Lecture I. Basic properties of m-isometries

Caixing Gu

California Polytechnic State University

San Luis Obispo, California

Operator Winter School, South Korea

December 21-24, 2014

Plan of the talk

- Background
- Definition
- Decomposition theorem
- Spectrum and norm
- Example

Some history

Historically, there were first studies of n-symmetric operators (with connection to Sturm-Liouville conjugate point theory) by Helton (1972,74), Agler (1980, 1992), Ball-Helton (1980), Bunce (1983), Rodman and McCullough (1996, 1997, 1998).

The study of m-isometries was started by Agler and Stankus "m-isometric transformations of Hilbert space, I, II, III" (1995).

For two-isometries, there was another approach by Richter, a representation theorem for cyclic analytic two-isometries (1991), and Olofsson, A von Neumann-Wold decomposition of two-isometries (2004). Hellings, Two-isometries on Pontryagin spaces (2008). For 3-isometries, McCullough (1987, 89).

```
isometry,
unitary,
unilateral shift,
invariant subspace (upper triangular block form),
reducing subspace (direct sum),
von Neumann-Wold decomposition
write on the white board some details
```

A bounded linear operator T on a Hilbert space H is an m-isometry for a positive integer m if

$$\beta_m(T) := \sum_{k=0}^m (-1)^{m-k} {m \choose k} T^{*k} T^k = 0$$

or equivalently for all $h \in H$,

$$\beta_m(T,h) := \langle \beta_m(T)h, h \rangle = \sum_{k=0}^m (-1)^{m-k} {m \choose k} \left\| T^k h \right\|^2 = 0$$

Note that

$$\beta_{m+1}(T) = T^*\beta_m(T)T - \beta_m(T). \tag{1}$$

Thus if T is an m-isometry, then T is an n-isometry for all $n \ge m$.

If H_0 is an invariant subspace of T, then

$$\beta_m(T|H_0) = P_{H_0}\beta_m(T)|H_0 \tag{2}$$

where $T|H_0$ is the restriction of T to H_0 .

Write on the board for m=1,2,3, proof of recursive formula and about H_0

We say T is a strict m-isometry if T is an m-isometry but not an (m-1)-isometry.

We say T is an ∞ -isometry if

$$lim sup_{m\to\infty} \|\beta_m(T)\|^{1/m} = 0.$$

We say T is a finite-isometry if T is an m-isometry for some $m \geq 1$.

We say T is an ∞ -unitary if both T and T^* are ∞ -isometries.

Similarly, for $m \geq 1$, T is an m-unitary if both T and T^* are m-isometries.

For an m-isometry T and l < m, T is l-pure if T has no nonzero direct summand which is an l-isometry.

For an ∞ -isometry, T is a pure ∞ -isometry if T has no nonzero direct summand which is a finite-isometry.

Decomposition Theorems

For $m \geq 1$, subspace K_m is defined by

$$K_m(T) = K_m = \bigcap_{i \ge 0} \ker(\beta_m(T)T^i). \tag{3}$$

It follows from recursive formula that

$$K_1 \subseteq K_2 \subseteq K_3 \subseteq \cdots$$
.

Proposition 1 Let $T \in B(H)$. Then K_m is invariant for T and $T|K_m$ is an m-isometry. Furthermore, if $M \subseteq H$ is invariant for T and T|M is an m-isometry, then $M \subseteq K_m$.

write proof

Proposition 2 Let $T \in B(H)$. Then for each $m \geq 1$, there exists a unique subspace $M \subseteq H$ that is maximal with respect to the following properties:

- (i) M is reducing for T, and
- (ii) T|M is an m-isometry.

Skip proof

Let R_m denote this unique reducing subspace for T.

Theorem 3 Let $T \in B(H)$ be an ∞ -isometry. Let $V_1 = R_1, V_n = R_n \ominus R_{n-1}$ for $n \geq 2$ and

$$V_{\infty} = H \ominus \bigvee \{R_i, i \ge 1\} = H \ominus \bigvee \{V_i, i \ge 1\}.$$

Then V_i is reducing for T for each $i=1,2,\ldots,\infty$ and with respect to the decomposition

$$H = V_{\infty} \oplus V_1 \oplus V_2 \oplus V_3 \oplus \cdots,$$

T has the following form

$$T = V_{\infty} \oplus V_{1} \oplus V_{2} \oplus \cdots \oplus V_{n} \oplus \cdots$$

where $T|V_{\infty}$ is an pure ∞ -isometry, $T|V_{\infty}$ is an isometry, and $T|V_n$ is a pure (m-1)-isometry.

No need for proof

Nagy-Foias-Langer decomposition theorem for contractions: every contraction is a direct sum of a unitary and a completely nonunitary contraction

Here are two generalizations.

Theorem 4 Let $T \in B(H)$. Then U_m defined by the formula

$$U_{m} = K_{m}(T) \cap K_{m}(T^{*})$$

$$= \bigcap_{i>0} \left[\ker(\beta_{m}(T)T^{i}) \cap \ker(\beta_{m}(T^{*})T^{i*}) \right]$$
(5)

is the unique maximal reducing subspace on which T is an m-unitary. Furthermore $T=T_1\oplus T_2$ with respect to the decomposition $H=U_m\oplus U_m$ where T_1 is an m-unitary and T_2 is an operator which has no direct m-unitary summand.

Theorem 5 Let $T \in B(H)$. Then R_1 defined by the formula

$$R_1 = R_1(T) := \bigcap_{i,n \ge 0} \ker(\beta_1(T)T^iT^{*n})$$
 (6)

is the unique maximal reducing subspace on which T is an isometry. Furthermore $T=T_1\oplus T_2$ with respect to the decomposition $H=R_1\oplus R_1^{\perp}$ where T_1 is an isometry and T_2 is an operator which has no direct isometry summand.

Maybe write Proof

Spectrum

Proposition 6 If T is an m-isometry or an ∞ -isometry, then $\sigma_{ap}(T) \subseteq \partial D$. Therefore either $\sigma(T) = D^-$ or $\sigma(T) \subseteq \partial D$. In particular T is left invertible.

Proof

Proposition 7 If T is an m-isometry, then the generalized eigenspaces corresponding to different eigenvalues are orthogonal.

Skip proof

Reproducing formula for an m-isometry T:

 $\text{ for } n \geq m$

$$T^{*n}T^n = \sum_{k=0}^{m-1} \binom{n}{k} \beta_k(T)$$

write proof

Therefore

$$\beta_{m-1}(T) \geq 0$$

write proof

Norm

$$||T^{n}h||^{2} = \langle T^{*n}T^{n}h, h \rangle = \left\langle \sum_{k=0}^{m-1} \binom{n}{k} \beta_{k}(T)h, h \right\rangle$$
$$= \sum_{k=0}^{m-1} \binom{n}{k} \beta_{k}(T, h)$$

Therefore if T is a strict m-isometry, then for constant c, C,

$$Cn^{m-1} \ge ||T^n||^2 \ge cn^{m-1}$$
 for $n \ge m$.

A power-bounded m-isometry is an isometry.

write proof

Examples

Example 8 If H is a finite dimensional Hilbert space, then an ∞ -isometry is an m-isometry. An m-isometry is the direct sum of matrices of the form

$$\lambda I + Q$$

where $Q^{\ell} = \mathbf{0}$ for some ℓ .

Maybe write proof

Example 9 Assume T and $Q \in B(H)$ are commuting and T is an m-isometry and Q is a nilpotent operator of order ℓ . Then T+Q is an $(m+2\ell-2)$ -isometry. If T is an ∞ -isometry and Q is a quasinilpotent operator. Then T+Q is an ∞ -isometry.

write Proof

Example 10 Let l_2 denotes the Hilbert space with basis $\left\{e_j\right\}_{j\in\mathbb{N}_0}$. A unilateral weighted shift T on l_2 is defined by $Te_j=w_je_{j+1}$ for $j\in\mathbb{N}_0$. Without loss of generality, assume all weights are positive. Then T is a strict m-isometry if and only if there exists a polynomial P(x) of degree m-1 such that P(n)>0 for $n\in\mathbb{N}_0$ and

$$(w_n)^2 = \frac{P(n+1)}{P(n)} \text{ for } n \in \mathbb{N}_0.$$
 (7)

For the bilateral shifts case (m has to be odd), we only need to change both " $n \in \mathbb{N}_0$ " in the above to " $n \in \mathbb{Z}$ ".

will prove in last lecture

Example 11 An ∞ -isometry comes from the limit of a sequence of commuting finite-isometries. Let T_n be $n \times n$ Jordan block

$$T_n = \left[egin{array}{ccccc} \lambda_n & rac{1}{n} & \cdots & 0 \ 0 & \cdots & \ddots & dots \ dots & \cdots & \ddots & rac{1}{n} \ 0 & \cdots & 0 & \lambda_n \end{array}
ight]$$

where the $\lambda_n \in \partial D$. Then T_n is a strict (2n-1)-isometry. Let

$$T = T_1 \oplus T_2 \oplus T_3 \oplus \cdots$$

Then T is an ∞ -isometry but not a finite-isometry. Furthermore $\sigma(T) = \{\lambda_n, n \geq 1\}^-$.

Explain as the limit of a sequence of commuting finite m-isometry.

Lecture II. 2-isometries

Caixing Gu

California Polytechnic State University

San Luis Obispo, California

Operator Winter School, South Korea

December 21-24

Plan of the talk

- Dilation, Extension and Lifting
- Von Neumann-Wold decomposition for 2-isometries
- Model for Analytic 2-isometries
- Lifting for 2-isometries

Extension and Lifting

Let $T \in L(H)$ and $B \in L(K)$ with $K \supseteq H$. Let B be such that

$$B = \left[egin{array}{cc} T & * \ {f 0} & * \end{array}
ight] ext{ on } K = H \oplus (K \ominus H) = H \oplus H^{ot}$$

Since H is invariant for B, T = B|H, B is called an extension (lifting) of T or T has a lifting (an extension) to B or T is a part of B.

Let $T \in L(H)$ and $B \in L(K)$. We say T is unitarily equivalent to a part of B if there is an isometry W: $H \to K$ such that

$$WT = BW$$

In this case, set $M=WH\subseteq K,$ then M is invariant for B and

$$T = W^{-1}(B|M)W.$$

Dilation

Sarason: Let $C \in L(K)$ with $K \supseteq H$. Then $T^n = P_H C^n | H$ if and only if H^\perp is invariant for T^* and

$$C = \begin{bmatrix} T & 0 \\ * & * \end{bmatrix}$$
 on $K = H \oplus (K \ominus H) = H \oplus H^{\perp}$.
 $C = \begin{bmatrix} * & * \\ 0 & T \end{bmatrix}$ on $K = (K \ominus H) \oplus H = H^{\perp} \oplus H$

The operator C is called a (power) dilation of T or T has an dilation C. Equivalently C^* is an extension of T^* .

maybe some proof

von Neumann-Wold decomposition for isometries:

An isometry T is the direct sum of an unitary and a unilateral shift.

Set
$$H_{\infty} := \cap_{n>1} T^n H$$
, $T|H_{\infty}$ is unitary

 $H_0 := H \ominus TH = \ker(T^*)$ is called the wandering subspace of T

$$T|H_0 \oplus TH_0 \oplus T^2H_0 \oplus \cdots$$
 is a shift operator

$$H = H_{\infty} \oplus \left[H_0 \oplus TH_0 \oplus T^2H_0 \oplus \cdots \right]$$

Corollary: An isometry can be extended to an unitary or An isometry is a part of an unitary.

Nagy isometric dilation theorem: Every contraction has an extension to an coisometry or Every contraction is a part of an coisometry. Let $T \in L(H)$, then $T^* = V^*|H$ (or equivalently $T^n = P_H V^n|H$) where

$$V^* = \begin{bmatrix} T^* & D_T & 0 & \cdots & \cdots \\ 0 & 0 & I & 0 & \cdots \\ 0 & 0 & 0 & I & \cdots \\ \vdots & \ddots & \ddots & \ddots & \cdots \\ \vdots & \ddots & \ddots & \ddots & \cdots \end{bmatrix} \text{ on } K = H \oplus H \oplus \cdots.$$

The isometry V is called an isometric dilation of T and

 V^* is called a coisometry extension (lifting) of T^* or T^* has an extension (lifting) to V^* .

write proof

Von Neumann-Wold decomposition for 2-isometries

Let $T \in L(H)$ be an 2-concave or 2-expansive. That is

$$\beta_2(T) = T^{*2}T^2 - 2T^*T + I \le 0$$

Explain the terminology

$$(-1)^m \beta_m(T) \geq 0$$
 for contractive, hypercontractive $(-1)^m \beta_m(T) \leq 0$ for expansive, hyperexpansive

Recall
$$H_{\infty} = \cap_{n>1} T^n H$$

Lemma 1 H_{∞} is reducing for T and $T|H_{\infty}$ is an unitary.

skip proof

Lemma 2 $||T^n h||^2 - ||h||^2 \le n(||Th||^2 - ||h||^2) = n ||Dh||^2$,

$$\beta_1(T) := T^*T - I = D \ge 0.$$

write proof, to start for n=1

$$||T^2h||^2 - ||Th||^2 \le ||Th||^2 - ||h||^2$$

Consequence for spectrum and norm $\sigma_{ap}(T) \subseteq \partial D$. Therefore either $\sigma(T) = D^-$ or $\sigma(T) \subseteq \partial D$. In particular T is left invertible.

$$T^*T - I = D \ge 0 \text{ or } ||Th||^2 - ||h||^2 \ge 0$$

T is expansive operator

Late to extend these results to 2m-expansive operators

Theorem 3 Let $T \in L(H)$ be an 2-concave or 2-expansive. Assume $H_{\infty} = \{0\}$. Then

$$H = \bigvee_{i \ge 0} T^n M_0$$

where

$$H_0 = (H \ominus TH) = R(T)^{\perp} = \ker T^*$$

is called the wondering subspace for S.

PROOF

 $L = (T^*T)^{-1}T^*$ is the leftinverse of T,

Q = TL is the projection onto Range(T)

P = I - Q is the projection on to $R(T)^{\perp} = \ker T^*$

Let $x \in H$,

$$(I - T^{n}L^{n})h = \sum_{j=0}^{n-1} (T^{j}L^{j} - T^{j+1}L^{j+1})h$$

$$= \sum_{j=0}^{n-1} T^{j}(I - TL)L^{j}h$$

$$= \sum_{j=0}^{n-1} T^{j}PL^{j}h \in \bigvee_{i>0} T^{n}M_{0}$$

Will prove $(I - T^n L^n)h \rightarrow h$ weakly to finish the proof.

$$||h||^2 = \sum_{j=0}^{n-1} ||PL^j h||^2 + \sum_{j=0}^{n} ||DL^j h||^2 + ||L^n h||^2$$

For n = 1,

$$||h||^{2} = ||Ph||^{2} + ||Qh||^{2}$$

$$= ||Ph||^{2} + ||Lh||^{2} + ||TLh||^{2} - ||Lh||^{2}$$

$$= ||Ph||^{2} + ||Lh||^{2} + ||DLh||^{2}$$

then by induction (using this formula for $L^n h$).

$$\left(\inf\left\{\|T^{n}L^{n}h\|^{2} - \|L^{n}h\|^{2} : k \leq n \leq m\right\}\right) \sum_{n=k}^{m} \frac{1}{n}$$

$$\leq \sum_{n=k}^{m} \frac{1}{n} \left(\|T^{n}L^{n}h\|^{2} - \|L^{n}h\|^{2}\right)$$

$$\leq \sum_{n=k}^{m} \|DL^{n}h\|^{2} \leq \|h\|^{2}$$

Since $||L^n h||^2$ is decreasing,

$$\lim\inf\|T^nL^nh\|=\lim\|L^nh\|$$

Thus there exists a weakly convergent subsequence

$$T^{n_j}L^{n_j}h \to y$$

for some y,

but $T^{n_j}L^{n_j}h\in T^NH$ which is closed hence weakly closed. So $y\in H_\infty=\{\mathbf{0}\}$.

THE PROOF IS COMPLETE.

In fact $\lim \|L^n h\| \to 0$ and $\|T^{n_j} L^{n_j} h\| \to 0$.

$$||h||^2 = \sum_{j=0}^{\infty} ||PL^j h||^2 + \sum_{j=0}^{\infty} ||DL^j h||^2$$
 (1)

Theorem 4 Richter, Let $T \in L(H)$ be an 2-concave or 2-expansive. Assume $H_{\infty} = \{0\}$. Then every invariant subspace M of T is of the form

$$M = \bigvee_{i \ge 0} T^n M_0$$

where

$$M_0 = (M \ominus TM)$$

is called the wondering subspace for S.

There are generalizations of the above result.

By Olofsson,

$$||T^{n}h||^{2} - c ||h||^{2} \leq c_{n}(||Th||^{2} - ||h||^{2}),$$

$$\sum_{n>2} \frac{1}{c_{n}} = \infty$$

By **Shimorin**, operator related to 2-concave operator including Bergman shift, if $T \in L(H)$ is 2-concave, then $T' = T(T^*T)^{-1}$ satisfying

$$||T'x + y||^2 \le 2(||x||^2 + ||T'y||^2)$$

In another connection by **Chavan**, $T' = T(T^*T)^{-1}$ (called by him Cauchy dual to T) is a hyponormal contraction.

Model for Analytic 2-isometries

Richter for $dim(H \ominus TH) = 1$

Olofsson for $dim(H \ominus TH) > 1$.

Analytic 2-isometries means $H_{\infty} = \{0\}$.

Let E be a Hilbert space.

Definition 5 A **positive** L(E)-valued operator measure on the unit circle $\mu(e^{i\theta}) = \mu(\theta)$. Let Ω be the σ -algebra of Borel sets of the circle. $\mu(\Omega_0) \geq 0$ in L(E), and for any $x,y \in E$

$$\mu_{x,y}(\Omega_0) = \langle \mu(\Omega_0)x, y \rangle$$

are all complex regular Borel measures on Ω .

$$T=\int\!f d\mu$$
 means $\langle Tx,y \rangle =\int\!f d\mu_{x,y}.$

The Fourier coefficients of μ are defined by

$$\widehat{\mu}(n) = \int_{\mathbb{T}} e^{-in\theta} d\mu(\theta)$$

 $\widehat{\mu}(n)$ are bounded operators in L(E).

The Poisson integral $P[\mu]$ is

$$P[\mu](z) = \int_{\mathbb{T}} P(z, e^{i\alpha}) d\mu(e^{i\alpha}) = \int_{\mathbb{T}} \frac{(1 - |z|^2)}{|e^{i\alpha} - z|^2} d\mu(e^{i\alpha})$$
$$= \sum_{\mathbb{T}} \widehat{\mu}(n) r^n e^{in\theta}, z = re^{i\theta}$$

Definition 6 The Dirichlet space $D(\mu)$. Let f(z) be a E-valued analytic function on \mathbb{D}

$$||f||_{\mu}^{2} = ||f||_{H^{2}}^{2} + \int_{\mathbb{D}} \langle P[\mu](z)f'(z), f'(z) \rangle_{E} dA(z)$$

If $f = \sum a_j z^j$ is an E-valued analytic polynomial, then

$$\int_{r\mathbb{D}} \left\langle P\left[\mu\right](z)f'(z), f'(z) \right\rangle_{E} dA(z) \\
= \sum_{j,k \geq 1} \min\{j,k\} r^{2\max\{j,k\}} \left\langle \widehat{u}(k-j)a_{j}, a_{k} \right\rangle$$

$$= \frac{1}{2\pi} \int_{r\mathbb{D}} \left\langle P\left[\mu\right](re^{i\theta}) f(re^{i\theta}), f(re^{i\theta}) \right\rangle_{E} d\theta$$

$$= \sum_{j,k \geq 0} r^{2\max\{j,k\}} \left\langle \widehat{u}(k-j) a_{j}, a_{k} \right\rangle$$

Theorem 7 M_z on $D(\mu)$ is an analytic 2-isometry.

Proof

$$\int_{r\mathbb{D}} \left\langle P\left[\mu\right](z)\left(zf\right)'(z), \left(zf\right)'(z)\right\rangle_{E} dA(z) \\
= r^{2} \int_{r\mathbb{D}} \left\langle P\left[\mu\right](z)f'(z), f'(z)\right\rangle_{E} dA(z) \\
+ \frac{r^{2}}{2\pi} \int_{r\mathbb{D}} \left\langle P\left[\mu\right](re^{i\theta})f(re^{i\theta}), f(re^{i\theta})\right\rangle_{E} d\theta \\
\int_{r\mathbb{D}} \left\langle P\left[\mu\right](z)\left(z^{2}f\right)'(z), \left(zf\right)'(z)\right\rangle_{E} dA(z) \\
+ r^{4} \int_{r\mathbb{D}} \left\langle P\left[\mu\right](z)\left(f\right)'(z), \left(f\right)'(z)\right\rangle_{E} dA(z) \\
= 2r^{2} \int_{r\mathbb{D}} \left\langle P\left[\mu\right](z)\left(zf\right)'(z), \left(zf\right)'(z)\right\rangle_{E} dA(z) \\
\left\| M_{z^{2}} f \right\|_{\mu}^{2} + \left\| f \right\|_{\mu}^{2} = 2 \left\| M_{z} f \right\|_{\mu}^{2}$$

Theorem 8 Let $T \in L(H)$ be an analytic 2-isometry. Then T is unitarily equivalent to M_z on $D(\mu)$ for some measure μ .

Lifting for 2-isometries by Agler and Stankus

Recall $T \in L(H)$ is a 2-isometry if

$$\beta_2(T) = T^{*2}T^2 - 2T^*T + I = 0.$$

In this case

$$\Delta = \Delta_T = \beta_1(T) = T^*T - I \ge 0.$$

The simplest 2-isometry is when $rank(\Delta) = 1$.

Difference between isometry and 2-isometry. (isometry of rank $(I - TT^*) = 2$ is the direct sum of rank 1 isometry) but not for 2-isometry.

T on $H^2 \oplus H^2 \oplus C \oplus C$ with $rank(\Delta) = 2$

$$T = \begin{bmatrix} S & 0 & \sqrt{2} \otimes 1 & 0 \\ 0 & S & 0 & \sigma \otimes 1 \\ 0 & 0 & 1 & b \\ 0 & 0 & 0 & -1 \end{bmatrix}$$

Definition 9 Brownian shift of covariance σ ($\sigma > 0$) and angle θ is the block operator $B_{\sigma,e^{i\theta}}$ acting on $H^2 \oplus C$ defined by

$$B_{\sigma,e^{i\theta}} = \begin{bmatrix} S & \sigma(1\otimes 1) \\ 0 & e^{i\theta} \end{bmatrix}.$$

Compute
$$\Delta = \beta_1(B_{\sigma,e^{i\theta}}) = \sigma^2(1 \otimes 1)$$
.

Proposition 10 If $rank(\Delta) = 1$ and T is pure, then T is unitarily equivalent to $B_{\sigma,e^{i\theta}}$.

skip proof

Definition 11 Brownian unitary of covariance σ is an operator which is unitarily equivalent to

$$U \oplus \int_{\bigoplus} B_{\sigma,e^{i\theta}}^{(n(\theta))} d\mu(\theta)$$
 on $H \oplus \int_{\bigoplus} (H^2 \oplus C)^{n(\theta)}$

where μ is a finite positive measure on $[0, 2\pi)$ and $n(\theta)$ is a μ measurable multiplicity function.

Proposition 12 B is a Brownian unitary of covariance σ if and only if B has the block form

$$B = \left[\begin{array}{cc} V & \sigma E \\ \mathbf{0} & U \end{array} \right] \text{ on } K = K_{\mathbf{0}} \oplus K_{\mathbf{1}}$$

where V an isometry, U an unitary and E an isometry maps K_1 onto ker V^* .

skip proof

Theorem 13 Let $T \in L(H)$ be a 2-isometry of covariance σ , then T is unitarily equivalent to a part of a Brownian unitary $B \in L(K)$ of covariance σ .

PROOF

We need to construct B on K and also an isometry

$$L: H \to K = K_0 \oplus K_1$$

such that

$$LT = BL$$
.

Here is the L

$$L = \left[\begin{array}{c} \sqrt{(I - \frac{1}{\sigma^2} \Delta)} \\ \frac{1}{\sigma} \sqrt{\Delta} \end{array} \right] = \left[\begin{array}{c} \delta \\ \frac{1}{\sigma} \sqrt{\Delta} \end{array} \right].$$

We will use LT = BL to construct B.

$$LT = \begin{bmatrix} \delta T \\ \frac{1}{\sigma} \sqrt{\Delta} T \end{bmatrix}$$

$$BL = \begin{bmatrix} V & \sigma E \\ 0 & U \end{bmatrix} \begin{bmatrix} \delta \\ \frac{1}{\sigma} \sqrt{\Delta} \end{bmatrix}$$

$$= \begin{bmatrix} V\delta + E\sqrt{\Delta} \\ U\frac{1}{\sigma} \sqrt{\Delta} \end{bmatrix}$$

Equivalently

$$U \frac{1}{\sigma} \sqrt{\Delta} = \frac{1}{\sigma} \sqrt{\Delta} T$$
$$V \delta + E \sqrt{\Delta} = \delta T$$

Rewrite the second equation as the third equation

$$V\delta + E\sqrt{\Delta} = VV^*\delta T + (I - VV^*)\delta T$$

First equation
$$U \frac{1}{\sigma} \sqrt{\Delta} = \frac{1}{\sigma} \sqrt{\Delta} T$$

Now define U_0 on $H_1 = Range(\sqrt{\Delta})^-$ by

$$U_0\sqrt{\Delta}h = \sqrt{\Delta}Th, h \in H$$

and extend U_0 to be an unitary U on K_1 .

write proof U_0 is an isometry

Second equation

$$V\delta + E\sqrt{\Delta} = \delta T$$

Define V_0 on

by

$$Range(\delta)^- = R(\delta T)^- \oplus (R(\delta)^- \ominus R(\delta T)^-)$$

$$V_0 \text{ on } R(\delta T)^- : V_0 \delta T h = \delta h,$$

$$V_0 \text{ on } R(\delta)^- \ominus R(\delta T)^- : V_0 = 0$$

and extend V_0 to a coisometry V^* on K_0 .

write proof V_0 is a contraction

Third equation

$$V\delta + E\sqrt{\Delta} = VV^*\delta T + (I - VV^*)\delta T$$

Finally define E from $K_1=H_1\oplus (K_1\ominus H_1)$ onto $(I-VV^*)K_0$ by

E on $H_1=R(\sqrt{\Delta})^-:E\sqrt{\Delta}h=(I-VV^*)\delta Th$ E on $K_1\ominus H_1:$ an arbitrary isometry F

Note E maps H_1 onto $(I - VV^*)Range(\delta T)^-$, so F has to map $K_1 \ominus H_1$ onto M where

$$M = (I - VV^*)K_0 \ominus (I - VV^*)R(\delta T)^{-1}$$

The existence of F requires that

$$\dim(K_1 \ominus H_1) = \dim(M)$$

which can be achieved by the freedom on K_1 .

write proof E on H_1 is an isometry

The original C^* -algbera proof of lifting theorem is based on the following abstract Theorem by **Agler**.

Let $C^{m \times m}[x,y]$ denote the set of the polynomials in x and y with $m \times m$ matrix coefficients. If

$$h = \sum c_{ij} y^j x^i \in C^{m \times m}[x, y]$$

and a is an element of a C^* -algbera with unit, then define $h(a) \in A^{m \times m}$ (the C^* -algbera of $m \times m$ matrices with entries in A) by

$$h(a) = \sum c_{ij} a^{*j} a^i.$$

If $T \in L(H)$, then h(T) is an operator from $H^{(n)} = H \oplus H \oplus \cdots \oplus H$ (m copies) into $H^{(n)}$.

Theorem 14 Let A to be a C^* -algbera with unit and fix $a \in A$. An operator $T \in L(H)$ has the form

$$\pi(c)|H$$

where $\pi:A\to L(K)$ is a unital *-representation, $K\supseteq H$ and H is invariant for $\pi(c)$ if and only if $h(T)\ge 0$ whenever $m\ge 1, h\in C^{m\times m}[x,y]$ and $h(c)\ge 0$.

Lecture III. *M*-isometries on Banach spaces and related operators

Caixing Gu

California Polytechnic State University

San Luis Obispo, California

Operator Winter School, South Korea

December 21-24, 2014

Plan of the talk

- Definitions
- Spectrum and norm
- Examples-weighted shifts
- Related operators—Reversing inequality

A bounded linear operator T on a Hilbert space H is an m-isometry if all $h \in H$,

$$eta_m(T,h)$$
 : $=\langle eta_m(T)h,h \rangle$
 $=\sum_{k=0}^m (-1)^{m-k} {m \choose k} \left\| T^k h \right\|^2 = 0$

An bounded linear operator T on a Banach space X is called an (m,p)-isometry if

$$\beta_{(m,p)}(T,x)$$
(1)
$$: = \sum_{k=0}^{m} (-1)^{m-k} {m \choose k} \|T^k x\|^p = 0 \text{ for all } x \in X.$$

Then recursive formula

$$\beta_{m+1}(T) = T^* \beta_m(T) T - \beta_m(T) \tag{2}$$

becomes

$$\beta_{(m+1,p)}(T,x) = \beta_{(m,p)}(T,Tx) - \beta_{(m,p)}(T,x).$$

write the proof

If H_0 is an invariant subspace of T, then

$$\beta_m(T|H_0, h_0) = \beta_m(T, h_0) \tag{3}$$

where $T|H_0$ is the restriction of T to H_0 .

skip some decomposition theorem

Spectrum

Proposition 1 If T is an m-isometry or an ∞ -isometry, then $\sigma_{ap}(T) \subseteq \partial D$. Therefore either $\sigma(T) = D^-$ or $\sigma(T) \subseteq \partial D$. In particular T is left invertible.

write the proof

Reproducing formula on H for an $m\mbox{-isometry}\ T$: for $n\geq m$

$$T^{*n}T^n = \sum_{k=0}^{m-1} \binom{n}{k} \beta_k(T)$$

Reproducing formula on X

$$||T^n x||^p = \sum_{k=0}^{m-1} \binom{n}{k} \beta_{(k,p)}(T,x)$$
 (4)

Maybe write the proof.

Therefore for all $x \in X$,

$$\beta_{(m-1,p)}(T,x) \ge 0$$

Write the proof.

Note also the right side of (4) is a polynomial of degree m-1 or less.

Norm

Therefore if T is a strict m-isometry, then for constant c, C,

$$Cn^{m-1} \ge ||T^n||^2 \ge cn^{m-1}$$
 for $n \ge m$.

A power-bounded m-isometry is an isometry.

Examples

If X is finite dimensional, we do not know.

Example 2 Assume T and $Q \in B(H)$ are commuting and T is an m-isometry and Q is a nilpotent operator of order ℓ . Then T+Q is an $(m+2\ell-2)$ -isometry.

Not true on Banach space

Example 3 Assume T and $S \in B(X)$ are commuting. Assume T is an (m,p)-isometry and S is an (l,p)-isometry. Then TS is an (m+l-1,p)-isometry.

skip the proof

Example 4 Let l_p denotes the Hilbert space with basis $\left\{e_j\right\}_{j\in\mathbb{N}_0}$. A unilateral weighted shift T on l_p is defined by $Te_j=w_je_{j+1}$ for $j\in\mathbb{N}_0$. Without loss of generality, assume all weights are positive. Then T is a strict m-isometry if and only if there exists a polynomial P(x) of degree m-1 such that P(n)>0 for $n\in\mathbb{N}_0$ and

$$(w_n)^p = \frac{P(n+1)}{P(n)}$$
 for $n \in \mathbb{N}_0$. (5)

For the bilateral shifts case (m has to be odd), we only need to change both " $n \in \mathbb{N}_0$ " in the above to " $n \in \mathbb{Z}$ ".

In order to prove the above example, we look at the reproducing formula more closely. For $n \geq m$,

$$||T^n x||^p = \sum_{k=0}^{m-1} \binom{n}{k} \beta_{(k,p)}(T,x)$$
 (6)

It turns out the above formula is automatically true (T does not have to be an m-isometry) for $0 \le n \le m-1$ if one interprets $\binom{n}{k} = 0$ if n < k. We state this formally as a lemma.

Lemma 5 Let $T \in B(X)$. For $x \in X$, Then the unique polynomial $P_x(y)$ interpolating $\left\{ (k, \left\| T^k x \right\|^p, 0 \le k \le m-1 \right\}$ is

$$P_x(y) = \sum_{k=0}^{m-1} {y \choose k} \beta_k(T, h)$$

where for a real number x,

$${y \choose k} = \frac{y(y-1)\cdots(y-k+1)}{k!}.$$

skip the proof.

The following characterization of m-isometry seems to be a slight change of perspective to the reproducing formula, but it is proved to be very powerful. This characterization essentially follows from the following combinatorial (or difference equation) fact. Let Z denote the set of integers and Z_+ denote the set of nonnegative integers.

Lemma 6 Let $\{a_n\}_{n\in Z_+}$ be a sequence of real number, then

$$\sum_{k=0}^{m} (-1)^{m-k} {m \choose k} a_{j+k} = 0 \text{ for } j \ge 0$$

if and only if there exists a polynomial P(y) of degree less than or equal to m-1 such that $a_n=P(n)$. In this case P(y) is the unique polynomial interpolating $\{(k,a_k), 0 \le k \le m-1\}$.

Proposition 7 Let $T \in B(X)$. For any $x \in X$, set $a_n := ||T^n x||^p$. Then T is an m-isometry if and only for each x there exists a polynomial $P_x(y)$ of degree less than or equal to m-1 such that $a_n = P_x(n)$.

write the proof.

Theorem 8 Let T weighted shifts. Then T is an misometry if and only if the reproducing formula holds only
for $x = e_0$. Equivalently T is a strict m-isometry if and
only if there exists a polynomial P(x) of degree equal
to m-1 such that $||T^ne_0||^p = P(n)$ for $n \in \mathbb{Z}_+$ (or $n \in \mathbb{Z}$).

write the proof

Theorem 9 Let T be a strict (m,q)-isometric weighted shift (bilateral or unilateral) on l_p for $m \geq 2$ and $q \in (0,\infty)$. Then there exist $m_0 \geq 2$ and $k \geq 1$ such that $(m,q)=(k(m_0-1)+1,kp)$ and T is a strict (m_0,p) -isometry on l_p .

skip the proof

1 Related operators

Recall that for $T \in B(X)$ and $x \in X$,

$$(-1)^m \beta_{(m,p)}(T,x) = \sum_{k=0}^m (-1)^k {m \choose k} \|T^k x\|^p.$$

Throughout the paper, in particular in the following definition, $\beta_{(m,p)}(T,x) \geq 0$ really means $\beta_{(m,p)}(T,x) \geq 0$ for all $x \in X$.

We will define several class operators on X by using $\beta_{(m,p)}(T,x)$. These operators have been studied on Hilbert spaces starting by Agler's paper on hypercontractions.

Definition 10 For $T \in B(X)$ and $m \geq 1$.

- (1) T is (m,p)-contractive if $(-1)^m \beta_{(m,p)}(T,x) \geq 0$;
- (2) T is (m, p)-hypercontractive if $(-1)^k \beta_{(k,p)}(T, x) \ge 1$
- 0 for $1 \leq k \leq m$;
- (3) T is completely p-hypercontractive if $(-1)^k \beta_{(k,p)}(T,x) \ge 0$ for $k \ge 1$;
- (4) T is (m, p)-expansive if $(-1)^m \beta_{(m,p)}(T, x) \leq 0$;
- (5) T is (m, p)-hyperexpansive if $(-1)^k \beta_{(k,p)}(T, x) \leq 0$ for $1 \leq k \leq m$;
- (6) T is completely p-hyperexpansive if $(-1)^k \beta_{(k,p)}(T,x) \le 0$ for $k \ge 1$;
- (7) T is (m, p)-alternatingly expansive if $\beta_{(m,p)}(T, x) \ge 0$;
- (8) T is (m, p)-alternatingly hyperexpansive if $\beta_{(k,p)}(T, x) \ge 0$ for $1 \le k \le m$;
- (9) T is alternatingly p-hyperexpansive if $\beta_{(k,p)}(T,x)$ for $k \geq 1$.

write out for k = 1, 2.

I will prove an surprising inequality for $\beta_{(m,p)}(T,x)$.

Reversing inequality: $\beta_{(m,p)}(T,x) \leq 0$ for all $x \in X$ implies $\beta_{(m-1,p)}(T,x) \geq 0$ for all $x \in X$.

When m=2 on a Hilbert space, this is due to Richter.

Lemma 11 Let $T \in B(X)$, $n \ge m \ge 1$ and $x \in X$. Then

$$\beta_{(m,p)}(T,x) = \beta_{(m-1,p)}(T,Tx) - \beta_{(m-1,p)}(T,x),$$

$$\beta_{(m,p)}(T,x) = ||T^m x||^p - \sum_{k=0}^{m-1} {m \choose k} \beta_{(k,p)}(T,x),$$
(8)

$$\sum_{k=0}^{m-1} {n \choose k} \beta_{(k,p)}(T,Tx)$$

$$= \sum_{k=0}^{m-1} {n+1 \choose k} \beta_{(k,p)}(T,x) + {n \choose m-1} \beta_{(m,p)}(T,x).$$
(9)

maybe write the proof of third equality

Theorem 12 (a) If $\beta_{(m,p)}(T,x) \leq 0$ for all $x \in X$, then for $n \geq m$,

$$||T^n x||^p \le \sum_{k=0}^{m-1} \binom{n}{k} \beta_{(k,p)}(T,x), x \in X.$$
 (10)

(b) If $\beta_{(m,p)}(T,x) \geq 0$ for all $x \in X$, then for $n \geq m$,

$$||T^n x||^p \ge \sum_{k=0}^{m-1} \binom{n}{k} \beta_{(k,p)}(T,x), x \in X.$$
 (11)

write the proof

write the proof of Reversing inequality

Some applications of Reversing inequality

Lemma 13 Let $T \in B(X)$. If T is invertible, then

$$\beta_{(m,p)}(T^{-1},x) = (-1)^m \beta_{(m,p)}(T,T^{-m}x).$$

When $T \in B(H)$, then

$$\beta_m(T^{-1}) = (-1)^m T^{-*m} \beta_m(T) T^{-m}.$$

Corollary 14 Assume *T* is invertible.

If $\beta_{(m,p)}(T,x) \leq 0$ for all $x \in X$ and some even m, then T is an (m-1,p)-isometry. In particular if T is an invertible (m,p)-isometry for some even n, then T is also an (m-1,p)-isometry.

Conclusion. Invertible strict (m, p)-isometry only for ODD m.

write the proof

Berger-Shaw type result by Agler and Stankus.

We are now back on Hilbert spaces.

Proposition 15 Let m be even. Let $T \in B(H)$ be an m-isometry. If T is finitely cyclic, then $\beta_{m-1}(T)$ is a compact operator.

Next we will generalize this result to m-expansive operators by using Reversing inequality in Calkin algebra B(H)/K(H)

Let \mathcal{A} denote a C^* -algebra with identity. For $t \in \mathcal{A}$, we write

$$\beta_m(t) = \sum_{k=0}^m (-1)^{m-k} {m \choose k} t^{*k} t^k.$$

We have the following definition similar to Definition 10 but only stated partially.

Definition 16 Let $t \in A$. We say t is m-isometric, m-contractive, m-expansive if $\beta_m(t) = 0, (-1)^m \beta_m(t) \ge 0, (-1)^m \beta_m(t) \le 0$ respectively.

Theorem 17 Let $t \in A$.

(a) If $\beta_m(t) \leq 0$, then for $n \geq m$

$$t^{*n}t^n \le \sum_{k=0}^{m-1} \binom{n}{k} \beta_k(T).$$

If $\beta_m(t) \geq 0$, then the above inequality with \geq holds. If $\beta_m(t) = 0$, then the above inequality becomes an equality.

(b) If $\beta_m(t) \leq 0$, then $\beta_{m-1}(t) \geq 0$. write the proof of (b).

Theorem 18 Let $T \in B(H)$ and $\pi(T)$ be its image in the Calkin algebra.

(a) Assume $\pi(T)$ is invertible. If $\beta_m(\pi(T)) \leq 0$ for some even m, then $\pi(T)$ is an (m-1)-isometry. In particular if $\pi(T)$ is an invertible m-isometry for some even n, then $\pi(T)$ is also an (m-1)-isometry.

write the proof

Theorem 19 Let m be even. Let $T \in B(H)$ be an m-expansive operator. If T has a finite-dimensional cokernel, then $\beta_{m-1}(T)$ is a compact operator.

write the proof