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Some history

Historically, there were �rst studies of n-symmetric opera-
tors (with connection to Sturm-Liouville conjugate point
theory) by Helton (1972,74), Agler (1980, 1992), Ball-
Helton (1980), Bunce (1983), Rodman and McCullough
(1996, 1997, 1998).

The study ofm-isometries was started by Agler and Stankus
"m-isometric transformations of Hilbert space, I, II, III"
(1995).

For two-isometries, there was another approach by Richter,
a representation theorem for cyclic analytic two-isometries
(1991), and Olofsson, A von Neumann-Wold decomposi-
tion of two-isometries (2004). Hellings, Two-isometries
on Pontryagin spaces (2008). For 3-isometries, McCul-
lough (1987, 89).



isometry,

unitary,

unilateral shift,

invariant subspace (upper triangular block form),

reducing subspace (direct sum),

von Neumann-Wold decomposition

write on the white board some details



A bounded linear operator T on a Hilbert space H is an
m-isometry for a positive integer m if

�m(T ) :=
mX
k=0

(�1)m�k
�m
k

�
T �kT k = 0

or equivalently for all h 2 H;

�m(T; h) := h�m(T )h; hi =
mX
k=0

(�1)m�k
�m
k

� 


T kh


2 = 0
Note that

�m+1(T ) = T
��m(T )T � �m(T ): (1)

Thus if T is an m-isometry, then T is an n-isometry for
all n � m:

If H0 is an invariant subspace of T , then

�m(T jH0) = PH0�m(T )jH0 (2)

where T jH0 is the restriction of T to H0:

Write on the board for m = 1; 2; 3; proof of recursive
formula and about H0



We say T is a strict m-isometry if T is an m-isometry
but not an (m� 1)-isometry.

We say T is an 1-isometry if

limsupm!1 k�m(T )k1=m = 0:

We say T is a �nite-isometry if T is an m-isometry for
some m � 1:

We say T is an 1-unitary if both T and T � are 1-
isometries.

Similarly, for m � 1; T is an m-unitary if both T and
T � are m-isometries.

For an m-isometry T and l < m; T is l-pure if T has no
nonzero direct summand which is an l-isometry.

For an 1-isometry, T is a pure 1-isometry if T has no
nonzero direct summand which is a �nite-isometry.



Decomposition Theorems

For m � 1; subspace Km is de�ned by

Km(T ) = Km =
\
i�0

ker(�m(T )T
i): (3)

It follows from recursive formula that

K1 � K2 � K3 � � � � :

Proposition 1 Let T 2 B(H). Then Km is invariant
for T and T jKm is anm-isometry. Furthermore, ifM �
H is invariant for T and T jM is an m-isometry, then
M � Km:

write proof



Proposition 2 Let T 2 B(H). Then for each m � 1;

there exists a unique subspace M � H that is maximal
with respect to the following properties:
(i) M is reducing for T , and
(ii) T jM is an m-isometry.

Skip proof

Let Rm denote this unique reducing subspace for T:



Theorem 3 Let T 2 B(H) be an 1-isometry. Let
V1 = R1; Vn = Rn 	Rn�1 for n � 2 and

V1 = H 	
_
fRi; i � 1g = H 	

_
fVi; i � 1g :

Then Vi is reducing for T for each i = 1; 2; : : : ;1 and
with respect to the decomposition

H = V1 � V1 � V2 � V3 � � � � ;

T has the following form

T = V1 � V1 � V2 � � � � � Vn � � � �

where T jV1 is an pure1-isometry, T jV1 is an isometry,
and T jVn is a pure (m� 1)-isometry.

No need for proof



Nagy-Foias-Langer decomposition theorem for con-
tractions: every contraction is a direct sum of a unitary
and a completely nonunitary contraction

Here are two generalizations.

Theorem 4 Let T 2 B(H): Then Um de�ned by the
formula

Um = Km(T )
T
Km(T

�) (4)

=
\
i�0

h
ker(�m(T )T

i)
T
ker(�m(T

�)T i�)
i
(5)

is the unique maximal reducing subspace on which T is
an m-unitary. Furthermore T = T1 � T2 with respect
to the decomposition H = Um � Um where T1 is an
m-unitary and T2 is an operator which has no direct m-
unitary summand.



Theorem 5 Let T 2 B(H). Then R1 de�ned by the
formula

R1 = R1(T ) :=
\

i;n�0
ker(�1(T )T

iT �n) (6)

is the unique maximal reducing subspace on which T is
an isometry. Furthermore T = T1 � T2 with respect to
the decomposition H = R1 � R?1 where T1 is an isom-
etry and T2 is an operator which has no direct isometry
summand.

Maybe write Proof



Spectrum

Proposition 6 If T is an m-isometry or an1-isometry,
then �ap(T ) � @D: Therefore either �(T ) = D� or
�(T ) � @D. In particular T is left invertible.

Proof



Proposition 7 If T is an m-isometry, then the gener-
alized eigenspaces corresponding to di¤erent eigenvalues
are orthogonal.

Skip proof



Reproducing formula for an m-isometry T :

for n � m

T �nTn =
m�1X
k=0

 
n
k

!
�k(T )

write proof

Therefore

�m�1(T ) � 0

write proof



Norm

kTnhk2 = hT �nTnh; hi =
*m�1X
k=0

 
n
k

!
�k(T )h; h

+

=
m�1X
k=0

 
n
k

!
�k(T; h)

Therefore if T is a strict m-isometry, then for constant
c; C,

Cnm�1 � kTnk2 � cnm�1 for n � m:

A power-bounded m-isometry is an isometry.

write proof



Examples

Example 8 If H is a �nite dimensional Hilbert space,
then an1-isometry is an m-isometry. An m-isometry is
the direct sum of matrices of the form

�I +Q

where Q` = 0 for some `:

Maybe write proof



Example 9 Assume T and Q 2 B(H) are commuting
and T is an m-isometry and Q is a nilpotent operator of
order `. Then T + Q is an (m + 2` � 2)-isometry. If
T is an 1-isometry and Q is a quasinilpotent operator.
Then T +Q is an 1-isometry.

write Proof



Example 10 Let l2 denotes the Hilbert space with basisn
ej
o
j2N0

: A unilateral weighted shift T on l2 is de�ned

by Tej = wjej+1 for j 2 N0:Without loss of generality,
assume all weights are positive. Then T is a strict m-
isometry if and only if there exists a polynomial P (x) of
degree m� 1 such that P (n) > 0 for n 2 N0 and

(wn)
2 =

P (n+ 1)

P (n)
for n 2 N0: (7)

For the bilateral shifts case (m has to be odd), we only
need to change both "n 2 N0" in the above to "n 2 Z".

will prove in last lecture



Example 11 An 1-isometry comes from the limit of a
sequence of commuting �nite-isometries. Let Tn be n�n
Jordan block

Tn =

266664
�n

1
n � � � 0

0 . . . . . . ...
... . . . . . . 1

n
0 � � � 0 �n

377775
where the �n 2 @D: Then Tn is a strict (2n � 1)-
isometry. Let

T = T1 � T2 � T3 � � � � :

Then T is an1-isometry but not a �nite-isometry. Fur-
thermore �(T ) = f�n; n � 1g� :

Explain as the limit of a sequence of commuting �nite
m-isometry.
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Extension and Lifting

Let T 2 L(H) and B 2 L(K) with K � H: Let B be
such that

B =

"
T �
0 �

#
on K = H � (K 	H) = H �H?

Since H is invariant for B; T = BjH; B is called an
extension (lifting) of T or T has a lifting (an extension)
to B or T is a part of B:

Let T 2 L(H) and B 2 L(K): We say T is unitarily
equivalent to a part of B if there is an isometry W :

H ! K such that

WT = BW

In this case, set M = WH � K; then M is invariant
for B and

T =W�1(BjM)W:



Dilation

Sarason: Let C 2 L(K) with K � H: Then Tn =
PHC

njH if and only if H? is invariant for T � and

C =

"
T 0
� �

#
on K = H � (K 	H) = H �H?:

C =

"
� �
0 T

#
on K = (K 	H)�H = H? �H

The operator C is called a (power) dilation of T or T has
an dilation C: Equivalently C� is an extension of T �:

maybe some proof



von Neumann-Wold decomposition for isometries:
An isometry T is the direct sum of an unitary and a
unilateral shift.

Set H1 := \n�1TnH; T jH1 is unitary

H0 := H 	 TH = ker(T �) is called the wandering
subspace of T

T jH0 � TH0 � T 2H0 � � � � is a shift operator

H = H1 �
h
H0 � TH0 � T 2H0 � � � �

i
Corollary: An isometry can be extended to an unitary or
An isometry is a part of an unitary.



Nagy isometric dilation theorem: Every contraction
has an extension to an coisometry or Every contraction
is a part of an coisometry. Let T 2 L(H); then T � =
V �jH (or equivalently Tn = PHV

njH ) where

V � =

26666664
T � DT 0 � � � � � �
0 0 I 0 . . .
0 0 0 I . . .
... . . . . . . . . . . . .
... . . . . . . . . . . . .

37777775 on K = H�H�� � � :

The isometry V is called an isometric dilation of T and

V � is called a coisometry extension (lifting) of T � or T �

has an extension (lifting) to V �:

write proof



Von Neumann-Wold decomposition for
2-isometries

Let T 2 L(H) be an 2-concave or 2-expansive. That is

�2(T ) = T
�2T 2 � 2T �T + I � 0

Explain the terminology

(�1)m�m(T ) � 0 for contractive, hypercontractive

(�1)m�m(T ) � 0 for expansive, hyperexpansive

Recall H1 = \n�1TnH

Lemma 1 H1 is reducing for T and T jH1 is an uni-
tary.

skip proof



Lemma 2 kTnhk2 � khk2 � n(kThk2 � khk2) =
n kDhk2 ;

�1(T ) := T
�T � I = D � 0:

write proof, to start for n = 1


T 2h


2 � kThk2 � kThk2 � khk2
Consequence for spectrum and norm
�ap(T ) � @D: Therefore either �(T ) = D� or �(T ) �
@D. In particular T is left invertible.

T �T � I = D � 0 or kThk2 � khk2 � 0

T is expansive operator

Late to extend these results to 2m-expansive operators



Theorem 3 Let T 2 L(H) be an 2-concave or 2-expansive.
Assume H1 = f0g : Then

H =
_
i�0

TnM0

where

H0 = (H 	 TH) = R(T )? = ker T �

is called the wondering subspace for S:



PROOF

L = (T �T )�1T � is the leftinverse of T;

Q = TL is the projection onto Range(T )

P = I �Q is the projection on to R(T )? = ker T �

Let x 2 H;

(I � TnLn)h =
n�1P
j=0

(T jLj � T j+1Lj+1)h

=
n�1P
j=0

T j(I � TL)Ljh

=
n�1P
j=0

T jPLjh 2
_
i�0

TnM0

Will prove (I�TnLn)h! h weakly to �nish the proof.



khk2 =
n�1P
j=0




PLjh


2 + nP
j=0




DLjh


2 + kLnhk2
For n = 1;

khk2 = kPhk2 + kQhk2

= kPhk2 + kLhk2 + kTLhk2 � kLhk2

= kPhk2 + kLhk2 + kDLhk2

then by induction (using this formula for Lnh).�
inf

n
kTnLnhk2 � kLnhk2 : k � n � m

o� mP
n=k

1

n

�
mP
n=k

1

n

�
kTnLnhk2 � kLnhk2

�
�

mP
n=k

kDLnhk2 � khk2

Since kLnhk2 is decreasing,

lim inf kTnLnhk = lim kLnhk



Thus there exists a weakly convergent subsequence

TnjLnjh! y

for some y,

but TnjLnjh 2 TNH which is closed hence weakly
closed. So y 2 H1 = f0g :

THE PROOF IS COMPLETE.

In fact lim kLnhk ! 0 and kTnjLnjhk ! 0:

khk2 =
1P
j=0




PLjh


2 + 1P
j=0




DLjh


2 (1)



Theorem 4 Richter, Let T 2 L(H) be an 2-concave or
2-expansive. Assume H1 = f0g : Then every invariant
subspace M of T is of the form

M =
_
i�0

TnM0

where

M0 = (M 	 TM)

is called the wondering subspace for S:



There are generalizations of the above result.

By Olofsson,

kTnhk2 � c khk2 � cn(kThk2 � khk2);P
n�2

1

cn
= 1

By Shimorin, operator related to 2-concave operator in-
cluding Bergman shift, if T 2 L(H) is 2-concave, then
T 0 = T (T �T )�1 satisfying


T 0x+ y


2 � 2(kxk2 + 


T 0y


2)
In another connection by Chavan, T 0 = T (T �T )�1

(called by him Cauchy dual to T ) is a hyponormal con-
traction.



Model for Analytic 2-isometries

Richter for dim (H 	 TH) = 1

Olofsson for dim (H 	 TH) > 1:

Analytic 2-isometries means H1 = f0g :

Let E be a Hilbert space.

De�nition 5 A positive L(E)-valued operator measure
on the unit circle �(ei�) = �(�). Let 
 be the �-algebra
of Borel sets of the circle. �(
0) � 0 in L(E); and for
any x; y 2 E

�x;y(
0) = h�(
0)x; yi

are all complex regular Borel measures on 
:

T =
R
fd� means hTx; yi =

R
fd�x;y:



The Fourier coe¢ cients of � are de�ned by

b�(n) = R
Te
�in�d�(�)

b�(n) are bounded operators in L(E):
The Poisson integral P [�] is

P [�] (z) =
R
TP (z; e

i�)d�(ei�) =
Z
T

(1� jzj2)���ei� � z���2d�(ei�)
=

Xb�(n)rnein�; z = rei�



De�nition 6 The Dirichlet space D(�): Let f(z) be a
E-valued analytic function on D

kfk2� = kfk
2
H2 +

R
D
D
P [�] (z)f 0(z); f 0(z)

E
E
dA(z)

If f =
P
ajz

j is an E-valued analytic polynomial, thenR
rD
D
P [�] (z)f 0(z); f 0(z)

E
E
dA(z)

=
X
j;k�1

minfj; kgr2maxfj;kg
Dbu(k � j)aj; akE

1

2�

R
rD
D
P [�] (rei�)f(rei�); f(rei�)

E
E
d�

=
X
j;k�0

r2maxfj;kg
Dbu(k � j)aj; akE



Theorem 7 Mz on D(�) is an analytic 2-isometry.

Proof R
rD
D
P [�] (z) (zf)0 (z); (zf)0 (z)

E
E
dA(z)

= r2
R
rD
D
P [�] (z)f

0
(z); f

0
(z)

E
E
dA(z)

+
r2

2�

R
rD
D
P [�] (rei�)f(rei�); f(rei�)

E
E
d�

R
rD

�
P [�] (z)

�
z2f

�0
(z); (zf)0 (z)

�
E
dA(z)

+r4
R
rD
D
P [�] (z) (f)0 (z); (f)0 (z)

E
E
dA(z)

= 2r2
R
rD
D
P [�] (z) (zf)0 (z); (zf)0 (z)

E
E
dA(z)




Mz2f



2
�
+ kfk2� = 2 kMzfk2�



Theorem 8 Let T 2 L(H) be an analytic 2-isometry.
Then T is unitarily equivalent to Mz on D(�) for some
measure �:



Lifting for 2-isometries by Agler and Stankus

Recall T 2 L(H) is a 2-isometry if

�2(T ) = T
�2T 2 � 2T �T + I = 0:

In this case

� = �T = �1(T ) = T
�T � I � 0:

The simplest 2-isometry is when rank(�) = 1:

Di¤erence between isometry and 2-isometry. (isom-
etry of rank(I � TT �) = 2 is the direct sum of rank 1
isometry) but not for 2-isometry.

T on H2 �H2 � C � C with rank(�) = 2

T =

26664
S 0

p
2
 1 0

0 S 0 � 
 1
0 0 1 b
0 0 0 �1

37775



De�nition 9 Brownian shift of covariance � (� > 0)

and angle � is the block operatorB�;ei� acting onH
2�C

de�ned by

B�;ei� =

"
S �(1
 1)
0 ei�

#
:

Compute � = �1(B�;ei�) = �
2(1
 1):

Proposition 10 If rank(�) = 1 and T is pure, then T
is unitarily equivalent to B�;ei�:

skip proof



De�nition 11 Brownian unitary of covariance � is an
operator which is unitarily equivalent to

U �
R
�B

(n(�))

�;ei�
d�(�) on H �

R
�(H

2 � C)n(�)

where � is a �nite positive measure on [0; 2�) and n(�)
is a � measurable multiplicity function.

Proposition 12 B is a Brownian unitary of covariance
� if and only if B has the block form

B =

"
V �E
0 U

#
on K = K0 �K1

where V an isometry, U an unitary and E an isometry
maps K1 onto ker V �:

skip proof



Theorem 13 Let T 2 L(H) be a 2-isometry of co-
variance �; then T is unitarily equivalent to a part of
a Brownian unitary B 2 L(K) of covariance �:

PROOF

We need to construct B on K and also an isometry

L : H ! K = K0 �K1
such that

LT = BL:

Here is the L

L =

24 q
(I � 1

�2
�)

1
�

p
�

35 = "
�

1
�

p
�

#
:

We will use LT = BL to construct B:



LT =

"
�T

1
�

p
�T

#

BL =

"
V �E
0 U

# "
�

1
�

p
�

#

=

"
V � + E

p
�

U 1�
p
�

#
Equivalently

U
1

�

p
� =

1

�

p
�T

V � + E
p
� = �T

Rewrite the second equation as the third equation

V � + E
p
� = V V ��T + (I � V V �)�T



First equation

U
1

�

p
� =

1

�

p
�T

Now de�ne U0 on H1 = Range(
p
�)� by

U0
p
�h =

p
�Th; h 2 H

and extend U0 to be an unitary U on K1.

write proof U0 is an isometry



Second equation

V � + E
p
� = �T

De�ne V0 on

Range(�)� = R(�T )� � (R(�)� 	R(�T )�)

by

V0 on R(�T )
� : V0�Th = �h;

V0 on R(�)
� 	R(�T )� : V0 = 0

and extend V0 to a coisometry V � on K0:

write proof V0 is a contraction



Third equation

V � + E
p
� = V V ��T + (I � V V �)�T

Finally de�ne E from K1 = H1 � (K1 	 H1) onto
(I � V V �)K0 by

E on H1 = R(
p
�)� : E

p
�h = (I � V V �)�Th

E on K1 	H1 : an arbitrary isometry F

Note E maps H1 onto (I � V V �)Range(�T )�,
so F has to map K1 	H1 onto M where

M = (I � V V �)K0 	 (I � V V �)R(�T )�

The existence of F requires that

dim(K1 	H1) = dim(M)

which can be achieved by the freedom on K1:

write proof E on H1 is an isometry



The original C�-algbera proof of lifting theorem is
based on the following abstract Theorem by Agler.

Let Cm�m[x; y] denote the set of the polynomials in x
and y with m�m matrix coe¢ cients. If

h =
P
cijy

jxi 2 Cm�m[x; y]
and a is an element of a C�-algbera with unit, then de�ne
h(a) 2 Am�m (the C�-algbera of m�m matrices with
entries in A) by

h(a) =
P
cija

�jai:

If T 2 L(H); then h(T ) is an operator from H(n) =
H �H � � � � �H (m copies) into H(n):

Theorem 14 Let A to be a C�-algbera with unit and �x
a 2 A: An operator T 2 L(H) has the form

�(c)jH
where � : A! L(K) is a unital *-representation, K �
H and H is invariant for �(c) if and only if h(T ) � 0
whenever m � 1; h 2 Cm�m[x; y] and h(c) � 0:
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A bounded linear operator T on a Hilbert space H is an
m-isometry if all h 2 H;

�m(T; h) : = h�m(T )h; hi

=
mX
k=0

(�1)m�k
�m
k

� 


T kh


2 = 0
An bounded linear operator T on a Banach space X is
called an (m; p)-isometry if

�(m;p)(T; x) (1)

: =
mX
k=0

(�1)m�k
�m
k

� 


T kx


p = 0 for all x 2 X:
Then recursive formula

�m+1(T ) = T
��m(T )T � �m(T ) (2)

becomes

�(m+1;p)(T; x) = �(m;p)(T; Tx)� �(m;p)(T; x):

write the proof



If H0 is an invariant subspace of T , then

�m(T jH0; h0) = �m(T; h0) (3)

where T jH0 is the restriction of T to H0:

skip some decomposition theorem



Spectrum

Proposition 1 If T is an m-isometry or an1-isometry,
then �ap(T ) � @D: Therefore either �(T ) = D� or
�(T ) � @D. In particular T is left invertible.

write the proof



Reproducing formula on H for an m-isometry T :
for n � m

T �nTn =
m�1X
k=0

 
n
k

!
�k(T )

Reproducing formula on X

kTnxkp =
m�1X
k=0

 
n
k

!
�(k;p)(T; x) (4)

Maybe write the proof.

Therefore for all x 2 X;

�(m�1;p)(T; x) � 0
Write the proof.
Note also the right side of (4) is a polynomial of degree
m� 1 or less.
Norm
Therefore if T is a strict m-isometry, then for constant
c; C,

Cnm�1 � kTnk2 � cnm�1 for n � m:
A power-bounded m-isometry is an isometry.



Examples

If X is �nite dimensional, we do not know.

Example 2 Assume T and Q 2 B(H) are commuting
and T is an m-isometry and Q is a nilpotent operator of
order `. Then T +Q is an (m+ 2`� 2)-isometry.

Not true on Banach space



Example 3 Assume T and S 2 B(X) are commut-
ing. Assume T is an (m; p)-isometry and S is an (l; p)-
isometry. Then TS is an (m+ l � 1; p)-isometry.

skip the proof



Example 4 Let lp denotes the Hilbert space with basisn
ej
o
j2N0

: A unilateral weighted shift T on lp is de�ned

by Tej = wjej+1 for j 2 N0:Without loss of generality,
assume all weights are positive. Then T is a strict m-
isometry if and only if there exists a polynomial P (x) of
degree m� 1 such that P (n) > 0 for n 2 N0 and

(wn)
p =

P (n+ 1)

P (n)
for n 2 N0: (5)

For the bilateral shifts case (m has to be odd), we only
need to change both "n 2 N0" in the above to "n 2 Z".



In order to prove the above example, we look at the re-
producing formula more closely. For n � m;

kTnxkp =
m�1X
k=0

 
n
k

!
�(k;p)(T; x) (6)

It turns out the above formula is automatically true (T
does not have to be anm-isometry) for 0 � n � m�1 if
one interprets

�
n
k

�
= 0 if n < k. We state this formally

as a lemma.

Lemma 5 Let T 2 B(X): For x 2 X; Then the unique
polynomial Px(y) interpolating

n
(k;




T kx


p ; 0 � k � m� 1
o

is

Px(y) =
m�1X
k=0

�y
k

�
�k(T; h)

where for a real number x;�y
k

�
=
y(y � 1) � � � (y � k + 1)

k!
:

skip the proof.



The following characterization ofm-isometry seems to be
a slight change of perspective to the reproducing formula,
but it is proved to be very powerful. This characterization
essentially follows from the following combinatorial (or
di¤erence equation) fact. Let Z denote the set of integers
and Z+ denote the set of nonnegative integers.

Lemma 6 Let fangn2Z+ be a sequence of real number,
then

mX
k=0

(�1)m�k
�m
k

�
aj+k = 0 for j � 0

if and only if there exists a polynomial P (y) of degree
less than or equal to m � 1 such that an = P (n):
In this case P (y) is the unique polynomial interpolating
f(k; ak); 0 � k � m� 1g :

Proposition 7 Let T 2 B(X): For any x 2 X; set
an := kTnxkp. Then T is an m-isometry if and only
for each x there exists a polynomial Px(y) of degree less
than or equal to m� 1 such that an = Px(n):

write the proof.



Theorem 8 Let T weighted shifts. Then T is an m-
isometry if and only if the reproducing formula holds only
for x = e0: Equivalently T is a strict m-isometry if and
only if there exists a polynomial P (x) of degree equal
to m � 1 such that kTne0kp = P (n) for n 2 Z+ (or
n 2 Z).

write the proof



Theorem 9 Let T be a strict (m; q)-isometric weighted
shift (bilateral or unilateral) on lp for m � 2 and q 2
(0;1). Then there exist m0 � 2 and k � 1 such that
(m; q) = (k(m0�1)+1; kp) and T is a strict (m0; p)-
isometry on lp.

skip the proof



1 Related operators

Recall that for T 2 B(X) and x 2 X;

(�1)m�(m;p)(T; x) =
mX
k=0

(�1)k
�m
k

� 


T kx


p :
Throughout the paper, in particular in the following de�-
nition, �(m;p)(T; x) � 0 really means �(m;p)(T; x) � 0
for all x 2 X:

We will de�ne several class operators on X by using
�(m;p)(T; x): These operators have been studied on Hilbert
spaces starting by Agler�s paper on hypercontractions.



De�nition 10 For T 2 B(X) and m � 1.
(1) T is (m; p)-contractive if (�1)m�(m;p)(T; x) � 0;
(2) T is (m; p)-hypercontractive if (�1)k�(k;p)(T; x) �
0 for 1 � k � m;
(3) T is completely p-hypercontractive if (�1)k�(k;p)(T; x) �
0 for k � 1;
(4) T is (m; p)-expansive if (�1)m�(m;p)(T; x) � 0;
(5) T is (m; p)-hyperexpansive if (�1)k�(k;p)(T; x) � 0
for 1 � k � m;
(6) T is completely p-hyperexpansive if (�1)k�(k;p)(T; x) �
0 for k � 1;
(7) T is (m; p)-alternatingly expansive if �(m;p)(T; x) �
0;

(8) T is (m; p)-alternatingly hyperexpansive if �(k;p)(T; x) �
0 for 1 � k � m;
(9) T is alternatingly p-hyperexpansive if �(k;p)(T; x) for
k � 1:

write out for k = 1; 2:



I will prove an surprising inequality for �(m;p)(T; x):

Reversing inequality: �(m;p)(T; x) � 0 for all x 2 X
implies �(m�1;p)(T; x) � 0 for all x 2 X .

When m = 2 on a Hilbert space, this is due to Richter.



Lemma 11 Let T 2 B(X); n � m � 1 and x 2 X:
Then

�(m;p)(T; x) = �(m�1;p)(T; Tx)� �(m�1;p)(T; x);

(7)

�(m;p)(T; x) = kTmxk
p �

m�1X
k=0

 
m
k

!
�(k;p)(T; x);

(8)

m�1X
k=0

 
n
k

!
�(k;p)(T; Tx)

=
m�1X
k=0

 
n+ 1
k

!
�(k;p)(T; x) +

 
n

m� 1

!
�(m;p)(T; x):

(9)

maybe write the proof of third equality



Theorem 12 (a) If �(m;p)(T; x) � 0 for all x 2 X;

then for n � m;

kTnxkp �
m�1X
k=0

 
n
k

!
�(k;p)(T; x); x 2 X: (10)

(b) If �(m;p)(T; x) � 0 for all x 2 X; then for n � m;

kTnxkp �
m�1X
k=0

 
n
k

!
�(k;p)(T; x); x 2 X: (11)

write the proof

write the proof of Reversing inequality



Some applications of Reversing inequal-
ity

Lemma 13 Let T 2 B(X): If T is invertible, then

�(m;p)(T
�1; x) = (�1)m�(m;p)(T; T�mx):

When T 2 B(H); then

�m(T
�1) = (�1)mT��m�m(T )T�m:

Corollary 14 Assume T is invertible.
If �(m;p)(T; x) � 0 for all x 2 X and some even m;
then T is an (m � 1; p)-isometry. In particular if T is
an invertible (m; p)-isometry for some even n, then T is
also an (m� 1; p)-isometry.

Conclusion. Invertible strict (m; p)-isometry only for ODD
m:

write the proof



Berger-Shaw type result by Agler and Stankus.

We are now back on Hilbert spaces.

Proposition 15 Let m be even. Let T 2 B(H) be an
m-isometry. If T is �nitely cyclic, then �m�1(T ) is a
compact operator.



Next we will generalize this result to m-expansive op-
erators by using Reversing inequality in Calkin algebra
B(H)=K(H)

Let A denote a C�-algebra with identity. For t 2 A; we
write

�m(t) =
mX
k=0

(�1)m�k
�m
k

�
t�ktk:

We have the following de�nition similar to De�nition 10
but only stated partially.

De�nition 16 Let t 2 A. We say t is m-isometric, m-
contractive, m-expansive if �m(t) = 0; (�1)m�m(t) �
0; (�1)m�m(t) � 0 respectively.



Theorem 17 Let t 2 A.
(a) If �m(t) � 0; then for n � m

t�ntn �
m�1X
k=0

 
n
k

!
�k(T ):

If �m(t) � 0; then the above inequality with � holds.
If �m(t) = 0; then the above inequality becomes an
equality.
(b) If �m(t) � 0; then �m�1(t) � 0:
write the proof of (b):



Theorem 18 Let T 2 B(H) and �(T ) be its image in
the Calkin algebra.
(a) Assume �(T ) is invertible. If �m(�(T )) � 0 for
some even m; then �(T ) is an (m � 1)-isometry. In
particular if �(T ) is an invertible m-isometry for some
even n, then �(T ) is also an (m� 1)-isometry.

write the proof

Theorem 19 Let m be even. Let T 2 B(H) be an
m-expansive operator. If T has a �nite-dimensional co-
kernel, then �m�1(T ) is a compact operator.

write the proof
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