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Some history

Historically, there were first studies of n-symmetric opera-
tors (with connection to Sturm-Liouville conjugate point
theory) by Helton (1972,74), Agler (1980, 1992), Ball-
Helton (1980), Bunce (1983), Rodman and McCullough
(1996, 1997, 1998).

The study of m-isometries was started by Agler and Stankus
"m-isometric transformations of Hilbert space, I, I, Il1"
(1995).

For two-isometries, there was another approach by Richter,
a representation theorem for cyclic analytic two-isometries
(1991), and Olofsson, A von Neumann-Wold decomposi-
tion of two-isometries (2004). Hellings, Two-isometries
on Pontryagin spaces (2008). For 3-isometries, McCul-
lough (1987, 89).



Isometry,

unitary,

unilateral shift,

invariant subspace (upper triangular block form),
reducing subspace (direct sum),

von Neumann-Wold decomposition

write on the white board some details



A bounded linear operator 1" on a Hilbert space H is an
m-isometry for a positive integer m if

m

B(T) =Y (—1)m—’<(27’)T*’fT’f =0

k=0
or equivalently for all h € H,

BT h) 2= (BT ) = 3 (1™ (") 4] = o

Note that

Bm—l—l(T) — T*Bm(T)T — Bm(T) (1)
Thus if T is an m-isometry, then T is an n-isometry for
all n > m.

If Hg is an invariant subspace of 7T, then

Bm(T|H0) — PHOBm(T”HO (2)
where T'|Hy is the restriction of T to Hy.

Write on the board for m = 1,2, 3, proof of recursive
formula and about Hg



We say T is a strict m-isometry if 1" is an m-isometry
but not an (m — 1)-isometry.

We say 1" is an oco-isometry if

limsupm— oo || By (T)||1Y/™ = 0.

We say T' is a finite-isometry if T is an m-isometry for
some m > 1.

We say T is an oo-unitary if both T" and T are oo-
iIsometries.

Similarly, for m > 1, T is an m-unitary if both T" and
T™ are m-isometries.

For an m-isometry T" and [ < m, T" is l-pure if T' has no
nonzero direct summand which is an [-isometry.

For an oo-isometry, T is a pure oo-isometry if 1" has no
nonzero direct summand which is a finite-isometry.



Decomposition Theorems

For m > 1, subspace K, is defined by

Km(T) = Km = () ker(Bm(T)T"). (3)
i>0

It follows from recursive formula that

K1 CKyCK3C---.

Proposition 1 Let T' € B(H). Then K, is invariant
for T' and T'| K, is an m-isometry. Furthermore, if M C
H is invariant for T' and T'|M is an m-isometry, then
M C K.

write proof



Proposition 2 Let T' € B(H). Then for each m > 1,
there exists a unique subspace M C H that is maximal

with respect to the following properties:
(i) M is reducing for T', and
(ii) T|M is an m-isometry.

Skip proof

Let R, denote this unique reducing subspace for T



Theorem 3 Let T € B(H) be an oco-isometry. Let
Vi=R1,Vn=RnO Ry 1 forn>2and

Voo = HS\/{R;,i > 1} = He \/ {Vj,i > 1}.

Then V; is reducing for T for each 1 = 1,2,...,00 and
with respect to the decomposition

T has the following form

T=Voo®V1®V2® - OV ® -

where T'|Vso is an pure co-isometry, T'| Voo is an isometry,
and T'|Vy, is a pure (m — 1)-isometry.

No need for proof



Nagy-Foias-Langer decomposition theorem for con-
tractions: every contraction is a direct sum of a unitary
and a completely nonunitary contraction

Here are two generalizations.

Theorem 4 Let T' € B(H). Then U, defined by the

formula
Um — Km(T)ﬂKm(T*> ‘ (4)
= N [ker(ﬁm(T)T@)mker(ﬁm(T*)T@*)} (5)
1>0

Is the unique maximal reducing subspace on which T" is
an m-unitary. Furthermore T' = I7 & I> with respect
to the decomposition H = Uy, & Uy, where 17 is an
m-unitary and ‘I is an operator which has no direct m-
unitary summand.



Theorem 5 Let T € B(H). Then R1 defined by the
formula

Ry = Ry(T) = () ker(By(T)T'T*™)  (6)
1,n>0
Is the unique maximal reducing subspace on which 1" is
an isometry. Furthermore I' = 17 @ I5 with respect to
the decomposition H = R1 & RlL where 17 is an isom-
etry and I» is an operator which has no direct isometry
summand.

Maybe write Proof



Spectrum

Proposition 6 /fT" is an m-isometry or an co-isometry,
then oap(1') C OD. Therefore either o(T') = D™ or
o(T) C OD. In particular T is left invertible.

Proof



Proposition 7 /f 1" is an m-isometry, then the gener-
alized eigenspaces corresponding to different eigenvalues

are orthogonal.

Skip proof



Reproducing formula for an m-isometry T :

forn > m
m—1 n
7 Ry pLL Z ( 7 >6k(T)
k=0
write proof
Therefore
Bm—l(T) >0

write proof



Norm

m—1
e = = (S () s

k=0
m—1 n
)3 ( . )ﬁk(T, h)
k=0
Therefore if T is a strict m-isometry, then for constant

c, C,

Cn™ L > 17|12 > en™ L for n > m.

A power-bounded m-isometry is an isometry.

write proof



Examples

Example 8 /f H is a finite dimensional Hilbert space,
then an oo-isometry is an m-isometry. An m-isometry is
the direct sum of matrices of the form

M+ Q

where Qe = 0 for some £.

Maybe write proof



Example 9 Assume T and Q € B(H) are commuting
and T' is an m~isometry and @) is a nilpotent operator of
order . Then T 4+ @Q is an (m + 2¢ — 2)-isometry. If
1" is an oco-isometry and () is a quasinilpotent operator.
Then T'+ @ is an co-isometry.

write Proof



Example 10 Let Iy denotes the Hilbert space with basis

{ej} _ . A unilateral weighted shift T' on ly is defined
7€No

by Te; = wjejyq for j € Ng. Without loss of generality,

assume all weights are positive. Then 1" is a strict m-

isometry if and only if there exists a polynomial P(x) of

degree m — 1 such that P(n) > 0 forn € Ny and

P(n+1)
P(n)
For the bilateral shifts case (m has to be odd), we only
need to change both "n € Ng" in the above to "'n € Z".

(wn)2 = for n € Np. (7)

will prove in last lecture



Example 11 An oco-isometry comes from the limit of a

sequence of commuting finite-isometries. Let Ty benxn

Jordan block

An, % .0
o --. - :
: . T
0 --- 0 M\

where the A\, € OD. Then Ty is a strict (2n — 1)-

iIsometry. Let

T:Tl@Tz@T3@...

Then T" is an co-isometry but not a finite-isometry. Fur-

thermore o(T) = {An,n > 1}~ .

Explain as the limit of a sequence of commuting finite

m-isometry.
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Extension and Lifting

Let T' € L(H) and B € L(K) with K D H. Let B be
such that

0 =

Since H is invariant for B, T' = B|H, B is called an

extension (lifting) of T" or T has a lifting (an extension)
to B or T is a part of B.

B = [T *] onK=Ho(KeoH)=H¢H'

Let " € L(H) and B € L(K). We say T is unitarily
equivalent to a part of B if there is an isometry W :
H — K such that

WT = BW

In this case, set M = WH C K, then M is invariant
for B and

T =W YB|M)W.



Dilation

Sarason: Let C' € L(K) with K O H. Then T" =
Py C™|H if and only if H is invariant for T* and

C = ::2 onK=H@®KocH)=HoH".
C = ;; ; onK=(KoH)eH=HtoH

The operator C' is called a (power) dilation of T" or T has
an dilation C. Equivalently C'* is an extension of T™*.

maybe some proof



von Neumann-Wold decomposition for isometries:
An isometry T is the direct sum of an unitary and a
unilateral shift.

Set Hoo := Np>1T"H, T'|Hoo is unitary

Hog := H© TH = ker(T*) is called the wandering
subspace of T’

T|Ho® THy® T?Hy @ - - - is a shift operator
H = Hoo © Ho@THo@T2HO@---

Corollary: An isometry can be extended to an unitary or
An isometry is a part of an unitary.



Nagy isometric dilation theorem: Every contraction

has an extension to an coisometry or Every contraction
is a part of an coisometry. Let T' € L(H), then T* =
V*|H (or equivalently T™ = Py V"™ H ) where

V* =

T*
0
0

Dr O
0 I

0

0

0

I

on K =H®H®D - .

The isometry V' is called an isometric dilation of 1" and

V* is called a coisometry extension (lifting) of T* or T™*

has an extension (lifting) to V'*.

write proof



Von Neumann-Wold decomposition for

2-1sometries

Let T' € L(H) be an 2-concave or 2-expansive. That is
Bo(T) = T*T? —2T*T + 1 <0

Explain the terminology

(—1)"B,,(T) > 0 for contractive, hypercontractive
(—1)"B,,(T) < 0 for expansive, hyperexpansive

Recall Hoo = Np>1T"H

Lemma 1 Hy is reducing for T and T|Hxo is an uni-
tary.

skip proof



Lemma 2 [T7h|[* — 1> < n(|Th|? ~ ]P) =
n || DA,

B(T):=T*T —I=D >0.

write proof, to start forn =1

728"~ TRl < |ITRI ~ P

Consequence for spectrum and norm
gap(1T) C 0D. Therefore either o(1T') = D™ or o(T") C
OD. In particular T is left invertible.

T*T — I =D >0or |[Th||? —||h||* >0

T Is expansive operator

Late to extend these results to 2m-expansive operators



Theorem 3 LetT € L(H) be an 2-concave or 2-expansive.
Assume Hoo = {0} . Then

H=\/ T" My
1>0
where

Ho=(HOSTH) = R(T)" = ker T*

is called the wondering subspace for S.



PROOF

L = (T*T)~1T* is the leftinverse of T,
@ = TL is the projection onto Range(T)
P = I — Qs the projection on to R(T')™ = ker T**

Let x € H,

(I —T"L™h = (T3L=7 (ERRY FRES))

|—xo

J
n— . .
= TIi(I — TL)LIh

—1
= Y TVPL’he \/ T"My
j=0 i>0

Will prove (I —T™L™)h — h weakly to finish the proof.



m2="5 | PLinlf + 3 |DLn|f 4 |Lma?
j=0 j=0
For n =1,

|RlI> = |IPh|I + |QR]°

— ||Ph||? + ||Lh||? + || TLh||?> — ||Lh||?
= ||Ph||* +||Lh||* + || DLh|?

then by induction (using this formula for L™h).

(inf {IT"L7h|% — | L7R|% - k < n < m}) gk%
e

IA

m ]
> = (IT™L"R)? = ||L"R?)
n

n==k

m ni |2 2
< ZkllDL hl|© < ||k
n=

Since ||L™h||? is decreasing,

lim inf || T L™h]|| = lim || L")



Thus there exists a weakly convergent subsequence
TViL™h — vy

for some v,

but T L™ h € TN H which is closed hence weakly
closed. So y € Hoo = {0}.

THE PROOF IS COMPLETE.

In fact lim ||L™h|| — 0 and || T L"ih|| — O.

= & [Pen+ E own



Theorem 4 Richter, Let T € L(H) be an 2-concave or
2-expansive. Assume Hoo = {0} . Then every invariant
subspace M of I’ is of the form

M =\/ T"Mj
1>0
where

Mo = (M ©TM)

is called the wondering subspace for S.



There are generalizations of the above result.

By Olofsson,
2 2
IT"h|12 = cllBl> < en(|IThII* = |IR]%),
1
>~ = oo
n>2 Cn

By Shimorin, operator related to 2-concave operator in-
cluding Bergman shift, if T" € L(H) is 2-concave, then
T' = T(T*T) ! satisfying

[T+ y|* < 2021 + | 79[ )

T(T*T)~1
(called by him Cauchy dual to T') is a hyponormal con-

In another connection by Chavan, T’

traction.



Model for Analytic 2-isometries
Richter for dim (H © TH) =1
Olofsson for dim (H © TH) > 1.

Analytic 2-isometries means Hoo = {0} .

Let E/ be a Hilbert space.

Definition 5 A positive L(FE)-valued operator measure
on the unit circle p(e*®) = 1(0). Let Q be the o-algebra
of Borel sets of the circle. u(fq) > 0 in L(FE), and for
anyx,y € &

o (20) = (u(20)z, y)

are all complex regular Borel measures on Q.

T = [fdu means (T'z,y) = ffd:ua:,y'



The Fourier coefficients of u are defined by

i(n) = fre”"du(0)

fi(n) are bounded operators in L(E).

The Poisson integral P [u] is

(1—121%)

Plul(z) = JpP(z,e"®)du(e'®) = Sdu(e™)

T ew‘—z|

Zu(n)rn 'LnG _ Tei@



Definition 6 The Dirichlet space D(u). Let f(z) be a
E-valued analytic function on D

112 = 1£152 + S (Pl (2)f'(2), /() dA(2)

If f = Zajzj is an E-valued analytic polynomial, then

fp (Pl (2)f'(2), £(2)) . dA(2)

= Z min{7j, k}fr2 maxij,k} <ﬂ(k — j)aj,ak>
J,k>1

=Ly (PU(re®) f(re®), f(re™)) a0

2"

Z 2 max{j,k} <@(k — j)aj, ak;>
5,k>0



Theorem 7 M on D(u) is an analytic 2-isometry.

Proof

5p (Pl (2) (1) (2), (21) (2)) . dA(2)
= (P (2)f (2), F (), dA(2)

2 . . .
oL (P U] (re®) f(re®), f(re®) ) do

o (PU () (1) (2 21 () _dAG:)

+r*[.p (P (2) (1) (2), () (2)) . dA(2)
= 27 [, (P[u] (2) (1) (2), (2£) (2)) . dA(2)

M f

2 2 2
UG = 200111



Theorem 8 Let T' € L(H) be an analytic 2-isometry.
Then T is unitarily equivalent to M, on D(u) for some
measure .



Lifting for 2-isometries by Agler and Stankus

Recall T' € L(H) is a 2-isometry if
Bo(T) = T*T? —2T*T + 1 = 0.
In this case
A=Ap=BT)=TT—1>0.

The simplest 2-isometry is when rank(A) = 1.

Difference between isometry and 2-isometry. (isom-
etry of rank(I — TT*) = 2 is the direct sum of rank 1
isometry) but not for 2-isometry.

T on H>@® H? ® C @ C with rank(A) = 2

(S 0 V2®1 O
0O S 0 oc®1
00 1 b
0 0 0 —1




Definition 9 Brownian shift of covariance o (o > 0)
and angle 6 is the block operator B ;s acting on H 250
defined by

S o0(1®1)
Ba,ew — [ 0 ei@ ] .

Compute A = B1(B_ i) = 0?(1 ® 1).

Proposition 10 /frank(A) =1 and T is pure, then T
Is unitarily equivalent to BJ cif-

skip proof



Definition 11 Brownian unitary of covariance o is an
operator which is unitarily equivalent to

Ud f@ (n(e))du(e) on H@f@(H2 B C)n(e)

where p is a finite positive measure on [0, 27) and n(0)
Is @ . measurable multiplicity function.

Proposition 12 B is a Brownian unitary of covariance
o if and only if B has the block form

B:[V oF

0 U]OI’IK:K()@Kl

where V' an isometry, U an unitary and E an isometry
maps K7 onto ker V'*.

skip proof



Theorem 13 Let T € L(H) be a 2-isometry of co-
variance o, then 1" is unitarily equivalent to a part of
a Brownian unitary B € L(K) of covariance o.

PROOF

We need to construct B on K and also an isometry

L:H—K=Kyg® Ky
such that

LT = BL.

L= | VO 2 <[4 0g ]

We will use L'I' = BL to construct B.

Here is the L




5T
LT = gﬂT]
'V oE 0
L= 0% ||
| ve+EVA
- UiV
Equivalently
1
viva = tvar
o (0}
V§+ EVA = 6T

Rewrite the second equation as the third equation

VS+ EVA=VV*T + (I —VV*)6T



First equation
1 1
U-VA = VAT
o o
Now define Uy on Hy = Range(v/A)~ by
UoVAh =V ATh,h € H

and extend Ug to be an unitary U on Kj.

write proof Upy is an isometry



Second equation
Vi4+ EVA = 6T

Define Vy on
Range(d)” = R(6T)” ® (R(d)” © R(6T)7)
by

Voon R(OT)™ : VuoTh = 6h,
Voon R(6)” © R(6T)™ : V=0

and extend V| to a coisometry V* on Kj.

write proof Vj is a contraction



Third equation
VS+EVA = VV*T + (I —VV*)T

Finally define E from K1 = H; & (K1 © Hy) onto
(I — VV*)Kq by

Eon H = R(VA)" : EVAh=(I—-VV*)Th
E on K1 © Hy : an arbitrary isometry F'

Note £ maps Hy onto (I — VV*)Range(dT),
so F' has to map K1 & Hq onto M where

M=I-VVKqgo (I —-VV*)R(T)™
The existence of F' requires that
dim(K1 © H1) = dim(M)

which can be achieved by the freedom on Kj.

write proof F/ on Hy is an isometry



The original C*-algbera proof of lifting theorem is
based on the following abstract Theorem by Agler.

Let C"™*™[x, y] denote the set of the polynomials in x
and y with m X m matrix coefficients. If

h = Zcz-jyja:i e C"™ Mz, y]
and a is an element of a C*-algbera with unit, then define
h(a) € A™*™ (the C*-algbera of m X m matrices with
entries in A) by
h(a) = > cija*jai.
If T € L(H), then h(T) is an operator from H(") =
HOH®- - @& H (m copies) into H(™).

Theorem 14 Let A to be a C*-algbera with unit and fix
a € A. An operator T' € L(H) has the form

w(c)|H

where T : A — L(K) is a unital *-representation, K D
H and H is invariant for w(c) if and only if h(T) > 0
whenever m > 1, h € C™*™[x, y] and h(c) > 0.
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A bounded linear operator 1" on a Hilbert space H is an
m-isometry if all h € H,

Bm(Ta h) L= <5m(T)h h>

= () e -

An bounded linear operator 1" on a Banach space X is
called an (m, p)-isometry if

B(m,p)(T x) (1)
= Z( 1) k( )HT’“ H =0 for all z € X.

Then recursive formula

5m—|—1(T) — T*Bm(T)T - 5m(T) (2)

becomes

Bm+1,p)(Ts2) = Bn p) (T, Tx) — By p)(T; ).

write the proof



If Hg is an invariant subspace of T, then

5m(T|HO7 hO) — 5m(T7 hO) (3)
where T'|Hy is the restriction of T to Hy.

skip some decomposition theorem



Spectrum

Proposition 1 /fT" is an m-isometry or an co-isometry,
then oap(1') C OD. Therefore either o(T') = D™ or
o(T) C OD. In particular T is left invertible.

write the proof



Reproducing formula on H for an m-isometry 1" :

forn > m
m—1
T = ( L ) Br(T)
k=0
Reproducing formula on X
m—1
[T"z|P = > (Z)ﬁ(k,p)(T, ) (4)
k=0

Maybe write the proof.

Therefore for all x € X,

Bm-1p)(T2) 20
Write the proof.

Note also the right side of (4) is a polynomial of degree
m — 1 or less.

Norm
Therefore if T is a strict m-isometry, then for constant
c, C,

Cn™ 1 > | T? > en™ ! for n > m.

A power-bounded m-isometry is an isometry.



Examples

If X is finite dimensional, we do not know.

Example 2 Assume T and QQ € B(H) are commuting
and T' is an m~isometry and @) is a nilpotent operator of
order . Then T 4+ Q is an (m + 2¢ — 2)-isometry.

Not true on Banach space



Example 3 Assume T and S € B(X) are commut-
ing. Assume T is an (m,p)-isometry and S is an (l, p)-
isometry. Then T'S is an (m + [ — 1, p)-isometry.

skip the proof



Example 4 Let [, denotes the Hilbert space with basis
{ej }jeNo . A unilateral weighted shift T on ly, is defined
by Te; = wjejyq for j € Ng. Without loss of generality,
assume all weights are positive. Then 1" is a strict m-
isometry if and only if there exists a polynomial P(x) of
degree m — 1 such that P(n) > 0 forn € Ny and

P(n+1)
P(n)
For the bilateral shifts case (m has to be odd), we only
need to change both "n € Ng" in the above to "'n € Z".

(wn)P = for n € Np. (5)




In order to prove the above example, we look at the re-
producing formula more closely. For n > m,

m—1

=S () dunmo ©

k=0
It turns out the above formula is automatically true (7T
does not have to be an m-isometry) for 0 < n < m-—1if
one interprets (Z) = 0 if n < k. We state this formally
as a lemma.

Lemma 5 LetT € B(X). Forx € X, Then the unique
T’%Hp,o <k<m-1}

polynomial Px(y) interpolating {(k,
IS

m—1

Po(y) = 3 () Bu(T. 1)

k=0
where for a real number x,

1) (y— k1
(i):y(y ) kl(y T ).

skip the proof.



The following characterization of m-isometry seems to be
a slight change of perspective to the reproducing formula,
but it is proved to be very powerful. This characterization
essentially follows from the following combinatorial (or
difference equation) fact. Let Z denote the set of integers
and Z_ denote the set of nonnegative integers.

Lemma 6 Let {an}n€Z+ be a sequence of real number,

then
m
/M .
> (=™ k(k>aj+k =0forj>0
k=0
if and only if there exists a polynomial P(y) of degree
less than or equal to m — 1 such that an, = P(n).

In this case P(y) is the unique polynomial interpolating
{(k,a;),0 <k <m-—1}.

Proposition 7 Let T € B(X). For any x € X, set
an = ||[T"x||P. Then T is an m-isometry if and only
for each x there exists a polynomial Py(y) of degree less
than or equal to m — 1 such that an = Px(n).

write the proof.



Theorem 8 Let T weighted shifts. Then T is an m-
isometry if and only if the reproducing formula holds only
for x = eqg. Equivalently T' is a strict m-isometry if and
only if there exists a polynomial P(x) of degree equal
to m — 1 such that ||T"eg||’ = P(n) forn € Z4 (or
neZz)

write the proof



Theorem 9 Let T be a strict (m, q)-isometric weighted
shift (bilateral or unilateral) on lp for m > 2 and q €
(0,00). Then there exist mg > 2 and k > 1 such that
(m,q) = (k(mg—1)+1, kp) and T is a strict (mg, p)-
isometry on lp.

skip the proof



1 Related operators

Recall that for T' € B(X) and =z € X,

()" p(T) = > (1)) | ha”
k=0

Throughout the paper, in particular in the following defi-
nition, B, p)(T, ) > 0 really means 3., (T, z) > 0
for all x € X.

We will define several class operators on X by using
B(m,p)(T, x). These operators have been studied on Hilbert
spaces starting by Agler's paper on hypercontractions.



Definition 10 For T' € B(X) and m > 1.

(1) T is (m, p)-contractive if (—1)" By, p)(T,z) > 0;

(2) T is (m, p)-hypercontractive if (—1)* 8. ,\(T, z) >
0forl < k<m;

(3) T is completely p-hypercontractive if (— 1)k5(k7p)(T, x) >
0 fork > 1;

(4) T is (m, p)-expansive if (—1)" B, (T, z) < 0;

(5) T is (m, p)-hyperexpansive if(—l)kﬁ(k’p)(T, r) <0
forl < k <m;

(6) T is completely p-hyperexpansive if(—l)kﬁ(k,p)(T, x) <
0 for k > 1;

(7) T' is (m, p)-alternatingly expansive if B,
0;

(8) T is (m, p)-alternatingly hyperexpansive if B, ,)(T', x) >
0forl < k<m;

(9) T is alternatingly p-hyperexpansive ifﬁ(k,p)(T, x) for
k> 1.

)T x) 2

write out for £k =1, 2.



| will prove an surprising inequality for B(mm)(T, x).

Reversing inequality: B(m’p)(T,x) <Oforallz e X
implies 5(m—1,p)(T7 x) >0forallz e X .

When m = 2 on a Hilbert space, this is due to Richter.



Lemma 11 Let T € B(X),n > m > 1 and z € X.
Then

B(map)(T’ z) = 6(m—1,p)(T7 Tx) — B(m—l,p)(Ta x),

(7)

m—1
B (Tr2) = Tl = 3 ( & ) Bk (T ),
(8)
m—1 n
> ( ; )Bw (T, Tz)

maybe write the proof of third equality



Theorem 12 (a) If B,
then for n > m,

p)(Thx) <0 forallz € X,

m—1

el <5 () ppTahe e X (10)
k=0

(b) If B p)(T, ) > 0 for all z € X, then for n > m,

m—1
TP > S (Z)ﬁ(k,p)(T,x),meX. (11)
k=0

write the proof

write the proof of Reversing inequality



Some applications of Reversing inequal-
Ity

Lemma 13 Let T' € B(X). If T is invertible, then

Blmp) (T~ 2) = (=1)" B p)(T, T~ ™).
When T' € B(H), then

Bun(T™1) = (1) T~ *" By (T)T .

Corollary 14 Assume T is invertible.

If B(m,p)(T5x) <0 for all z € X and some even m,
then T is an (m — 1,p)-isometry. In particular if T is
an invertible (m, p)-isometry for some even n, then T is

also an (m — 1, p)-isometry.

Conclusion. Invertible strict (m, p)-isometry only for ODD

m.

write the proof



Berger-Shaw type result by Agler and Stankus.

We are now back on Hilbert spaces.

Proposition 15 Let m be even. Let T € B(H) be an
m-isometry. If T is finitely cyclic, then 3,,_1(T) is a
compact operator.



Next we will generalize this result to m-expansive op-
erators by using Reversing inequality in Calkin algebra

B(H)/K(H)

Let A denote a C*-algebra with identity. For t € A, we

write
Bunlt) = 3 (1) Rk
k=0

We have the following definition similar to Definition 10
but only stated partially.

Definition 16 Lett € A. We say t is m-isometric, m-
contractive, m-expansive if 3,,(t) =0, (—1)"3,,(t) >
0,(—1)"p,,,(t) < 0 respectively.



Theorem 17 Lett € A.
(a) If B,,,(t) <0, then forn > m

m—1
£ < S ( Z ) Br(T).
k=0

If 3,,(t) > 0, then the above inequality with > holds.
If B,,(t) = 0, then the above inequality becomes an

equality.

(b) If B, (t) <0, then B, _1(t) > 0.
write the proof of (b).



Theorem 18 Let T' € B(H) and w(T') be its image in
the Calkin algebra.

(a) Assume w(T') is invertible. If B,,(7w(T)) < 0 for
some even m, then w(T') is an (m — 1)-isometry. In
particular if w('T') is an invertible m-isometry for some
even n, then w(T') is also an (m — 1)-isometry.

write the proof

Theorem 19 Let m be even. Let T € B(H) be an
me-expansive operator. If T' has a finite-dimensional co-
kernel, then B,,_1(T") is a compact operator.

write the proof
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