar formula

(ao h)(bo g) = a(h(1) o b) o h(2)g, a, b,∈ A, h.g ∈ H,

and the unit of AoH is 1 o 1.

Example 3.1.4. H is isomorphic to the trivial smash product algebra Ht oH.

Let a von Neumann algebra M be a left H-module algebra in the sense of Defi-
nition 3.1.1 via weakly continuous action of a C∗-quantum groupoid H : H ⊗M 3
x⊗m 7→ (x . m) ∈M such that (x . m)∗ = S(x)∗. m∗, x . 1 = 0 iff εt(t) = 0.

Then it is possible to show that a smash product algebra (now we call it crossed
product algebra, denote it by M oH and its elements by [m⊗x]), equipped with an
involution [m⊗x]∗ = [(x∗(1) .m

∗)⊗x∗(2)], is *-isomorphic to a weakly closed algebra

of operators on some Hilbert space ([NSzW], 3.4.2), i.e., M oH is a von Neumann
algebra.

The collection MH = {m ∈M | x . m = εt(x) . m, ∀x ∈ H} is a von Neumann
subalgebra of M , called fixed point subalgebra. The relative commutant M ′∩MoH
always contains a *-subalgebra isomorphic to Hs. Indeed, if z ∈ Hs, then ∆(z) =
1(1) ⊗ 1(2)z, therefore

[1⊗ z][m⊗ 1] = [(z(1) . m)⊗ z(2)] = [(1(1) . m)⊗ 1(2)z] =

= [m⊗ z] = [m⊗ 1][1⊗ z],
for any m ∈ M , and Hs ⊂ M ′ ∩ M o H. An action of H is called minimal if
Hs = M ′ ∩M oH.

Like in the case of smash products, one can now define the dual action, i.e., the
action of a dual C∗-quantum groupoid Ĥ on the von Neumann algebra M o H,
and one can construct the von Neumann algebra (M oH) o Ĥ.

If H is a connected C∗-quantum groupoid having a minimal action on a factor M
(i.e., Z(M) = C), then one can show ([NSzW], 4.2.5, 4.3.5) that Ĥ is also connected
and that

N = MH ⊂M ⊂M1 = M oH ⊂M2 = (M oH) o Ĥ ⊂ ...

is the Jones tower of factors of finite index with the derived tower

N ′ ∩N = C ⊂ N ′ ∩M = Ht ⊂ N ′ ∩M1 = H ⊂ N ′ ∩M2 = H o Ĥ ⊂ ...

The fact that the last triple of finite-dimensional C∗-algebras is the basic construc-
tion, means exactly that the above Jones tower of factors is of depth 2. Moreover,
in the case of II1-factors the finite-dimensional C∗-algebras Ht, H, Ĥ,H o Ĥ form
a canonical commuting square, which determines completely the equivalence class
of the initial subfactor. This implies that any biconnected C∗-quantum groupoid
has at most one minimal action on a given II1-factor and thus corresponds to no
more than one (up to equivalence) finite index depth 2 subfactor.

Let us mention the following existence result (D. Nikshych, M.-C. David) : any
biconnected involutive C∗-quantum groupoid H has a minimal action on the stan-
dard hyperfinite II1-factor. The idea of the construction is as follows : in the Jones
tower Ht ⊂ H ⊂ H o Ĥ ⊂ ... all the inclusions are connected, so the union of
these finite-dimensional C∗-algebras admits a unique tracial state ; therefore, its
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von Neumann algebra completion with respect to this trace is a copy of the stan-
dard hyperfinite II1-factor. Then one can extend the actions of H on the above
algebras to its actions on this factor and show that it is minimal.

3.2. A construction of a C∗-quantum groupoid from a depth 2 subfactor.
Let N ⊂M be a finite index ([M : N ] = λ−1) depth 2 II1-subfactor and

N ⊂M ⊂M1 ⊂M2 ⊂ · · ·

the corresponding Jones tower, M1 = 〈M, e1〉, M2 = 〈M1, e2〉, . . . , where e1 ∈
N ′∩M1, e2 ∈M ′∩M2, · · · are the Jones projections. The depth 2 condition means
that N ′ ∩M2 is the basic construction of the inclusion N ′ ∩M ⊂ N ′ ∩M1. Let τ
be the trace on M2 normalized by τ(1) = 1.

Theorem(D. Nikshych-LV, 2000)

M0 ⊂M1 : type II1 subfactors of finite index λ and depth 2

M0 ⊂M1

e1⊂M2

e2⊂M3....... Jones tower

– H = M ′0 ∩M2, Ĥ = M ′1 ∩M3 : C∗-weak Hopf algebras in duality.

– Ĥ acts on M2 and M1 = M Ĥ
2 , M3 = θ(M2 o Ĥ).

– The principal graph of the subfactor M0 ⊂ M1 is defined by the Bratteli
diagram of the inclusion of the finite dimensional algebras Ht ⊂ H and [Mk :
Mk−1] = [H : Ht].

Duality : < a, b >= dλ−2τ(ae2e1Pb).

(there exists a unique P ∈ Z(M ′1 ∩M2) s.t. τ(Pz) = Tr(z))

< ∆(a), b⊗ c >=< a, bc >

< S(a), b >= < a∗, b∗ >

ε(a) =< a,1 > .

Example

Applying this theorem to WHA’s associated with the Tambara- Yamagami ca-
tegories (see Lecture 2), we see that there exists
a family of subfactours of the hyperfinite type II1 factor whose indices are (n+

√
n)2,

for all n ≥ 1. Their principal graphs are given by the Bratteli diagrams of the in-
clusions Ht ⊂ H :

1 * 1

n n

n+1 n+1n
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Galois correspondence :

Left coideal ∗-subalgebra : I ⊂ H s.t ∆(I) ⊂ H ⊗ I.

Crossed product : M o I = span{[m⊗ b]|m ∈M, b ∈ I} ⊂M oH,

Theorem(D. Nikshych-LV, 2000) Two Lattices :
– Intermediate vN subalgebras : M2 ⊂ K ⊂M3 (K∨L = (K∪L)′′,K∧L =
K ∩ L)

– Left coideal ∗-subalgebras of H
(I ∨ J = (I ∪ J)′′, I ∧ J = I ∩ J)

are isomorphic :

K 7→M ′1 ∩K ⊂ H, I 7→M2 o I ⊂M3

K is a factor if and only if I is connected : Z(I) ∩Hs = C1.

Characterization of finite index and finite depth subfactors

Observation (S. Popa) :

M0 ⊂M1︸ ︷︷ ︸
depth n

e1⊂M2

e2⊂M3....... ⊂Mn−1

︸ ︷︷ ︸
depth 2

,

M1 corresponds to a left coideal ∗-subalgebra I of a quantum groupoid H. Then
the previous theorem characterizes all finite index and finite depth subfac-
tors.

Theorem (D. Nikshych-LV, 2000) If Depth (M0 ⊂M1) = n,
then the bimodule category BimodM0−M0

(M0 ⊂ M1) with tensor product ⊗M0
is

equivalent to Rep(Ĥ), where the C∗-WHA H corresponds to the depth 2 subfactor
M0 ⊂Mn−1.

Example : coideal *-subalgebras IK et JK .

Proposition (C. Mével, 2010)

LetH the canonical weak C∗-Hopf algebra associated with the Tambara-Yamagami
category C(G,χ, β). Then with any subgroup
K < G one can associate two connected coideal *-subalgebras,
IK and JK , of H whose C∗-algebra structures are, respectively :

IK =
⊕

M∈G/K

Md(C)⊕
⊕
ρ∈K̂

C, and

JK =
⊕
ρ∈K̂⊥

Mn+1(C)⊕
⊕

M̃∈G/K⊥
M2nd

(C),
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where n = |G|, d = |K|, and K⊥ = {g ∈ G|χ(g, k) = 1, for all k ∈ K}.

Bratteli diagrams of the inclusions Ht ⊂ IK and Ht ⊂ JK

e0

I
[0]
K

ek

e−g

I
[g]
K

e−g+k

em

Iρ1K

IρdK

e0

Jρ1K

ek

J
ρn
d

K

e−g

J
[̃0]
K

e−g+k

em

J
[̃g]
K

n
d

n
d

Principal graphs and indices of intermediate subfactors

The above pictures allow to draw all possible principal graphs
of intermediate subfactors associated with Tambara-Yamagami categories (n ∈
N, d|n) :

1*
1

n
d n

n+1

1*
2

d
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Their indices are d and 1
d (n+

√
n)2, respectively.

Lattices of the coideal subalgebras IK et JK

Proposition

The set {IK |K < G} is a sublattice of l(H) isomorphic to the lattice of subgroups
of G and the set {JK |K < G} is a sub-
lattice of l(K) anti-isomorphic to the lattice of subgroups of
G. Their union (non-disjoint) is a lattice with the operations IK ∧JL = IK∩L⊥ and
IK ∨ JL = JK⊥∩L.

If n = |G| is square free, (i.e., G is of the form
k∏
i=1

Z/piZ,

where pi are prime numbers, all different), then the lattice {IK |K < G}∪{JK |K <
G} is isomorphic to the lattice of subsets of a set containing k + 1 elements.

The figures below illustrate the lattices of the coideal subalgebras and of the
intermediate subfactorsthe in the cases G = Z/pZ, G = Z/pqZ and G = Z/pqrZ.

The cases G = Z/pZ and G = Z/pqZ

H = J{0}

IG JG

Ht = I{0}

H

IG JZ/qZ JZ/pZ

IZ/pZ IZ/qZ JG

Ht
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Lattices of the coideal subalgebras and of the intermediate subfactors : the case G = Z/pqrZ

H

IG

IZ/pqZ IZ/prZ IZ/qrZ

IZ/pZ IZ/qZ IZ/rZ

Ht

JZ/rZ JZ/qZ JZ/pZ

JZ/qrZ JZ/prZ JZ/pqZ

JG
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[BSz2] G. Böhm, K. Szlachányi, Weak Hopf algebras II. Representation Theory, Dimensions and

the Markov Trace, math.QA/9906045 (1999), J. Algebra, 233 (2000), 156212

[D] M.-C. David, Paragroupe d’Adrian Ocneanu et algebre de Kac, Pacif. J. of Math., 172, (1996),

331–363.

[D1] M.-C.David, C*-groupodes quantiques et inclusions de facteurs : Structure symtrique et
autodualit. Action sur le facteur hyperfini de type II1, J.operator theory, 54, n.1 (2005),27–

68

[EGNO] P. Etingof, S. Gelaki, D. Nikshych, V. Ostrik, Tensor categories, Preprint (2009),
http ://www-math.mit.edu/ ˜etingof/tenscat1.pdf.

[ENO] P. Etingof, D. Nikshych, V. Ostrik On fusion categories, Ann. Math., 162 (2005), 581–642.

[GHJ] F. Goodman, P. de la Harpe, and V.F.R. Jones, Coxeter Graphs and Towers of Algebras,
M.S.R.I. Publ. 14, Springer, Heidelberg, 1989.

[JS] V. Jones and V.S. Sunder, Introduction to Subfactors, London Math. Soc. Lecture Notes 234,

Cambridge University Press, 1997.
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