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Lecture 1.
Introduction to multidimensional moment problems

1 Motivation I: Numerical Integration

Definition 1 A quadrature (or cubature) rule of size p and precision m is a
numerical integration formula which uses p nodes, is exact for all polynomials of
degree at most m, and fails to recover the integral some polynomial of degree
m + 1.

Example 2 [Gaussian Quadrature; size n, precision 2n− 1]

We would like to find nodes tj (j = 0, . . . , n− 1) satisfying∫ 1

−1 f (t) dt =
∑n−1

j=0 ρjf (tj) for every polynomial f with deg f ≤ 2n− 1.
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Consider Interpolating Equations:
n−1∑
j=0

ρjt
k
j =

∫ 1

−1
tk dt =

{
0 k = 1, 3, . . . , 2n− 1;
2

k+1 k = 0, 2, . . . , 2n− 2
(1.1)

If n = 2, (1.1) becomes the system of polynomial equations
ρ0 + ρ1 = 2

ρ0t0 + ρ1t1 = 0

ρ0t
2
0 + ρ1t

2
1 = 2/3

ρ0t
3
0 + ρ1t

3
1 = 0

The solution is ρ0 = ρ1 = 1, t0 = −1/
√

3, and t1 = 1/
√

3. Thus we have∫ 1

−1
(a0 + a1t +a2t

2 + a3t
3
)
dt

= a0(ρ0 + ρ1) + a1(ρ0t0 + ρ1t1) + a2
(
ρ0t

2
0 + ρ1t

2
1

)
+ a3

(
ρ0t

3
0 + ρ1t

3
1

)
=

∫ 1

−1

(
a0 + a1t + a2t

2 + a3t
3
)
dµ,

where µ := ρ0δt0 + ρ1δt1 (δ stands for the point mass).

3



Numerical analysis textbooks prove this by using Legendre polynomials. We
can do this as follows: Let β0 := 2, β1 := 0, β2 := 2/3, β3 := 0 and let

1 T T 2

H :=

β0 β1 β2β1 β2 β3
β2 β3 α

 =

 2 0 2/3

0 2/3 0

2/3 0 α


For the sake of a minimal number of nodes, we want rank H = 2; thus, α = 2/9

and the column relation in H can be written as T 2 = (1/3)1. It is known the
roots of the equation t2 = 1/3 (that is, t0 = −1/

√
3 and t1 = 1/

√
3) are the nodes.

We may compute the densities by solving the Vandermonde system:
1 1

t0 t1
t20 t

2
1

t30 t
3
1


(
ρ0
ρ1

)
=


β0
β1
β2
β3

 =⇒ ρ0 = ρ1 = 1.
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2 Motivation II

We begin with a simple question:

How do we find a formula to represent the Fibonacci sequence?
1, 1, 2, 3, 5, 8, 13, 21, . . .

For now, let us take the first six terms and write:

β ≡ {βj}5j=0 = {1, 1, 2, 3, 5, 8} or β ≡ {βij} = {1, 1, 2, 3, 5, 8} (0 ≤ i + j ≤ 2)

In a way, we can find a formula for β

βj =
5−
√

5

10

(
1−
√

5

2

)j

+
5 +
√

5

10

(
1 +
√

5

2

)j

for j = 0, . . . , 6, that is, the representing measure µ for β supported in the real
line is

µ =

(
5−
√

5

10

)
δ1−√5

2
+

(
5 +
√

5

10

)
δ1+√5

2
;
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or

βij = (1)

(
1

2

)i
(1)j +

(
1

7

)(
9

2

)i
(7)j +

(
−1

7

)
· (1)i(0)j,

that is, the representing measure ν for β supported in the plane is

ν = 1 · δ(12 ,1) +
1

7
· δ(92 ,7) −

1

7
· δ(1,0).

The coefficients in the formulas are called densities and the points are atoms
of the representing measure. This is an elementary example of the truncated
moment problem on the real line or on the plane. The moment problem
is to find some conditions for the existence of such a measure for a given
sequence, and if possible, we also would like to discover a concrete formula of
the measure.
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3 What is the Moment Problem?

Inverse problems naturally occur in many branches of science and mathematics.
An inverse problem entails finding the values of one or more parameters using
the values obtained from observed data.

This problem is intimately connected with image reconstruction for X-ray com-
puterized tomography.

Moment problems are a special class of inverse problems. While the classi-
cal theory of moments dates back to the beginning of the 20th century, the
systematic study of truncated moment problems began only about 20 years
ago.
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H. J. Landau said in the article “Moments in Mathematics”:

“The moment problems is a classical question in analysis, remarkable not
only for its own elegance, but also for its extraordinary range of subjects
theoretical and applied, which it has illuminated. From it flow develop-
ments in function theory, in functional analysis, in spectral representation
of operators, in probability and statics, in Fourier analysis and the pre-
diction of stochastic process, in approximation and numerical methods,
in inverse problems and the design of algorithms for simulating physical
systems.”

By the recent developments of the multivariable moment problem, we may add
the following to Landau’s list:

real algebraic geometry, optimization,
convex analysis, matrix analysis, and so on.
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Good References

Konrad Schmüdgen Barry Simon
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4 Finitely Atomic Measures

Definition 3 Let (X,M, µ) be a measure space. A set E ∈M is called an atom
if µ(E) > 0 and for any measurable set F ⊂ E, µ(F ) = 0 or µ(E \ F ) = 0.

If E is an atom, and if E contains a singleton atom {t}, then µ(E) = µ({t}). In
this case, a singleton atom is described as a “point mass”.

A finitely atomic Borel measure in the Euclidean space is defined as

µ :=
∑̀
k=1

ρkδwk,

where ρk is called a density and δwk is the point mass measure at the atom wk
for k = 1, . . . , `.

For example, if {(xi, yi)}`k=1 is the set of atoms in R2, then∫
xiyjdµ =

∑̀
k=1

ρkx
i
ky

j
k.
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5 Univariate Full Moment Problem

For an infinite real moment sequence β := {βn}∞n=0, the full moment problem
(FMP) entails finding necessary and sufficient conditions for the existence of a
positive Borel measure µ such that

βn =

∫
tn dµ, n ≥ 0.

According to the location of the support of the measure µ, the problem is
classified as:

supp µ ⊆ [0,∞) (Stieltjes MP)
supp µ ⊆ R (Hamburger MP)
supp µ ⊆ [a, b] (Hausdorff MP)
supp µ ⊆ T (Toeplitz MP)
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5.1 Linear Functional

By a semigroup (S, ◦) we mean a nonempty set S with an associative compo-
sition ◦, that is, for s1, s2, s3 ∈ S

(s1, s2) 7→ s1 ◦ s2 ∈ S such that s1 ◦ (s2 ◦ s3) = (s1 ◦ s2) ◦ s3,

and a neutral element e ∈ S, that is, e ◦ s = s ◦ e = s for s ∈ S.

Definition 4 A ∗-semigroup (S, ◦, ∗) is a semigroup (S, ◦) endowed with a
mapping ∗ : S → S, called an involution, such that

(s ◦ t)∗ = t∗ ◦ s∗, (s∗)∗ = s, s, t ∈ S.

In the sequel, let S be a ∗-semigroup. If there is no confusion to arise, we write
simply S instead of (S, ◦, ∗).
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Definition 5 A function ϕ : S → K on a ∗-semigroup S is positive semidefinite
(psd) if for arbitrary elements s1, . . . , sn ∈ S, numbers ξ1, . . . , ξn ∈ K and n ∈ N,

n∑
i, j=0

ϕ(s∗i ◦ sj)ξ̄iξj ≥ 0.

For a ∗-semigroup S, we can define the semigroup ∗-algebra

K[S] :=

{∑
s∈S

αss : αs ∈ K, only finitely many αs are nonzero

}
.

The vector space K[S] becomes a unital ∗-algebra over K with product and
involution defined by(∑

s∈S

αss

)(∑
t∈S

βtt

)
:=

∑
s, t∈S

αsβt(s ◦ t)

 ,

(∑
s∈S

αss

)∗
:=
∑
s∈S

ᾱss
∗.
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Since the elements of S form a basis of K[S], there is a one-to-one correspon-
dence between functions ϕ : S → K and linear functionals Lϕ : K[S]→ K given
by

Lϕ(s) := ϕ(s), s ∈ S.

The unitial ∗-algebra K[S] over K is the semigroup ∗-algebra of S and the func-
tional Lϕ is often called the Riesz functional associated with the function
ϕ.

Proposition 6 For a function ϕ : S → K, TFAE:

(i) ϕ is a psd function;

(ii) Lϕ is a positive linear functional on K[S];

(iii) H(ϕ) =
(
ϕ(s∗ ◦ t)

)
s, t∈S is a psd Hermitian matrix.
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5.2 Solutions to Univariate FMP
Let β ≡ {βn}∞n=0 be a real psd sequence, that is, for all ξ0, ξ1, . . . , ξn ∈ R and
n ∈ N we have

n∑
k, `=0

βk+` ξk ξ` ≥ 0.

When the sum is strictly positive, β is said to be positive definite.
Let Λβ be the Riesz functional on R[x] defined by Λβ(xn) := βn, n ∈ N0. Let
Eβ denote the shifted sequence given by

(Eβ)n := βn+1, n ∈ N0.

Clearly, ΛEβ(p(x)) = Λβ(x p(x)) for p(x) ∈ R[x]. Also, we define the Hankel
matrices:

A(k) :=



β0 β1 β2 · · · βk

β1 β2 β3 . .
.
βk+1

β2 β3 . .
.

. .
.
βk+2

... . .
.

. .
.

. .
. ...

βk βk+1 βk+2 · · · β2k


and B(k) :=



β1 β2 β3 · · · βk+1

β2 β3 β4 . .
.
βk+2

β3 β4 . .
.

. .
.
βk+3

... . .
.

. .
.

. .
. ...

βk+1 βk+2 βk+3 · · · β2k+1


.

15



Theorem 7 [Hamburger, 1921] For a real sequence β = {βn}∞n=0, TFAE:

(i) There is a positive Borel measure µ such that βn =
∫
R x

ndµ(x) for n ∈ N0;

(ii) The sequence β is psd;

(iii) All Hankel matrices A(k) are psd for all k ≥ 0;

(iv) Λβ is a positive linear functional on R[x], that is, Λβ(p2) ≥ 0 for p ∈ R[x].

Proof. Based on Proposition 6.

Proposition 8 For a Hamburger moment sequence β = {βn}∞n=0, TFAE:

(i) Each representing measure µ of β has infinite support;

(ii) The sequence β is positive definite;

(iii) All Hankel matrices A(k) are positive definite for all k ≥ 0.
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Theorem 9 [Stieltjes FMP, 1894] For a real sequence for β = {βn}∞n=0, TFAE:

(i) There is a positive Borel measure µ with supp µ ⊆ [0,∞) such that
βn =

∫∞
0 xndµ(x) for n ∈ N0;

(ii) The sequences β and Eβ are psd;

(iii) Λβ(p2) ≥ 0 and Λβ(x q2) ≥ 0 for all p, q ∈ R[x];

(iv) All Hankel matrices A(k) and B(k) are psd for all k ≥ 0;

(v) All Hankel matrices A(k) are strongly totally positive for all k ≥ 0.

Proof. (i)⇐⇒ (ii)⇐⇒ (iii)⇐⇒ (iv): similar to that of Hamburger’s Theorem.
(iv)⇐⇒ (v): based on matrix analysis.

Question 1 Can we use the total positivity to solve multidimensional moment
problems?
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6 Univariate Truncated Moment Problem
(Based on Curto-Fialkow, 1991)

Given a finite real sequence {βn}mn=0, the truncated moment problem (TMP)
entails finding necessary and sufficient conditions for the existence of a positive
Borel measure µ satisfying βn =

∫
tndµ (0 ≤ n ≤ m).

The solution is described based on the Hankel matrices consisting of moments:
v0 v1 v2 · · · vk
↓ ↓ ↓ · · · ↓

A(k) :=



β0 β1 β2 · · · βk

β1 β2 β3 . .
.
βk+1

β2 β3 . .
.

. .
.
βk+2

... . .
.

. .
.

. .
. ...

βk βk+1 βk+2 · · · β2k


and B(k) :=



β1 β2 β3 · · · βk+1

β2 β3 β4 . .
.
βk+2

β3 β4 . .
.

. .
.
βk+3

... . .
.

. .
.

. .
. ...

βk+1 βk+2 βk+3 · · · β2k+1


.

The j-th column of A(k) will be denoted by vj := (βj+`)
k
`=0, 0 ≤ j ≤ k, so that

we may write A(k) =
(
v0 · · · vk

)
.
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The (Hankel) rank of β, denoted rank β, is now defined as follows: If A(k) is
nonsingular, rank β := k + 1; if A(k) is singular, rank β is the smallest integer
i, 1 ≤ i ≤ k, such that vi ∈ span (v0 · · · vi−1). Thus, if A(k) is singular, there
exists a unique (φ0, . . . , φi−1) such that vi = φi−1v0 + φi−2v1 + · · · + φ0vi−1. The
polynomial

gβ(t) := ti − φ0ti−1 − · · · − φi−1t− φi−1 (6.1)

is called the generating function of β.

A key to prove the coming results is:

Proposition 10 Let β̃ = (β0, . . . , β2k+1), β0 > 0. Assume A(k) is positive definite.
Then the generating function gβ̃ has k + 1 distinct real roots, x0, . . . , xk. Thus
the Vandermonde matrix V of the points x0, . . . , xk is invertible, and if ρ =(
ρ0 · · · ρk

)
:= V −1v0, then ρj > 0 for 0 ≤ j ≤ k. Moreover, if µ :=

∑k
i=0 ρiδxi,

then βj =
∫
tj dµ, 0 ≤ j ≤ 2k + 1.
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Theorem 11 [Hamburger TMP, Existence of Odd Cases]
Let β̃ = (β0, . . . , β2k+1), β0 > 0, and let r := rank β. TFAE:

(i) There exists a (r-atomic) positive Borel measure µ satisfying βj =
∫
tjdµ

(j = 0, . . . , 2k + 1) and supp µ ⊆ R;

(ii) A(k) ≥ 0, vk+1 ∈ Ran A(k);

(iii) A(k + 1) ≥ 0 for some choice of β2k+2 ∈ R, that is, A(k) has a positive
Hankel extension.

Proof. Based on Proposition 10.

Theorem 12 [Hamburger TMP, Existence of Even Cases]
Let β̃ = (β0, . . . , β2k), β0 > 0, and let r := rank β. TFAE:

(i) There exists a (r-atomic) positive Borel measure µ satisfying βj =
∫
tjdµ

(j = 0, . . . , 2k) and supp µ ⊆ R;

(ii) A(k) ≥ 0, rank A(k) = rank β;

(iii) A(k) has a positive Hankel extension.
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Theorem 13 [Stieltjes TMP, Existence of Odd Cases]
Let β̃ = (β0, . . . , β2k+1), β0 > 0, and let r := rank β. TFAE:

(i) There exists a positive Borel measure µ satisfying βj =
∫
tjdµ

(j = 0, . . . , 2k + 1) and supp µ ⊆ [0,∞);

(ii) There exists a r-atomic representing measure µ for β̃ satisfying
supp µ ⊆ [0,∞);

(iii) A(k) ≥ 0, B(k) ≥ 0, and v(k + 1, k) := (βk+1 · · · β2k+1)
T ∈ Ran A(k).

Theorem 14 [Stieltjes TMP, Existence of Even Cases]
Let β̃ = (β0, . . . , β2k), β0 > 0, and let r := rank β. TFAE:

(i) There exists a positive Borel measure µ satisfying βj =
∫
tjdµ

(j = 0, . . . , 2k) and supp µ ⊆ [0,∞);

(ii) There exists a r-atomic representing measure µ for β̃ satisfying
supp µ ⊆ [0,∞);

(iii) A(k) ≥ 0, B(k− 1) ≥ 0, and v(k+ 1, k− 1) := (βk+1 · · · β2k)T ∈ Ran B(k− 1).
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Theorem 15 [Hausdorff TMP, Existence of Odd Cases]

Let β̃ = (β0, . . . , β2k+1), β0 > 0, and let r := rank β, and let gβ̃ as in (6.1). There
exists a positive Borel measure µ satisfying βj =

∫
tjdµ (j = 0, . . . , 2k + 1)

and supp µ ⊆ [a, b] if and only if A(k) ≥ 0, bA(k) ≥ B(k) ≥ aA(k), and
v(k + 1, k) := (βk+1 · · · β2k+1)

T ∈ Ran A(k).

Theorem 16 [Hausdorff TMP, Existence of Even Cases]

Let β̃ = (β0, . . . , β2k), β0 > 0, and let r := rank β. There exists a positive Borel
measure µ satisfying βj =

∫
tjdµ if and only if A(k) ≥ 0, bA(k) ≥ B(k) ≥ aA(k),

and there exists β2k+1 such that v(k + 1, k) := (βk+1 · · · β2k+1)
T ∈ Ran A(k).
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Example 17 Consider an example: β ≡
{
β5
j=0

}
= {1, 1, 2, 3, 5, 8} . This is an

odd case with k = 2; thus,

A(2) =

 1 1 2

1 2 3

2 3 5

 and B(2) =

 1 2 3

2 3 5

3 5 8


Note that A(2) ≥ 0 but B(2) 6≥ 0; thus, in the view of Stieltjes MP, this sequence
has no solution. However, in the view of Hausdorff MP, it may have a measure
on some [a, b], where bA(2) ≥ B(2) ≥ aA(2). There are infinitely many desired a
and b. Indeed, A(2) has a unique column relation T 2 = 1 + T , where T i stands
for the (i+ 1)-th column in A(2)). Thus the generating function gβ̃(t) = t2 − 1− t
has the two roots (1 ±

√
5)/2 that are the atoms of the unique representing

measure µ. Solving the Vandermonde system(
1 1

(1−
√

5)/2 (1 +
√

5)/2

)(
ρ1
ρ2

)
=

(
β0
β1

)
=

(
1

1

)
,

we find the densities ρ1 = (5−
√

5)/10 and ρ2 = (5 +
√

5)/10.
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7 Representation of General Fibonacci Sequences

Let c0, c1, . . . , cr−1 with cr−1 6= 0 (r ≥ 2) be fixed real numbers. For any sequence
of real numbers α = (α0, α1, . . . , αr−1), we define the r-generalized Fibonacci
sequence {Yα(n)}n≥0 as follows: Yα(n) = αn for n = 0, 1, . . . , r − 1 and

Yα(n + 1) = c0Yα(n) + c1Yα(n− 1) + · · · + cr−1Yα(n− r + 1) (7.1)

for all n ≥ r − 1.

Theorem 18 [Rachidi-Wahbi, 2001] Let Yα = {Yα(n)}n≥0 be given by se-
quence (7.1), where α = (α0, α1, . . . , αr−1) with α0 > 0 and let r = rank (Yα).
TFAE:

(i) There exists a positive a Borel measure µ with supp µ ⊆ [a, b] such that
Yα(n) =

∫ b
a t

ndµ(t) for all n ≥ 0;

(ii) There exists a r-atomic representing measure µ for Yα such that supp µ ⊆
[a, b];

(iii) A(r) ≥ 0 and bA(r) ≥ B(r) ≥ aA(r).
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8 Multidimensional Full Moment Problems
(Based on B. Fuglede, 1984)

Notations

(i) α = (α1, . . . , αn) ∈ Nn
0 , x = (x1, . . . , xn) ∈ Rn, xα = xα11 · · · xαnn

(ii) s = (sα)α∈Nn0 : a multisequence (n-sequence); that is, s : Nn
0 → R

(iii) P0: complex vector space of all polynomials, Pd := {p ∈ P0 : deg p ≤ d}

(iv) Ej: the shift operator on the vector space of all real n-sequences; that is,
(Ejs)α = sα+e(j), where e(j) = (0, . . . , 1, . . . , 0) with 1 as the j-th entry.

If p =
∑

α∈Nn0
aαx

α ∈ P0 with real coefficients, then

p(E) =
∑
α∈Nn0

aαE
α and (p(E)s)α =

∑
β∈Nn0

aβsα+β.

where Eα = Eα1
1 · · ·Eαn

n .
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(v)M∗: the convex cone of all positive Borel measures µ on Rn such that the
integrals, sα =

∫
Rn x

αdµ(x) (α ∈ Nn
0), converge absolutely. A measure µ is

referred to as a representing measure.

(vi) Vs (or Vµ): the convex (and weak∗ compact) set of all µ ∈ M∗ having the
moments sα

(vii) K: a closed subset of Rn

If an n-sequence s has a representing measure µ satisfying supp µ ⊆ K, then
µ is said to be a K-representing measure.

Definition 19 The Riesz functional Λ ≡ Λs on P0 defined by

Λs(p) :=
∑
α∈Nn0

aαsα, p =
∑
α∈Nn0

aαx
α ∈ P0.

In particular, Λs(x
α) = sα.
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Definition 20 A real n-sequence s = (sα)α∈Nn0 is said to be positive semidefi-
nite (psd) if

Λs(pp̄) ≥ 0 for every p ∈ P0.

Explicitly, this amounts to the condition that∑
sα+βaαāα ≥ 0

for every complex (or, equivalently, for every real) n-sequence a = (aα)α∈Nn0
such that aα = 0 for all but finitely many α ∈ Nn

0 . In particular, if Λs(pp̄) > 0 for
every nonzero p ∈ P0, then s is said to be positive definite.

Note that one can easily see that TFAE:

(i) s is psd;

(ii) the symmetric kernel (α, β) 7→ sα+β is positive semidefinite;

(iii) det
(
sα(i)+α(j)

)
≥ 0 for every r-tuple (α(1), . . . , α(r)) of distinct n-indices

α(j) = (α
(j)
1 , . . . , α

(j)
n ), j = 1, . . . , r.
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In the presence of a representing measure µ for s, we may write for p ∈ P0,

Λs(p) =

∫
p dµ.

It follows that if every moment n-sequence has a representing measure, then it
must be psd by the fact that for p ∈ P0,

Λs(pp̄) =

∫
|p|2 dµ ≥ 0.

Note If s has a K-representing measure µ, then Λs is K-positive; that is,
p ∈ P0 and p|K ≥ 0 =⇒ Λs(p) ≥ 0.

Definition 21 If a moment n-sequence s has a unique representing measure,
then s is said to be determinate.

Note When K is compact, every K-moment sequence is determinate on
account of Weierstrass’ approximation theorem.

28



8.1 Summary of Well-known Results

(a) A sequence s has a representing measure supported on K = [0, 1];

⇐⇒ s and E(I − E)s are both psd [Hausdorff];

⇐⇒ s, Es, and (I − E)s are psd [Devinatz].

(b) [Hamburger, 1920-21]
Every psd real sequence has R-representing measure (n = 1).

(c) [M. Riesz, Haviland (provided an alternative proof)]
A sequence s has a representing measure supported on K = [0,∞)

⇐⇒ s and Es are both psd.

(d) [Filstinskii]
For the case when R\K is the disjoint union of finitely many bounded open
intervals (αj, βj), j = 1, . . . , k:
A sequence s has a representing measure supported on K
⇐⇒

∏
j∈J

(E − αjI)(E − βjI)s is psd for each subset J of {1, 2, . . . , k}.
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(e) [Riesz (n = 1 and K = R), Haviland (general cases)]

Theorem 22 [Riesz-Haviland]

A sequence s has a K-representing measure ⇐⇒ s is K-positive;

that is, Λs(p) ≥ 0 for every p ∈ P0 such that p|K ≥ 0.

Proof. (=⇒) Clear!

(⇐=) Key 1: The positive linear form Λs on the vector space P0(K) consid-
ered as functions on K extends to a Radon measure on K because P0(K)

is an adapted space in the sense defined by Choquet (1962).

Key 2: F. Riesz representation theorem (1909).

This Riesz-Haviland Theorem can be used in some cases (for example,
Hamburger MP, Stieltjes MP, Schmüdgen’s results) to obtain “concrete”
solutions; that is, solutions expressed in terms of positivity of matrices
closely associated with an n-sequence s.
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Hilbert’s 17th Question

We refer to p ∈ P2d as a sum of squares (sos) if there exist p1, . . . , pk ∈ Pd
such that p =

∑k
i=1 p

2
i .

To apply the Riesz-Haviland Theorem, one must establish the positivity of
Λs on K. In particular, the positivity of Λs is easily established if each psd
polynomial is sos, since then Λs is positive if and only if the associated
moment matrix (see the definition in Lecture 2) is psd.

Hilbert showed that every nonnegative (psd) polynomial is a sum of squares
of polynomials only in the following 3 cases: univariate polynomials, quadratic
polynomials, and bivariate polynomials of degree 4.

Thus, verifying the positivity of Λs is highly nontrivial beyond the scope of
Hilbert’s result. This fact is the main reason why multidimensional moment
problems are much more difficult than the classical one variable problems.
For someK, checkingK-positivity was successful and we have the solutions
as follows:
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(f) [Berg-Maserick]

Let p1, . . . , pm be real polynomials such that

K =

m⋂
j=1

{x ∈ R : pj(x) ≥ 0}

is compact. A psd sequence s is a K-moment sequence if and only if each
sequence pj(E)s, j = 1, . . . ,m, is psd.

(g) [Berg-Maserick]

If K = {x ∈ R : p(x) ≥ 0}, K 6= R (non-compact), then a psd sequence s

has a K-representing measure if and only if p(E)s is psd and deg p ≤ 2.

(h) [Hildebrandt-Schoenberg, 1933]

A sequence s is a moment sequence supported on K = [0, 1]n

⇐⇒ (I − E)αs ≥ 0 for all α ∈ Nn
0 .

(i) [Berg-Christensen-Jensen, Schmüdgen, 1979]

There is a psd multisequence which has no representing measure.
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(j) As to further necessary and sufficient conditions for solubility of the multidi-
mensional K-moment problems see:

(1) [Herglotz, F. Riesz] K: the unit circle in R2 = C (Trigonometric MP)

(2) [Akhiezer-Krein] K: any circular arc

(3) [Devinatz] K: a product of compact intervals and/or circular arcs

(4) [Devinatz] K: a circular cylinder

(5) [Atzmon] K: the unit disc in R2 = C

(6) [Maserick] K: a convex body in Rn

(7) [McGregor] K: a ball or a sphere in Rn or a solid torus in R3

(8) [Schmüdgen] K: a compact semialgebraic subset in Rn

(k) [Berg-Maserick, 1982]

If K = {x ∈ Rn : p(x) ≥ 0} is compact for any real polynomial p on Rn, then
an n-sequence s has a K-representing measure if and only if both s and
p(E)s have a representing measure.
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(l) [Lindahl-Maserick, 1971]

Every “bounded” psd n-sequence is a determinate moment n-sequence if
and only if the representing measure is supported by [−1, 1]n.

(m) [Berg-Maserick, 1984]

A psd n-sequence of at most exponential growth is the same as the n-
sequence of moments of a measure of compact support (hence determi-
nate).

(n) [Berg-Christensen,1979]

If (sα)α∈Nn0 and (tα)α∈Nn0 admit representing measures, then so does (sαtα)α∈Nn0 .

More results are obtained by means of the operator theoretic approach by
Devinatz, Kostyučenko-Mityagin, Èskin, and Nussbaum.
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8.2 Spectral Theory for Commuting Families of
Self-adjoint Operators

Define a sesquilinear form 〈·, ·〉 on P0 by

〈p, q〉 = Λs(pq̄) =
∑

α, β∈Nn0

sα+β aαb̄β

for any two polynomials p =
∑
aαx

α, q =
∑
bαx

β ∈ P0.

Consider a subspace N of P0 defined by N := {p ∈ P : 〈p, p〉 = 0}.

We denote P the Hilbert space completion of the prehilbert space P0/N .

In the view of the Cauchy-Schwartz inequality, N is therefore an “ideal” in the
commutative ring P0.
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Denoting by Xj : P0 → P0 (j = 1, . . . , n) the operator of multiplication by the
j-th coordinate xj, we thus have

XjN ⊂ N , j = 1, . . . , n.

This inclusion is closely related to the (RG)-property of TMP (see the definition
in Lecture 2).

If s is the moment n-sequence of some measure µ ∈M∗, then

〈p, q〉 =

∫
pq̄dµ, for all p, q ∈ P0.

The ideal N consists of all polynomials vanishing on supp µ. In particular, s is
positive definite (that is, N = {0}) if and only if supp µ is not contained in the
union of finitely many real algebraic varieties ( 6= Rn).

Anyhow it follows from that P0/N is embedded linearly and isometrically as a
subspace of the Hilbert space L2(µ). The completion P of P0/N may therefore
be identified with the “closure” Pµ of P0/N in L2(µ). In the sequel we do not
distinguish notationally between P0 and P0/N .
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Theorem 23 [Nussbaum, 1965; Fuglede, 1983]
A psd n-sequence s = (sα)α∈Nn0 has a representing measure if and only if there
exist a Hilbert space H in which P0 is linearly and isometrically embedded, and
a family H = (H1, . . . , Hn) of commuting self-adjoint operators in H such that
Hj extends the multiplication operator Xj on P0:

Hjp(x) = xjp(x), p ∈ P0, j = 1, . . . , n. (8.1)

In the affirmative case, the mapping E 7→ 〈E1,1〉 carries the set E of all spectral
measures E on Rn of such families H (in such spaces H) onto the equivalence
class Vs of all measures µ ∈M∗ having the moments sα.

Proof. (⇐=) Suppose that commuting families as stated exist, and let E ∈ E
denote the spectral measure of such a family H. Then µ := 〈E1,1〉 is a
(positive) measure on Rn, defined by

µ(σ) := 〈E(σ)1,1〉, σ ∈ BorelRn.

For any α, β ∈ Nn
0 we then have from (8.1):

〈E(σ)xα, xβ〉 = 〈E(σ)Hα1, Hβ1〉 =

∫
σ

λα+βdµ(λ). (8.2)
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This shows that µ ∈M∗, and also that the restriction of PE(σ) to P is uniquely
determined from µ (the monomials x 7→ xα being total in P). Taking σ = Rn and
β = 0 in (8.2), we obtain∫

λαdµ(λ) = 〈xα,1〉 = Λs(x
α) = sα.

Thus, µ = 〈E1,1〉 has indeed the moments sα.
(=⇒) Let µ ∈ Vs denote any measure fromM∗ representing s. Consider the
“cannonical extension”

H = L2(µ), P = Pµ, H = x·, (8.3)

that is, Hj is the self-adjoint operator in L2(µ) defined by Hjf (x) = xjf (x) for all
f ∈ L2(µ) such that x 7→ xjf (x) is in L2(µ). Then P is isometrically embedded
as the closure Pµ of P0 in L2(µ), and (8.1) is fulfilled. Moreover, H1, . . . , Hn

commute, and the spectral measure E of H is given by E(σ) = 1σ·, that is

E(σ)f = 1σf, f ∈ L2(µ),

where 1σ denotes the indicator function of σ. Clearly 〈E(σ)1,1〉 = 〈E1σ,1〉 =

µ(σ).
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9 Moment Problems via Dimensional Extension
(Based on Putinar and Vasilescu, 1999)

Theorem 24 Let s = (sα)α∈Nn0 (s0 > 0) be a n-moment sequence of real num-
bers. Let p = (p1, . . . , pm) ∈ Pn and let pk(t) =

∑
ξ∈Ik akt

ξ, k = 1, . . . ,m with an
index set Ik ⊆ Nn

0 finite for all k. Then there is a representing measure for s
supported on ∩mk=1p

−1
k (R+) if and only if there exists a psd (n + 1)-sequence

t =
(
t(α,β)

)
(α,β)∈Nn0×N0

with the following properties: For all α ∈ Nn
0 , β ∈ N0, and

k = 1, . . . ,m,

(i) sα = t(α,0) for all α ∈ Nn
0 ;

(ii) t(α,β) = t(α,β+1) +
∑n

j=1 t(α+2ej,β+1) +
∑m

k=1

∑
ξ,η∈Ik akξakηt(α+ξ+η,β+1);

(iii) The (n + 1)-sequences
(∑

ξ∈Ik akξakηt(α+ξ,β)

)
(α,β)∈Nn0×N0

are psd.

Moreover, s has a uniquely determined representing measure on ∩mk=1p
−1
k (R+)

if and only if the (n + 1)-sequence t is unique.
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10 Recurrence Formulas and Favard’s Theorem

Recall that for a real psd sequence s = (sn)n∈N0, the equation

〈p, q〉s := Λs(pq̄), p, q ∈ C[x],

defines a scalar product (sesquilinear form) on the vector space C[x].

Proposition 25 There exists an orthonormal basis (pn)n∈N0 of the unitary space
(C[x], 〈·, ·〉s) such that each polynomial pn has degree j and a positive leading
coefficient. The basis (pn)n∈N0 is uniquely determined by these properties.
Moreover, pn ∈ R[x].

Here, the sequence (pn)n∈N0 is orthonormal means that

〈pk, pn〉 = δk,n k, n ∈ N0.

Definition 26 The polynomials pn, n ∈ N0, are called orthonormal polynomi-
als associated with the positive definite sequence s.
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Proposition 27 Set D−1 = 1. Then p0(x) = 1/
√
s0 and for n ∈ N and k ∈ N0,

pn(x) =
1√

Dn−1Dn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

s0 s1 s2 · · · sn
s1 s2 s3 · · · sn+1

s2 s3 s4 · · · sn+2

...
...

...
. . .

...

sn−1 sn sn+1 · · · s2n−1
1 x x2 · · · xn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

〈xn, pn〉s =
√
dn/dn−1, and 〈xk, pn〉s = 0 if k < n.

The leading coefficient of pn is
√

dn
dn−1

. In particular, p1(x) = s0x−s1√
s0(s0s2−s21)

.

Definition 28 A sequence (Rn)n∈N0 is called a sequence of orthogonal poly-
nomials (OPS) with respect to s if Rn(x) ∈ R[x], degRn = n, and

〈Rk, Rn〉 = 0 for k 6= n, k, n ∈ N0.
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While there are many OPS for a given sequence s, there is a unique OPS
consisting of monic polynomials. Since pn has the leading term

√
Dn−1/Dn, the

polynomial
Pn(x) :=

√
Dn/Dn−1 pn(x), n ∈ N0,

is monic. Set P0(x) = 1. Then (Pn)n∈N0 is the unique monic OPS for s.

Orthogonal polynomials can be characterized and studied by means of three
term recurrence relations. In particular, for a monic OPS Pn(x) =

√
Dn/Dn−1 pn(x)

for a sequence s:

Proposition 29 Set an =
√
Dn−1Dn+1D

−1
n and bn = Λs(x p

2
n) for n ∈ N0. Then

we have an > 0 and bn ∈ R for n ∈ N0, and

Pn+1(x) = (x− bn)Pn(x)− a2n−1Pn−1(x), n ∈ N0,

where a−1 := 1 and P−1 := 0. In particular,

P0(x) = 1, P1(x) = x− b0, P2(x) = (x− b0)(x− b1)− a20.
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The converse to Proposition 29 is known as Favard’s theorem:

Theorem 30 Let (αn)n∈N0 and (βn)n∈N0 be complex sequences and set α−1 := 1.
Let (Rn)n∈N0 denote the sequence of monic polynomials Rn which is uniquely
determined by the relations, for n ∈ N0,

Rn+1(x) = (x− βn)Rn(x)− αn−1Rn−1(x), R−1 = 0, R0(x) = 1.

There exists a positive definite real sequence s such that (Rn)n∈N0 is the monic
OPS for s if and only if αn > 0 and βn ∈ R for all n ∈ N0. If s0 is a given positive
number, then this sequence s = (sn)n ∈ N0 is uniquely determined.

Further, if αn > 0 and β ∈ R for all n ∈ N0 and s0 > 0 are given, then there
exists a measure µ ∈ Ms such that µ(R) = s0 and for j, k ∈ N0, j 6= k, and
n ∈ N, ∫

R
Rj(x)Rk(x) dµ(x) = 0,

∫
R
R2
n(x) dµ(x) = αn−1αn−2 · · ·α0s0.

Question 2 Can we have a multidimensional version of the Favard Theorem?
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11 Symmetric Moment Problems
(Based on T. S. Chihara, 1982)

We consider a moment sequence β ≡ {βj}∞j=0 satisfying

β2j > 0, β2j+1 = 0. (11.1)

We assume β satisfies Hamburger’s criterion

A(n) =
(
βi+j

)n
i, j=0

> 0, n ≥ 0,

so that there is a measure µ with an infinite spectrum S(µ) such that

βj =

∫ ∞
−∞

tj dµ(t). (11.2)

A moment sequence and its corresponding Hamburger moment problem will be
called symmetric if (11.1) is satisfied. A measure µ will be called symmetric if
there is a constant C such that

µ(t) + µ(−t) = C (11.3)

at all points of continuity.
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Note A soluble symmetric Hamburger MP always has a symmetric solution
since µ1 is any solution of (11.1) and (11.2), then

µ(t) =
1

2
[µ1(t)− µ1(−t)]

yields a symmetric solution.

Let {βj}∞j=0 be a symmetric moment sequence satisfying Hamburger’s criterion
and let µ be a symmetric solution of the resulting Hamburger MP. Then there is
a uniquely determined sequence S = {Sj(t)} of monic polynomials orthogonal
with respect to µ. The sequence S is a symmetric orthogonal polynomial
sequence:

Sj(−t) = (−1)jSj(t).

The related sequence P := {Pj(t)} defined by

Pj(t
2) = S2j(t)

is an orthogonal polynomial sequence (OPS) with respect to the measure

dψ(t) = 2dµ(
√
t), t ≥ 0. (11.4)
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The sequence K := {Kj(t)} defined by

tKj(t
2) = S2j+1(t)

is then the corresponding sequence of monic kernel polynomials which are
orthogonal with respect to

dω(t) = tdψ(t), t ≥ 0. (11.5)

A measure have the form (11.5) will be said to be of kernel type.

We will assume all measures have been nomalized by

µ(x) =
1

2

[
µ(t+)− µ(t−)

]
, µ(0) = 0.

We also always take β0 = 1 so the correspondence between {β} and S is
one-to-one. The measure defined by (11.4) is a solution of Stieltjes moment
problem corresponding to the moment sequence {β2j}∞n=0, while (11.5) yields a
solution of the Stieltjes moment problem for {β2j+2}∞n=0. The Stieltjes moment
problem for {β2j}∞n=0 will be called the Stieltjes moment problem associated
with the symmetric Hamburger moment problem {βj}∞n=0 (and conversely).
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Theorem 31 [T. S. Chihara, 1982]

A symmetric Hamburger moment sequence βH = {βj}∞n=0 is determinate if and
only if the associated Stieltjes moment sequence βS = {β2j+2}∞n=0 is determi-
nate.

Proof. Suppose ν is the representing measure of βS. Let

dµ(t) =
1

2

[
χ[0,∞)(t) dν(t2) + χ(−∞,0](t) dν(t2)

]
.

Then the moments of µ are βH. Thus the uniqueness for βH on (−∞,∞) implies
the uniqueness for βS on [0,∞).

A related topic will be discussed with a different approach in Lecture 3.
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12 Strong Moment Problems
(Based on Jones-Thorn-Nj̊astad, 1984)

Given a moment sequence c ≡ {cj}j∈Z of real numbers, The strong Ham-
burger moment problem is find necessary and sufficient conditions for the
existence of a nonnegative measure ψ defined on the Borel sets of the real line
and with infinite support, such that

cj =

∫ ∞
−∞

(−t)j dψ(t), for all j ∈ Z.

The solution is given in terms of positivity of certain Hankel determinants
associated with the double sequence {cn}. The main tool used is the theory of
orthogonal (and quasiorthogonal) Laurent polynomials.
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For each n ∈ Z, the Hankel determinants H
(n)
n associated with the double

sequence c are given by

H
(n)
0 = 1, H

(n)
k =

∣∣∣∣∣∣∣∣∣∣
cn cn+1 · · · cn+k−1
cn+1 cn+2 · · · cn+k
...

...
. . .

...

cn+k−1 cn+k · · · cn+2k−2

∣∣∣∣∣∣∣∣∣∣
, k ≥ 1.

Theorem 32 The strong Hamburger moment problem for a moment sequence
c ≡ {cj}j∈Z has a solution if and only if the following determinant criteria are
satisfied:

H
(−2m)
2m > 0, H

(−2m)
2m+1 > 0, m ≥ 0.
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13 Multidimensional Truncated Moment Problems

Let β ≡ β(m) =
{
βi ∈ R : i ∈ Zd+, |i| ≤ m

}
, with β0 > 0, be a d-dimensional

multisequence of degree m. It is called a truncated moment sequence. For
a closed set K ⊆ Rd, the truncated K-moment problem (TKMP) entails
finding necessary and sufficient conditions for the existence of a positive Borel
measure µ on Rd with supp µ ⊆ K such that

βi =

∫
xi dµ(x) (i ∈ Zd+, |i| ≤ m),

where x ≡ (x1, . . . , xd), i ≡ (i1, . . . , id) ∈ Zd+, and xi := xi11 · · · x
id
d .

The measure µ is said to be a K-representing measure for β. For the typ-
ical case K = Rd, the problem is referred to as the truncated real moment
problem (TRMP) and µ is a representing measure.
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14 Another Scope of TMP

We may consider the following question:

If there is a K-representing measure, is there a “finitely” K-representing
measure?

A theorem of Tchakalloff in 1957 provides an affirmative answer for K compact.
The complete answer found 50 years later:

Theorem 33 [Bayer-Teichmann, 2006] If a d-dimensional multisequence β(m)

has a K-representing measure on Rm, then β(m) has a finitely-atomic K-
representing measure µ, with card supp ≤ dimR[x1, . . . , xd].

Thus, we may regard solving TRMP (in particular, d = 2, m = 2n) as solving
the system of the following polynomial equations: For some ` ≤ dimP2n,

βij =
∑̀
k=1

ρkx
i
ky

j
k, i, j ∈ Z+, 0 ≤ i + j ≤ 2n.
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Various Moment Problems

Lecture 2. Solutions to truncated moment problems

Operator Theory and Operator Algebras Winter School
(Mungyeong; December 20-23, 2017)



1 Truncated Real Moment Problems (Two-variable)

Given a truncated real moment sequence (of degree m), β ≡ β(m) = {β00,
β10, β01, . . . ,βm,0, βm−1,1,. . . , β1,m−1, β0,m} with β00 > 0, the truncated real moment
problem (TRMP) entails seeking necessary and sufficient conditions for the
existence of a positive Borel measure µ supported in R2 such that

βij =

∫
xiyj dµ (i, j ∈ Z+, 0 ≤ i + j ≤ m).

Even Order Moment Problems. When m = 2n, R. Curto and L. Fialkow have
made a great contribution to various moment problems in a series of papers
(complete solutions were found for m = 2, 4).

Odd Order Moment Problems. When m = 2n + 1, a general solution is given
by D. Kimsey in 2016. A complete solution to the cubic complex moment
problem (when m = 3) was also given by D. Kimsey in 2014 and some cases of
quintic moment problems (when m = 5) were solved by L. A. Fialkow in 2014.
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FMP vs TMP

Theorem 1 [J. Stochel, 2001]
β(∞) has a representing measure on a closed set K ⊆ Rd

⇐⇒ for each m, β(m) has a representing measure supported in K.

This result says that in a sense TMP is more general than FMP.

2 Complex One-variable Moment Problems
• Given γ ≡ γ(2n) : γ00, γ01, γ10, . . . , γ0,2n, . . . , γ2n,0, with γ00 > 0 and γji = γ̄ij,

the truncated complex moment problem (TCMP) entails finding a positive
Borel measure µ supported in the complex plane C such that

γij =

∫
z̄izjdµ (0 ≤ i + j ≤ 2n);

µ is called a representing measure for γ.

• The full complex moment problem considers finding a representing measure
for an infinite moment sequence γ := {γij}i,j≥0 with γ00 > 0 and γji = γ̄ij.
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3 Moment Matrix

When m = 2n, we define the (real) moment matrix Md(n) of β ≡ β(2n) as

Md(n) ≡Md(n)(β) :=
(
β i+j

)
i, j∈Zd+: |i|, |j|≤n

.

R. Curto and L. Fialkow have used the “functional calculus” in the column space
of Md(n); to introduce the functional calculus, we label the columns and rows of
Md(n) with monomials X i := X i1

1 · · ·X
id
d in the degree-lexicographic order. Note

that each block with the moments of the same order in Md(n) is Hankel and
that Md(n) is symmetric. In addition, one can define a sesquilinear form: for
i, j ∈ Zd+,

〈X i, X j〉Md(n) := 〈Md(n)X̂ i, X̂ j〉 = βi+j,

where X̂ i is the column vector associated to the monomial X i.
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We will put all the moments of the given sequence into the moment matrix and
then label the columns with the lexicographical order; in particular, for d = 2:

TCMP: 1, Z, Z̄, Z2, Z̄Z, Z̄2, Z3, Z̄Z2, Z̄2Z, Z̄3, . . .

TRMP: 1, X, Y,X2, XY, Y 2, X3, X2Y,XY 2, Y 3, . . .

Complex Moment Matrix (Block Toeplitz):

M(3)(γ) =



1 Z Z̄ Z2 Z̄Z Z̄2 Z3 Z̄Z2 Z̄2Z Z̄3

γ00 γ01 γ10 γ02 γ11 γ20 γ03 γ12 γ21 γ30
γ10 γ11 γ20 γ12 γ21 γ30 γ13 γ22 γ31 γ40
γ01 γ02 γ11 γ03 γ12 γ21 γ04 γ13 γ22 γ31
γ20 γ21 γ30 γ22 γ31 γ40 γ23 γ32 γ41 γ50
γ11 γ12 γ21 γ13 γ22 γ31 γ14 γ23 γ32 γ41
γ02 γ03 γ12 γ04 γ13 γ22 γ05 γ14 γ23 γ32
γ30 γ31 γ40 γ32 γ41 γ50 γ33 γ42 γ51 γ60
γ21 γ22 γ31 γ23 γ32 γ41 γ24 γ33 γ42 γ51
γ12 γ13 γ22 γ14 γ23 γ32 γ15 γ24 γ33 γ42
γ03 γ04 γ13 γ05 γ14 γ23 γ06 γ15 γ24 γ33


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Real Moment Matrix (Block Hankel):

M2(3)(β(6)) is written by

1 X Y X2 XY Y 2 X3X2Y XY 2Y 3

1
X

Y

X2

XY

Y 2

X3

X2Y

XY 2

Y 3



β00 β10 β01 β20 β11 β02 β30 β21 β12 β03
β10 β20 β11 β30 β21 β12 β40 β31 β22 β13
β01 β11 β02 β21 β12 β03 β31 β22 β13 β04
β20 β30 β21 β40 β31 β22 β50 β41 β32 β23
β11 β21 β12 β31 β22 β13 β41 β32 β23 β32
β02 β12 β03 β22 β13 β04 β32 β23 β32 β23
β30 β40 β31 β50 β41 β32 β60 β51 β42 β33
β21 β31 β22 β41 β32 β23 β51 β42 β33 β24
β12 β22 β13 β32 β23 β13 β42 β33 β24 β15
β03 β13 β04 β23 β13 β05 β33 β24 β15 β06


.
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4 TCMP ∼= TRMP

Define:

• For z = x + iy, ψ(x, y) := z ≡ x + iy and Ψ(x, y) := (z, z̄).

• A map L :=
⊕n

k=0Lk, where

L0 = (1), L1 =

(
1 1

i −i

)
,and L2 =

 1 1 1

2i 0 −2i

−1 1 −1

 .

We can easily check that L is invertible.

Note The columns in Lk correspond to monomials

zk = (x + iy)k, z̄zk−1 = (x− iy)(x + iy)k−1, . . . ,

z̄k−1z = (x− iy)k−1(x + iy), z̄k = (x− iy)k.

7



Proposition 2 [Curto-Fialkow, 2002]

Let

{
M(n)(γ)≡moment matrix associated with a complex sequence γ
M(n)(β)≡moment matrix associated with a real sequence β

and M(n)(γ) = L∗M(n)(β)L. Then the following hold:

(i) M(n)(γ) ≥ 0 ⇐⇒ M(n)(β) ≥ 0

(ii) rank M(n)(γ) = rank M(n)(β)

(iii) µβ = µγ ◦ Ψ

(iv) ψ(supp µβ) = supp µγ.

(v) M(n)(γ) admits a rank M(n)(γ)-atomic representing measure
⇐⇒M(n)(γ) admits a rank M(n)(β)-atomic representing measure.

(vi) For p ∈ Pn, p(Z, Z̄) = L∗((p ◦ Ψ)(X, Y )).

8



5 Main Approaches to Solve TMP

• Positive Extension of Riesz Functional;
(Rieze-Haviland Theorem; need to define proper higher order moments)

•Rank-preserving Positive Moment Matrix Extension;
(Flat Extension Theorem; need to define proper higher order moments)

•Consistency for Extremal Cases;
(Need to find a representation theorem for certain polynomials)

•Rank-one Decomposition.

All the upcoming solutions to TMPs in Lecture 2 were derived through one of
these approaches. We will take a look at them in detail.
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6 Necessary Conditions

Although most the following arguments are valid for Md(n), d ≥ 3, we focus on
bivariate real moment problems (d = 2) in the sequel; so let M(n) ≡M(n)(β) ≡
M2(n)(β(2n)).

6.1 Basic Positivity Condition
For p(x, y) =

∑
i,j x

iyj ∈ Pn,

M(n) ≥ 0 ⇐⇒ 0 ≤
∫
|p|2 dµ =

∑
i,j,k,l

aijakl

∫
xi+lyj+k dµ

=
∑
i,j,k,l

aijaklβi+lβj+k

How to check: Use the nested determinant test or see if all eigenvalues of the
moment matrix are nonnegative.
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6.2 Recursively Generated

Real case If M(n) satisfies the condition that

p, q, pq ∈ Pn, p(X, Y ) = 0 =⇒ (pq)(X, Y ) = 0,

then β(2n) or M(n) is said to be recursively generated. It gives rigidity to M(n)

and its extensions; for, once a column relation arises, then all its multiples in the
polynomial level must appear as column relations in M(n) and its extensions.

Complex case For p ∈ Pn, p(z, z̄) ≡
∑

0≤i+j≤n aijz̄
izj define p(Z, Z̄) :=

∑
aijZ̄

iZj.

A complex moment sequence γ(2n) is said to be recursively generated:

If p, q, pq ∈ Pn, and p(Z, Z̄) = 0, then (pq)(Z, Z̄) = 0.

Importance of a column relation

Proposition 3 If there exists a representing measure µ for β(2n), then

p(X, Y ) = 0 ⇐⇒ supp µ ⊆ Z(p).
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Example 4 Consider a recursively generated M(2) with a column relation X =

1 (that is, β10 = β00, β20 = β10, β11 = β01, β30 = β20, β21 = β11, and β12 := β02):

1 X Y X2 XY Y 2

βββ00 βββ10 β01 β20 β11 β02
βββ10 βββ20 β11 β30 β21 β12
βββ01 βββ11 β02 β21 β12 β03
βββ20 βββ30 β21 β40 β31 β22
βββ11 βββ21 β12 β31 β22 β13
βββ02 βββ12 β03 β22 β13 β04


To have a representing measure, M(2) must have additional column relations:

X2 = 1 (from x · x = 1 · x = 1) and XY = Y (from x · y = 1 · y = y);

that is, the higher-order moments must be fixed as follows:

β20 := β00, β30 := β10, β21 := β01, β40 := β20, β31 := β11, β22 := β02,

β11 := β01, β21 := β11, β12 := β02, β31 := β21, β22 := β12, β13 := β03.
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6.3 Variety Condition

The algebraic variety of β ≡ β(2n) or M(n)(β) is defined by

V ≡ V(β) ≡ V(M(n)) =
⋂

p(X,Y )=0, deg p≤n

Z(p),

where Z(p) = {(x, y) : p(x, y) = 0} .

If µ is a representing measure for M(n), then the inequality

rankM(n) ≤ card supp µ ≤ cardV(M(n))

is said to be the variety condition.
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Example 5 Consider M(2)(β(4)) generated by a 4-atomic representing measure
µ = δ(−2,4) + δ(−1,1) + δ(1,1) + δ(2,4). Thus,

βij =

∫
xiyj dµ = (−2)i(4)j + (−1)i(1)j + (1)i(1)j + (2)i(4)j.

We see:

M(2) =



4 0 10 10 0 34

0 10 0 0 34 0

10 0 34 34 0 130

10 0 34 34 0 130

0 34 0 0 130 0

34 0 130 130 0 514


row red. //



1 0 0 0 0 −4

0 1 0 0 0 0

0 0 1 1 0 5

0 0 0 0 1 0

0 0 0 0 0 0

0 0 0 0 0 0


M(2) has two column relations X2 = Y and Y 2 = −4 · 1 + 5Y. Now solve the
system of polynomial equations x2 = y and y2 = −4 + 5y; we find 4 zeros;
that is, V(M(2)) = {(−2, 4), (−1, 1), (1, 1), (2, 4)}. In this case, rankM(n) =

card supp µ = cardV(M(n)) = 4 and the variety condition clearly holds.
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Example 6 [Complex Case] Consider a psd M(3)(γ(6)) with 3 column relations

p(Z, Z̄) := Z3 − 2iZ − 5

4
Z̄ = 0, p(Z, Z̄) = 0, Z̄2Z + iZ̄Z2 − i5

4
Z − 5

4
Z̄ = 0.

M(3)(γ(6)) =



224 0 0 176i 208 −176i 0 0 0 0

0 208 −176i 0 0 0 196i 236 −196i −92

0 176i 208 0 0 0 −92 196i 236 −196i

−176i 0 0 236 −196i −92 0 0 0 0

208 0 0 196i 236 −196i 0 0 0 0

176i 0 0 −92 196i 236 0 0 0 0

0 −196i −92 0 0 0 277 −227i −97 −61i

0 236 −196i 0 0 0 227i 277 −227i −97

0 196i 236 0 0 0 −97 227i 277 −227i

0 −92 196i 0 0 0 61i −97 227i 277


The algebraic variety is

V =
{
w0 := 0, w1 :=

√
6/4 +

√
6/4i, w2 := −

√
6/4−

√
6/4i,

w3 := 1 + (1/2)i, w4 := 1/2 + i, w5 := −1− (1/2)i, w6 := −1/2− i} .

Thus, we know rank M(3) = card V = 7.
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6.4 Weak Consistency and Consistency

• (Riesz Functional) Λγ(z̄
izj) := γij or Λβ(xiyj) := βij

(Riesz functional is linear and preserves conjugate.)

Two more necessary conditions:

• (Weak Consistency) p ∈ Pn, p|V ≡ 0 =⇒ Λ(p) = 0.

• (Consistency) p ∈ P2n, p|V ≡ 0 =⇒ Λ(p) = 0.

Note β(2n) is consistent =⇒ β(2n) is recursively generated.

Lemma 7 [Curto-Fialkow-Möller, 2008] A sequence has an interpolating
measure if and only if the sequence is consistent on a certain subset of Rd.
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List of Necessary Conditions (Review)

• Positivity: M(n) ≥ 0

• Recursively Generated: p, q, pq ∈ Pn, p(X, Y ) = 0 =⇒ (pq)(X, Y ) = 0.

• Variety Condition: rankM(n) ≤ cardV(M(n))

•Weak Consistency: p ∈ Pn, p|V ≡ 0 =⇒ Λ(p) = 0.

• Consistency: p ∈ P2n, p|V ≡ 0 =⇒ Λ(p) = 0.

All these conditions are not sufficient for n ≥ 3!

Thus, we need to discover another necessary conditions to study higher degree
moment problems.
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7 The First Solution: Flat Extension Theorem

The moment sequence β(2n) or M(n) is said to be flat if

rank M(n) = rank M(n− 1).

(This case subsumes all previous results for the Hamburger, Stieltjes, Hausdorff,
and Toeplitz TMP’s.)

Theorem 8 [Curto-Fialkow, Mem. AMS, 1996]
If a positive M(n) is flat, then it has a unique rank M(n)-atomic representing
measure.

Theorem 9 [Flat Extension Theorem; Curto-Fialkow,1996]
If β(2n) has a rank M(n)-atomic representing measure if and only if M(n) ≥ 0

and M(n) admits a flat extension M(n + 1).

18



7.1 Key Facts in the Flat Extension Theorem

We need to define:

(i) ϕ : C[z, z̄]→ CM(n)(γ) defined by ϕ(z̄izj) := Z̄ iZj

(ii)N := {p : 〈Mp̂, p̂〉 = 0} , kerϕ = {p : ϕ(p) = 0} =⇒ kerϕ ⊆ N

(iii) 〈·, ·〉M : C[z, z̄]→ C defined by 〈p, q〉M(n) := 〈Mp̂, q̂〉

(iv) 〈·, ·〉 : C[z, z̄]/N → C defined by 〈f +N , g +N〉 := 〈f, g〉M = 〈Mf̂, ĝ〉

(This sesquilinear form is well-defined and positive semi-definite.)

(〈f +N , f +N〉 = 0 =⇒ f ∈ N )
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Lemma 10 M(∞): infinite positive moment matrix =⇒ kerϕ = N .

Lemma 11 M(∞): infinite positive moment matrix =⇒ kerϕ is an ideal.

By the preceding two lemmas, N is an ideal of C[z, z̄], and hence we can define
a multiplication operator

Mz : C[z, z̄]/N → C[z, z̄]/N by Mz(f ) := zf.

Lemma 12 Let M(∞) be a positive infinite moment matrix of finite-rank. Then
the following hold:

(i) C[z, z̄]/N is a finite dimensional Hilbert space.

(ii) dimC[z, z̄]/N = rank M .

(iii) Mz is a normal operator.
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Proposition 13 M(∞): infinite moment matrix with a representing measure µ
=⇒ card supp µ = rank M(∞).

Theorem 14 M(∞): infinite moment matrix of finite-rank
=⇒M(∞) has a unique representing measure, which is rank M -atomic.

Proof. Since Mz is normal, it follows from the Spectral Theorem that C∗(Mz) ∼=
C(σ(Mz)). The operator Mz : C[z, z̄] → C[z, z̄] leaves N invariant, and Mz :

C[z, z̄]/N → C[z, z̄]/N is normal, that is, M ∗
zMz = MzM

∗
z . The equivalence

of C∗(Mz) and C(σ(Mz)) preserves the order, so that if a continuous function
is nonnegative on σ(Mz), then its associated element of the C∗-algebra will
be positive. This element is called f (Mz). When it acts on cosets 1 + N it
still remains positive, this time as an operator on the quotient space. Thus,
whenever the continuous function f is nonnegative, f (Mz) is actually a positive,
self-adjoint operator, and therefore the inner product 〈f (Mz)(1 +N ), 1 +N〉 is
nonnegative.
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This means that the linear functional

η(f ) := 〈f (Mz)(1 +N ), 1 +N〉, f ∈ C(σ(Mz))

is positive.

Thus, the Riesz Representation Theorem implies that there exists a positive
Borel measure µ, with supp µ ⊆ σ(Mz), such that η(f ) =

∫
fdµ. Then∫

z̄iz̄jdµ = η(z̄iz̄j) = 〈M ∗
z
iM j

z (1 +N ), 1 +N〉

= 〈zj +N , zi +N〉 = 〈zj, zi〉M = γij.

The desired representing measure is the scalar spectral measure µ of Mz, and
supp µ = σ(Mz). In particular, card supp µ = rank M(n) = r.

A proof of the Flat Extension Theorem is easily derived from Theorem 14.

The Flat Extension Theorem is valid for any dimension.
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General Flat Extension Theorem

Moreover, an extended version of the Flat Extension Theorem says if M(n)

admits a positive extension M(n + k) for some k ∈ Z+ that has a flat extension
M(n + k + 1), then β has a rank M(n + k)-atomic measure µ.

Let τ := rank M(n + k). According to this flat extension theorem, the algebraic
variety V(M(n + k + 1)) consists of exactly τ points, and hence we may write
V(M(n+k)) = {(x1, y1), . . . , (xτ , yτ)}, which serves as the support of a measure.
Solving a Vandermonde equation, we can find the densities of the measure
and establish a concrete formula of the measure.
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7.2 How to Build a Positive Extension

To build a flat extension moment matrix

M(n + 1) =

(
M(n) B(n + 1)

B(n + 1)∗ C(n + 1)

)
,

we need to allow new moments (parmeters) βn,0, βn−1,1, . . . , β0,n with keeping
recursiveness and then check if C(n + 1) is Hankel.

A useful tool to build an extension is:

Theorem 15 [Smul’jan, 1959]

Ã :=

(
A B

B∗ C

)
≥ 0 ⇐⇒


A ≥ 0

B = AW

C ≥ W ∗AW

.

Moreover, rank Ã =rank A ⇐⇒ C = W ∗AW.
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Example 16 Consider a quadratic moment sequence:

β(4) : {βij} = {5, 5, 14, 5, 14, 50} =⇒M(1) =

 5 5 14

5 5 14

14 14 50


Note that M(1) has a column relation X = 1.

To build a flat M(2), we impose on M(2) to have X2 = 1 and XY = 1:

(
M(1) B(2)

)
=

 5 5 14 5 14 50

5 5 14 5 14 50

14 14 50 14 50 β03


We now find W such that M(1)W = B(2) and get, for k1, k2, k3 ∈ R,

W =

1− k1 −k2 (−7 β03 − 27 k3 + 1250)/27

k1 k2 k3
0 1 (5β03 − 700)/54

 .
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We then evaluate C(2) = W ∗M(1)W and get

M(2) =



5 5 14 5 14 50

5 5 14 5 14 50

14 14 50 14 50 β03
5 5 14 5 14 50

14 14 50 14 50 β03
50 50 β03 50 β03 5(β2

03 − 280β03 + 25000)/54


The column relations in M(2) are X = 1, X2 = 1, XY = Y, and

Y 2 =
−7β03 − 27k + 1250

27
1 + kX +

(5β03 − 700)

54
Y

for some k ∈ R, that is, M(2) is a flat extension of M(1) for any β03. In particular,
if we take β03 = 194, then the algebraic variety V = {(1, 1), (1, 4)}. To find the
densities, solve the Vandermonde system:(

1 1

y1 y2

)(
ρ1
ρ2

)
=

(
β00
β01

)
=⇒

(
1 1

1 4

)(
ρ1
ρ2

)
=

(
5

14

)
.

Thus, we get ρ1 = 2, ρ2 = 3 and we may write a representing measure as
µ = 2 δ(1,1) + 3 δ(1,4).
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8 Summary of Solutions of TMP

We now list the cases of soluble TMP as follows (remember that TCMP∼=TRMP):

Complex Cases

(i) TCMP is of flat data type, i.e., rank M(n) = rank M(n − 1) (this case
subsumes all previous results for the Hamburger, Stieltjes, Hausdorff, and
Toeplitz truncated moment problems [Curto-Fialkow, 1991]);

(ii) The column Z̄ is a linear combination of the columns 1 and Z [Curto-
Fialkow, 1996];

(iii) For some k ≤ [n/2] + 1, the analytic column Zk is a linear combination
of columns corresponding to monomials of lower degree [Curto-Fialkow,
1996];

(iv) The analytic columns of M(n) are linearly dependent and span CM(n), the
column space of M(n) [Curto-Fialkow, 1996];
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Real Cases

(v) M(n) is singular and subordinate to conics [Curto-Fialkow, 2000, 2002,
2004, 2005];

(vi) M(n) with a finite algebraic variety [Fialkow, 2008];

(vii) M(n) is extremal, that is, rank M(n) = card V [Curto-Fialkow-Möller, 2008];

(viii) M(n) is recursively determinate, that is, if M(n) has only column depen-
dence relations of the form

Xn = p(X, Y ) (p ∈ Pn−1);
Y m = q(X, Y ) (q ∈ Pm, q has no ym term, m ≤ n),

where Pk denotes the subspace of polynomials in R[x, y] whose degree is
less than or equal to k. [Curto-Fialkow, 2013].

In the sequel, we will talk about solutions of lower degree TMP’s.
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9 Quadratic Moment Problems: M2(1)

Theorem 17 [Curto-Fialkow, 1996]

For γ : γ00, γ01, γ10, γ02, γ11, γ20 and r := rank M(1), TFAE:

• γ has a rep. meas.;

• γ has an r-atomic rep. meas.;

•M(1) ≥ 0.

In this case,

(i) r = 1 =⇒ ∃ a unique representing measure;

(ii) r = 2 =⇒ ∃ 2-atomic representing measures parameterized by a line;

(iii) r = 3 =⇒ ∃ 3-atomic representing measures.
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10 Multivariable Quadratic Moment Problems:
Md(1) for any d ≥ 2

Theorem 18 [Fialkow-Nie, 2010] If Md(1)(β) is psd for any d ∈ Z+, then β has
a rank Md(1)-atomic representing measure.

Proof. Through the following lemma.

Proposition 19 [Sturm-Zhang, 2003]

Q, X: n× n symmetric matrices, X ≥ 0, and rankX = r

=⇒ There are nonzero vectors u1, . . . , ur ∈ Rm such that

X = u1u
T
1 + · · · + uru

T
r , uT1Qu1 = · · · = uTrQur =

Q •X
r

,

where • is the Frobenius inner product, that is, Q •X = Tr (QX∗).
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11 Bivariate Quartic Moment Problems: M2(2)(β(4))

11.1 Invariance under Degree-one Transformations

For a, b, c, d, e, f ∈ R with bf 6= ce, let Ψ(x, y) ≡ (Ψ1(x, y),Ψ2(x, y)) := (a + bx +

cy, d+ex+fy) for x, y ∈ R. A new moment sequence β̃(2n) :
{
β̃ij

}
is constructed

with the definition β̃ij := Λβ(Ψi
1Ψ

j
2) (0 ≤ i + j ≤ 2n). We can immediately check

that Λβ̃(p) = Λβ(p ◦ Ψ) for every p ∈ Pn.

Proposition 20 [Curto-Fialkow, 2002] Let M(n) and M̃(n) be the moment
matrices associated with β and β̃, and let Jp̂ := p̂ ◦ Ψ (p ∈ Pn). Then the
following are true:

(i) M̃(n) = J∗M(n)J , M̃(n) ≥ 0⇔M(n) ≥ 0 and rank M̃(n) = rank M(n);

(ii) The formula µ = µ̃ ◦ Ψ establishes a one-to-one correspondence between
the sets of representing measures for β and β̃, which preserves measure
class and cardinality of the support; moreover, ϕ(supp µ) = supp µ̃;

(iii) M (n) admits a flat extension if and only if M̃ (n) admits a flat extension.
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11.2 Singular Quartic Moment Problem

Five Canonical Conics

It is well known that the existence of representing measures for TMP is invariant
under an invertible degree-one transformation.
Thus, a generic conic column relation in M(n), under such an affine mapping,
can be transformed into one of 5 canonical types:

X2 + Y 2 = 1, Y = X2, XY = 1, XY = 0, and X2 = X.

Each case requires an independent result as listed below.
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TMP on the Unit Circle

The moment problem for the unit circle T corresponds to the case in which
M(n)(γ(2n))the column relation Z̄Z = 1. This is the case in which there exists a
sequence α : α−2n, . . . , α0, . . . , α2n such that γij = αj−i (i, j ∈ Z+; 0 ≤ i+j ≤ 2n)
(so that α−k = ᾱk). Let T (2n)(α) denote the Toeplitz matrix (αj−i)i, j=0,...,2n. For
example,

M(2) =



α0 α1 α−1 α2 α0 α−2
α−1 α0 α−2 α1 α−1 α−3
α1 α2 α0 α3 α1 α−1
α−2 α−1 α−3 α2 α−2 α−4
α0 α1 α−1 α0 α0 α−2
α2 α3 α1 α4 α2 α0


←→ TM(4) =


α0 α1 α2 α3 α4

α−1 α0 α1 α2 α3

α−2 α−1 α0 α1 α2

α−3 α−2 α−1 α0 α1

α−4 α−3 α−3 α−1 α0


Thus, the result reduces the truncated T-moment problem for γ to the truncated
trigonometric moment problem:

αj =

∫
zk dµ (0 ≤ k ≤ 2n); µ ≥ 0; supp µ ⊆ T.

33



Proposition 21 [Fialkow, 1995] For n ≥ 0, M(n)(γ(2n)) ≥ 0 ⇐⇒ T (2n) ≥ 0.

Proposition 22 [Fialkow, 1995] Suppose M(n)(γ(2n)) has the column relation
Z̄Z = 1, that is, γij = αj−i (i, j ∈ Z+; 0 ≤ i + j ≤ 2n). Then TFAE:

(i) γ(2n) has a representing measure;

(ii) M(n)(γ(2n)) ≥ 0;

(iii) T (2n) ≥ 0;

(iv) α has a rank T (2n)-atomic representing measure;

(v) γ(2n) has a rank M(n)-atomic representing measure.
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Parabolic TMP

Proposition 23 [Curto-Fialkow, 2004] M(n)(β) admits a representing mea-
sure supported in y = x2 if and only if M(n) is positive, recursively generated,
satisfies X2 = Y , and rank M(n) ≤ card V(M(n)). In this case, M(n) admits a
flat extension M(n+1) and β admits a rank M(n)-atomic (minimal) representing
measure.

Hyperbolic TMP

Proposition 24 [Curto-Fialkow, 2005] Let Q(x, y) = 0 be an hyperbola in
the plane. A sequence β ≡ β(2n) has a representing measure supported in
Q(x, y) = 0 if and only if M(n) is positive, recursively generated, Q(X, Y ) = 0

in CM(n), and rank M(n) ≤ card V(M(n)). In this case, rank M(n) ≤ 2n + 1;
if rank M(n) ≤ 2n, then there is a M(n)-atomic representing measure, while
if rank M(n) = 2n + 1, then there is a representing measure µ for which
2n + 1 ≤ card supp µ ≤ 2n + 2.
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Two Intersecting Lines

Proposition 25 [Curto-Fialkow, 2005] Assume that M(n) is positive, recur-
sively generated, and satisfies XY = 0 and rank M(n) ≤ card V(M(n)). Then
rank M(n) ≤ 2n + 1; if rank M(n) ≤ 2n, then M(n) admits a flat extension
M(n + 1). If rank M(n) = 2n + 1, then M(n) admits a positive, recursively
generated extension M(n+ 1), satisfying 2n+ 1 ≤ rank M(n+ 1) ≤ 2n+ 2, and
M(n+ 1) admits a flat extension M(n+ 2) (so β admits a representing measure
supported in xy = 0, with 2n + 1 ≤ card supp µ ≤ 2n + 2).

Two Parallel Lines

Theorem 26 [Fialkow, 2014] Let n ≥ 2. Suppose deg p(x, y) = 2 and Z(p)

consists of 2 parallel lines. Then β ≡ β(2n) has a representing measure
supported in Z(p) if and only if M(n) is positive, recursively generated, satisfies
the variety condition, and p(X, Y ) = 0 in the column space of M(n).

We may also conclude that such M(n) admits a flat extension, and hence that
β(2n) has a rank M(n)-atomic representing measure.
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11.3 Nonsingular Quartic Moment Problems: M(2) > 0

Theorem 27 [Fialkow-Nie, 2009] If M(2)(β) > 0, then β has a representing
measure.

The proof is based on convex analysis and SOS.

Theorem 28 [Curto-Yoo, 2016] If M(2)(β) > 0, then β has a 6-atomic repre-
senting measure.

The proof is based on a rank-one decomposition.
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Proof of Theorem 28. Normalize M(2): Using a degree-one transformation,
any positive definite M(2) can be translated to

M̃(2) :=



1 0 0 β̃20 β̃11 β̃02
0 1 0 β̃30 β̃21 β̃12
0 0 1 β̃21 β̃12 β̃03
β̃20 β̃30 β̃21 β̃40 β̃31 β̃22
β̃11 β̃21 β̃12 β̃31 β̃22 β̃13
β̃02 β̃12 β̃03 β̃22 β̃13 β̃04


.

Rank-one decomposition: Let m11 be the (1, 1) entry in the positive definite

matrix M̃(2)
−1

and let u := det M̃(2)
m11

. Then u > 0 and we may write

M̃(2) =



1− u 0 0 1 0 1

0 1 0 β30 β21 β12
0 0 1 β21 β12 β03
1 β30 β21 β40 β31 β22
0 β21 β12 β31 β22 β13
1 β12 β03 β22 β13 β04


+



u 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


≡Mc + Mo

Mc has a representing measure by the solution of singular quartic moment
problems and Mo also has the representing measure δ(0,0). �
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12 Classification of Cubics for
Singular Sextic Moment Problems: M2(3)(β(6))

Cubics are classified into 78 species under affine transformations.
(Too many for the study of TMP!)

Classification of Irreducible Cubics: according to singularity and the existence
of a flex (i.e., a generalized inflection point).

Any irreducible cubic can be transformed into one of the form:

y2 = x3 + fx2 + gx + h (12.1)

for some f, g, h ∈ R.

However, this classification is not valid for the purpose of TMP.
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Theorem 29 A nonsingular, irreducible cubic has a flex if and only if it can be
transformed into

y2 = x(x− 1)(x− w) and y2 = x(x2 + kx + 1) (12.2)

for w > 1 and −2 < k < 2.

For example, we will study TCMP associated to a specific complex cubic
z3 = itz + uz̄, whose real part −ux + x3 + ty − 3xy2 = 0. For t = 4 and u = 3,

Figure 1: −3x + x3 + 4y − 3xy2 = 0→ y2 = 1
625(−3 + 4x)

(
39 + 96x + 11x2

)
.

The two cubics are equivalent but not in the scope of TMP.
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13 Extremal Moment Problems

We say that β(2n) or M(n)(β(2n)) are extremal if rank M(n) = card V(M(n)).

Theorem 30 [Curto-Fialkow-Möller, 2008]

For an extremal β ≡ β(2n), TFAE:

(i) β has a representing measure;

(ii) β has a unique representing measure, which is rank M(n)-atomic;

(iii) M(n) ≥ 0 and β is consistent.
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Question Suppose the following:

•M(n)(β) is singular;

•M(n) is positive;

• β is consistent;

• r ≤ v.

Then does β admit a representing measure?

Fialkow[2010] found a psd M(3) such that

rankM(3) = 9 with a column relation Y = X3,
CONSISTENT but M(3) does not have a measure.

Thus, we know Consistency is NOT sufficient!
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14 Sextic Moment Problems

14.1 Cubic Harmonic Column Relations

We first want to study M(3) ≡ M(3)(γ(6)) with a column relation Z3 = p(Z, Z̄),
deg p ≤ 2. By the structure of the moment matrix, M(3) must have another
column relation Z̄3 = p̄(Z, Z̄). Thus, rank M(3) ≤ 8.

However, it was shown that cubic harmonic polynomials q(z, z̄) := f (z)− z, with
deg q = 3 have seven or fewer zeros. To satisfy the variety condition, M(3) must
have more column relations.

Theorem 31 [Khavinson-Swiatek, Wilmhurst, Sarason]
If deg p = n ≥ 1, then

card Z(f (z)− z̄) ≤ 3n− 2.

In the case when deg f (z) = 3, we have card Z(f (z)− z) ≤ 7.
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How to Choose a Good Cubic Harmonic Cubic Column Relations

Using a degree-one transformation w = z + b/3, we may ignore the quadratic
term:

z3 + bz2 + cz + d =⇒ w3 + c̃w + d̃

WLOG, we can always assume that the quadratic term in the analytic piece is
absent. That is, it suffices to study column relations like Z3 = A1 + BZ + CZ̄,
where A,B,C ∈ C.

Use the symmetry of the cubic: Let K be the zero set of z3 = A + Bz + Cz̄.
To have more points in K, we impose symmetry on K; we want to satisfy the
conditions for symmetry:

(i) About the line x = 0 (equivalently, z ∈ K =⇒ −z ∈ K): A = 0 =⇒ 0 ∈ K.
(ii) About the line y = x (equivalently, z = iz̄): B ∈ iR =⇒ C ∈ R.

Finally, we have a cubic column relation of the form Z3 = itZ+uZ̄, with t, u ∈ R.
Under these symmetries, if we can find only two nonzero points, one on the
lines y = x or y = −x and the other outside that line, then we will have seven
points in the zero set.

44



Variety Condition

Having the maximum number of zeros in Z(q7) is crucial for us to solve a sextic
truncated moment problem with a column relation of the form q7(Z, Z̄) = 0.

Since a singular moment problems is well understood, we are only interested
in the cases when M(2) > 0.

Let r2 := rank M(2), r3 := rank M(3) and v3 := card V(M(3)). Then the possible
cases when r2 = 6 are:

r2 r3 v3

6 6 6 or 7 M(3) is a flat extension of M(2)

6 7 6 or less than No representing measure
6 7 7 Extremal

The case (r2, r3, v3) = (6, 6, 7) does not seem to be interesting but we should
mention that it cannot happen.
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The Solution to Sextic MP with the Cubic Harmonic Column Relation

Theorem 32 [Curto-Yoo, 2014] Let M(3) ≥ 0, with M(2) > 0 and
q7(Z, Z̄) := Z3 − itZ − uZ̄ = 0 (0 < u < |t| < 2u). Then TFAE:

(i) There exists a 7-atomic representing measure for M(3);

(ii) qLC(Z, Z̄) := Z̄2Z + iZ̄Z2 − iuZ − uZ̄ = 0;

(iii) Λ(qLC) = 0 and Λ(zqLC) = 0;

(iv) Re γ12 − Im γ12 = u(Re γ01 − Im γ01) and γ22 = (t + u)γ11 − 2u Im γ02.

Proof. Note that |Z(q7)| = 7 on the union of cones, 0 < u < |t| < 2u.
(=⇒) Easy.
(⇐=) Checking consistency via the following Proposition:

Proposition 33 [Representation of Polynomials]
Let Q6 := {p ∈ P6 : p|Z(q7) ≡ 0} and let I := {p ∈ P6 : p = fq7 + gq̄7 + hqLC for
some f, g, h ∈ P3}. Then Q6 = I.
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Another Cubic Harmonic Column Relation

Theorem 34 [Curto-Yoo, 2014]
Let M(3) ≥ 0, with M(2) > 0. M(3) satisfies the column relation W 3 = 2αW −
βW for 0 < α < |β| < 2α. Then TFAE:

(i) There exists a representing measure for M(3);

(ii) Λ(q̂LC) = 0 and Λ(wq̂LC) = 0, where q̂LC(w, w̄) = w2w − ww2 + βw − βw.

Proof. Using a degree one transformation ϕ(z, z̄) = (1+i)z̄, we have p(W,W ) =

J∗(p ◦ Φ)(Z, Z̄). �

Example 35 Consider again M(3) in Example 6:

M(3) =



224 0 0 176i 208 −176i 0 0 0 0

0 208 −176i 0 0 0 196i 236 −196i −92

0 176i 208 0 0 0 −92 196i 236 −196i

−176i 0 0 236 −196i −92 0 0 0 0

208 0 0 196i 236 −196i 0 0 0 0

176i 0 0 −92 196i 236 0 0 0 0

0 −196i −92 0 0 0 277 −227i −97 −61i

0 236 −196i 0 0 0 227i 277 −227i −97

0 196i 236 0 0 0 −97 227i 277 −227i

0 −92 196i 0 0 0 61i −97 227i 277


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M(3) is psd and has three column relations

q7(z, z̄) = z3 − 2iz − 5

4
z̄ = 0, qLC(z, z̄) := (z̄ + iz)

(
z̄z − 5

4

)
= 0,

and q̄7(z, z̄) = 0. As seen earlier, rank M(3) = card V = 7. Since M(3) satisfies
the conditions in Theorem 34, it admits a 7-atomic representing measure.

The following M̃(3) is obtained by the degree-one transformation ϕ(z, z̄) =

(1 + i)z̄ from M(3) in the above:

M̃(3) =



28 0 0 44 52 44 0 0 0 0

0 52 44 0 0 0 98 118 98 46

0 44 52 0 0 0 46 98 118 98

44 0 0 118 98 46 0 0 0 0

52 0 0 98 118 98 0 0 0 0

44 0 0 46 98 118 0 0 0 0

0 98 46 0 0 0 277 227 97 −61

0 118 98 0 0 0 227 277 227 97

0 98 118 0 0 0 97 227 277 227

0 46 98 0 0 0 −61 97 227 277


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M̃(3) has three column relations

q̃7(z, z̄) = z3 − 4z +
5

2
z̄ = 0,

q̃LC(z, z̄) =
5

2
z − 5

2
z̄ − z̄z2 + z̄2z = 0, and ¯̃q7(z, z̄) = 0.

It also has a 7-atomic representing measure.

In the complex plane, we show the varieties of M(3) and M̃(3):

V(M(3)) V(M̃(3))
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14.2 Classification of (Real) Sextic Moment Problems

We are mostly interested in M(3) with an invertible M(2)-block since a complete
solution to quartic moment problems was archived recently. So we assume
M(3) ≥ 0 and M(2) > 0. Let r3 := rank M(3) and v3 := card V(M(3)).

r3 v3 Eg. with/without a measure Solutions by
7 7 known/impossible Curto-Yoo, Fialkow
7 8 unknown/unknown Curto-Yoo, Fialkow
7 9 unknown/unknown Curto-Yoo, Fialkow
7 ∞ known/unknown Curto-Yoo
8 8 known/unknown Curto-Yoo, Fialkow
8 9 known/known Curto-Yoo, Fialkow
8 ∞ known/unknown Curto-Yoo
9 ∞ known/known Fialkow, Yoo (particular cases)
10 ∞ known/known N/A
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15 Non-extremal Sextic Moment Problems

15.1 Rank-one Decompositions.

Any rank-one positive matrix must be of the form xx∗ for some nonzero vector
x ∈ Cn. In addition, a positive matrix A can be written as a sum:

A =

k∑
i=1

xix∗i ,

for some nonzero vectors xi ∈ Cn for i = 1, . . . , k.

This representation is not unique and the minimal k is known to be the rank of
A.
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Notations

(i) v(a, b) :=
(
1 a b a2 ab b2 · · · an an−1b · · · abn−1 bn

)
(ii) P (a, b) := v(a, b)Tv(a, b)

For example, if n = 2, then

P (a, b) =



1 a b a2 ab b2

a a2 ab a3 a2b ab2

b ab b2 a2b ab2 b3

a2 a3 a2b a4 a3b a2b2

ab a2b ab2 a3b a2b2 ab3

b2 ab2 b3 a2b2 ab3 b4


←→ moment matrix generated by δ(a,b)

If M(n)(β) has a `-atomic representing measure, then we may write

M(n) =
∑̀
k=1

ρkP (xk, yk),

where ρk > 0 and (xk, yk) ∈ V(M(n)) for k = 1, . . . , ` ≤ dimP2n.
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15.2 Solution to Non-extremal Sextic Moment Problems

The Case: rank M(3) = 7, card V(M(3)) > 7

Theorem 36 [Curto-Yoo, 2105] Let V ≡ V(M(3)) be the algebraic variety of
M(3)

(
β(6)
)

and let v := card V. If M(3) is consistent, psd with a nonsingular
M(2), rank M(3) = 7, and v ≥ 8 (v = +∞ possible), then β(6) has a 7-atomic
measure.

Proof. Key ideas:

• There is a point (a, b) ∈ V such that no conic can contain all the points in
V − {(a, b)}.

• Set (a, b) as the point (xj, yj) and then consider a vector v =
(
1, a, b, a2, ab, b2,

a3, a2b, ab2, b3
)T . Notice that vvT is a rank one moment matrix with the mea-

sure δ(a,b) and we may write

M̃(3) = M(3)− ρvvT ,

for some ρ := det (M(3)B) /
(
λ det

(
[M(3)B]{2,3,...,7}

))
> 0.
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• M̃(3) has exactly 6 positive eigenvalues along with zero whose multiplicity is
4. In other words, M̃(3) is positive semidefinite.

Finally, we observe that M̃(2) is positive definite, and so M̃(3) is flat, which
means that M̃(3) admits a 6-atomic representing measure. Therefore, we
conclude that M(3) has a 7-atomic representing measure. �

In fact, we can generalize the previous result as follows:

Corollary 37 Let V ≡ V(M(n)) be the algebraic variety of M(n)
(
β(2n)

)
and

let v be the cardinality of V. Suppose M(n − 1) > 0 and its associated
moment sequence has an r-atomic representing measure. IfM(n)(β(2n)) ≥ 0,
rank M(n) = n(n+1)

2 +1, and v ≥ n(n+1)
2 +2, then β(2n) has a (r+1)-atomic measure.
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The Case: rank M(3) = 8, card V(M(3)) = +∞

Problem 38 Let V be the algebraic variety of M(3). Assume M(3) ≥ 0 of rank
8 with M(2) > 0, and card V = ∞. Under what conditions, does the moment
sequence admits a representing measure?

Algorithm to Solve Problem 38.

Step 1. Using the generalize Vandermonde matirx of V, we can show there is
a new cubic polynomial r(x, y) vanishing on V ′ := V − {(a, b), (c, d)} for some
(a, b), (c, d) ∈ V besides the two polynomials p(x, y) and q(x, y) from the column
relations.

Step 2. We may write

M(3) = M̃(3) + m1v(a, b)v(a, b)T + m2v(c, d)v(c, d)T ,

where m1 and m2 are nonnegative (not simultaneously zero) for (a, b), (c, d) ∈ V .

Note that M̃(3) must have the column relation r(X, Y ) = 0. �
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15.3 TMP with a Single Cubic Column Relation

TMP with the column relation Y = X3

For p ∈ Pn, M(n) is p-pure if the only dependence relation in CM(n) are those
of the form (pq)(X, Y ) = 0 (q ∈ Pn−deg p). Let p(x, y) = y − x3 and let Γ denote
the curve y = x3.

Theorem 39 [Fialkow, 2011] Suppose n ≥ 3, p(x, y) = y − x3, and M(n) is
p-pure. TFAE for β ≡ β(2n):

(i) β has a rank M(n)-atomic Γ-representing measure;

(ii) M(n) admits a psd, recursively generated moment matrix extensionM(n+1);

(iii) M(n) ≥ 0 and β1,2n−1 > ψ(β), where ψ(β) is the rational expression in the
moment data.

Note The numerical condition β1,2n−1 > ψ(β) in (iii) is a new type of condition
discovered for the first time in truncated moment theory. No such condition was
necessary for n = 1 or 2!
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β(6) with a Reducible Cubic Column Relation (Based on Yoo, 2017)

For M ≡ M(3) ≡ M(3)(β) with a reducible cubic column relation, we may
assume the polynomial of the column relation is a product of y = 0 and a
conic after applying an affine transformation of rotation. M is ultimately to
be decomposed as a sum of two moment matrices whose column relations
are determined by the line y = 0 and a conic. Thus, a proper degree-one
transformation enables us to assume that M has a single cubic column relation
associated to yc(x, y) = 0 for a quadratic polynomial c, where c is one of the
conics c1(x, y) = x2 − A1 − A2x− A3y; (15.1)

c2(x, y) = xy −B1 −B2x−B3y −B4x
2; (15.2)

c3(x, y) = y2 − C1 − C2x− C3y − C4x
2 − C5xy, (15.3)

for some Ai, Bi, Ci ∈ R (1 ≤ i ≤ 5). A simple test can show that c1(x, y) = 0

is a parabola or a pair of two vertical lines, and c2(x, y) = 0 is a hyperbola;
however, c3(x, y) = 0 can be any type of conic. According to the invariance
under a degree-one transformation, we can claim that it suffices to consider
the case of M with the column relation c3(X, Y ) = 0.
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If M has a representing measure µ, then we may write µ = µ(`) + µ(c), where
supp µ(`) is contained in the line y = 0 and supp µ(c) is in the conic c3(x, y) = 0.
We thus write

M = M [µ(`)] + M [µ(c)],

where each summand is the moment matrix generated by the corresponding
measure.

It follows that M [µ(c)] must have the column relation c3(X, Y ) = 0 since the
support of µ(c) must be contained in the curve c3(x, y) = 0. The moment matrix
M [µ(c)] is required to be recursively generated so that at least two of cubic
column relations in M [µ(c)] are linearly dependent; that is, (xc3)(X, Y ) = 0 and
(yc3)(X, Y ) = 0. Thus, rank M [µ(c)] ≤ 7.
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We now take a crucial observation: Since
∫
xiyjdµ(`) = 0 for i = 0, 1, . . . , n and

j = 1, . . . , n, the moment matrix M [µ(`)] looks like

M (`) :=



a1 a2 0 a3 0 0 a4 0 0 0

a2 a3 0 a4 0 0 a5 0 0 0

0 0 0 0 0 0 0 0 0 0

a3 a4 0 a5 0 0 a6 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

a4 a5 0 a6 0 0 a7 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0


(15.4)

for some ai ∈ R (1 ≤ i ≤ 7). We now set M (c) := M −M (`), equivalently,

M = M (`) + M (c). (15.5)
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For the existence of a measure, we may determine a1, . . . , a5 concretely; the
column relation c3(X, Y ) = 0 and (xc3)(X, Y ) = 0 must appear in M −M [µ(`)](=

M [µ(c)]), and hence the two column relations bring the matrix equation for c3:


C1 C2 C4 0 0 0 0

0 C1 C2 C4 0 0 0

0 0 C1 C2 C4 0 0

0 0 0 C1 C2 C4 0

0 0 0 0 C1 C2 C4





a1
a2
a3
a4
a5
a6
a7


=


k1
k2
k3
k4
k5

 , (15.6)

where ki := βi−1,2 − C1βi−1,0 − C2βi,0 − C3βi−1,1 − C4βi+1,0 − C5βi,1 for 1 ≤ i ≤ 5.
We can readily see that this equation has infinitely many solutions with two
parameters unless C1, C2, and C4 are 0 simultaneously.

Since a proper degree-one transformation can be found to make c3(x, y) have
a nonzero constant term, we only need to handle the case C1 6= 0, in which the
equation has infinitely many solutions with two parameters a6 and a7.
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Decomposition: M = M (c) + M (`)

Example 40 [Decomposition: M = M (c) + M (`)] Consider β ≡ β(6) with mo-
ments:

β00 = 12, β10 = 109, β11 = 18, β20 = 2517,

β11 = 450, β02 = 96, β30 = 74473, β21 = 13050,

β12 = 2388, β03 = 432, β40 = 2426229, β31 = 414450,

β22 = 71916, β13 = 12600, β04 = 2292, β50 = 82752529,

β41 = 13893930, β32 = 2351532, β23 = 401400, β14 = 69528,

β05 = 12168, β60 = 2899815357, β51 = 481450050, β42 = 80325564,

β33 = 13479480, β24 = 2279616, β15 = 388800, β06 = 67236.

M ≡ M(3)(β) is positive with a single cubic column relation Y 3 = −Y + XY .
We solve the equation (15.6) and obtain

a1 = −1021 + a6, a2 = −1020 + a6, a3 = −1000 + a6,

a4 = −960 + a6, a5 = −736 + a6.

Thus, both M (`) and M (c) have now only two parameters a6 and a7.
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Nested Determinants of M (c) and M (`)

We will use the nested determinants of M (`) and M (c) to determine the exis-
tence of a representing measure; for the purpose, let MB ≡ M(n)B be the
compression of the moment matrix M(n) to the columns and the rows in B:

∆
(`)
1 = detM

(`)
{1}, ∆

(`)
2 = detM

(`)
{1,X},

∆
(`)
3 = detM

(`)

{1,X,X2}, ∆
(`)
4 = detM

(`)

{1,X,X2,X3},

∆
(`)
5 = detM

(`)

{1,X,X3};

∆
(c)
1 = detM

(c)
{1}, ∆

(c)
2 = detM

(c)
{1,X},

∆
(c)
3 = detM

(c)
{1,X,Y }, ∆

(c)
4 = detM

(c)

{1,X,Y,X2},

∆
(c)
5 = detM

(c)

{1,X,Y,X2,XY },

∆
(c)

X3 = detM
(c)

{1,X,Y,X2,XY,X3}, ∆
(c)

X2Y
= detM

(c)

{1,X,Y,X2,XY,X2Y },

∆
(c)

X3, X2Y
= detM

(c)

{1,X,Y,X2,XY,X3,X2Y }.
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Classifications of M (`)

Lemma 41 If M (`) admits a representing measure, then there are 3 cases:

(i) M (`) admits a 2-atomic representing measure if and only if

∆
(`)
1 > 0, ∆

(`)
2 > 0, and ∆

(`)
i = 0 for i = 3, 4, 5. (15.7)

In this case, the two parameters, a6 and a7, are concretely found and fixed.

(ii) M (`) admits a 3-atomic representing measure if and only if

∆
(`)
1 > 0, ∆

(`)
2 > 0, ∆

(`)
3 > 0, and ∆

(`)
4 = 0. (15.8)

In this case, the last identity will fix a7 as a rational function of a6.

(iii) M (`) admits a 4-atomic representing measure if and only if

∆
(`)
1 > 0, ∆

(`)
2 > 0, ∆

(`)
3 > 0, and ∆

(`)
4 > 0. (15.9)
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Classifications of M (c)

We can claim that M (c) cannot have another conic column relation besides
c3(X, Y ) = 0.

Consequently, we always need to assume

∆
(c)
i > 0 for i = 1, . . . , 5; (15.10)

that is, rank M (c)(2) = 5 and M (c)(2) ≥ 0, where M (c)(2) is the submatrix of M (c)

with moments up to degree 4.

To make M (c) positive, we apply Smul’jan’s theorem. We write

M (c) =

(
M (c)(2) B(c)

(B(c))T C(c)

)
.

It is easy to see that there is W (c) such that M (c)(2)W (c) = B(c). Set

C
(c)
[ := (W (c))TM (c)(2)W (c).
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A calculation shows

C(c) − C(c)
[ =


∆

(c)

X3/∆
(c)
5 ∆(c) 0 0

∆(c) ∆
(c)

X2Y
/∆

(c)
5 0 0

0 0 0 0

0 0 0 0

 , (15.11)

where ∆(c) satisfies
(

∆(c)∆
(c)
5

)2
= ∆

(c)

X3∆
(c)

X2Y
−∆

(c)
5 ∆

(c)

X3,X2Y
. Thus, with the assumption

∆
(c)
5 > 0,

M (c) ≥ 0 ⇐⇒ C(c) − C(c)
[ ≥ 0

⇐⇒

{
either ∆

(c)

X3 > 0 and ∆
(c)

X3,X2Y
≥ 0 or

∆
(c)

X3 = 0, ∆(c) = 0, and ∆
(c)

X2Y
≥ 0.

}
(15.12)

References for the coming results:
∆

(c)

X3 = 0, ∆(c) = 0, and ∆
(c)

X2Y
= 0; (15.13)

∆
(c)

X3 = 0, ∆(c) = 0, and ∆
(c)

X2Y
> 0; (15.14)

∆
(c)

X3 > 0, ∆(c) = 0, and ∆
(c)

X2Y
= 0; (15.15)

∆
(c)

X3 > 0 and ∆
(c)

X3,X2Y
> 0. (15.16)
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Proposition 42 Suppose M ≡M(3)(β) = M (`) + M (c) (as in (15.5)) is positive
with a single cubic column relation of (yc3)(XY ) = 0. Let R denote the set of
all (a6, a7) ∈ R2 satisfying ∆

(c)
i > 0 for 1 ≤ i ≤ 5. Then:

(i) M (c) is flat if and only if (15.13) holds for some (a6, a7) ∈ R;

(ii) In CM (c), X3 is linearly dependent and X2Y is linearly independent if and
only if (15.14) holds for some (a6, a7) ∈ R;

(iii) In CM (c), X3 is linearly independent and X2Y is linearly dependent if and
only if (15.15) holds for some (a6, a7) ∈ R;

(iv) In CM (c), both X3 and X2Y are linearly independent if and only if (15.16)
holds for some (a6, a7) ∈ R.
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Since rank M = 9, a (minimal) representing measure µ for M must satisfy the
variety condition, 9 ≤ card supp µ; also, we know that 9 ≤ card supp µ ≤ 11. In
terms of card supp µ, we present our main results as follows:

Theorem 43 Suppose M ≡ M(3)(β) = M (`) + M (c) is positive with a single
cubic column relation of (yc3)(XY ) = 0. Let R denote the set of all (a6, a7) ∈ R2

satisfying ∆
(c)
i > 0 for 1 ≤ i ≤ 5. Then β has a minimal 9-atomic representing

measure if and only if either one of the following holds:

(i) M (`) satisfies (15.7) for some (a6, a7) ∈ R (so, a6 and a7 are to be fixed) and
M (c) satisfies (15.16) for the fixed a6 and a7;

(ii) M (`) satisfies (15.8) for some (a6, a7) ∈ R (so, a7 is fixed as a rational
function of a6) and M (c) satisfies either (15.14) or (15.15) (so, a6 is also
fixed), and M (c) also satisfies the variety condition for the fixed (a6, a7) ∈ R;

(iii) M (c) satisfies (15.13) for some (a6, a7) ∈ R (so, a6 and a7 are to be fixed)
and M (`) satisfies (15.9) for the fixed a6 and a7.
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Theorem 44 Suppose M ≡ M(3)(β) = M (`) + M (c) is positive with a single
cubic column relation of (yc3)(XY ) = 0. Let R denote the set of all (a6, a7) ∈ R2

satisfying ∆
(c)
i > 0 for 1 ≤ i ≤ 5. M has a minimal 10-atomic representing

measure if and only if either one of the following holds:
(i) M (`) satisfies (15.8) for some (a6, a7) ∈ R (so, a7 is fixed as a rational

function of a6) and M (c) satisfies (15.16) for some (a6, a7) ∈ R;

(ii) M (c) satisfies (15.14) for some (a6, a7) ∈ R (so, a6 and a7 are fixed). For the
fixed a6 and a7, M (c) satisfies the variety condition and M (`) satisfies (15.9).

(iii) M (c) satisfies (15.15) for some (a6, a7) ∈ R (so, a6 is fixed as a real number
by ∆

(c)

X2Y
= 0). For some a7, M (c) satisfies the variety condition and M (`)

satisfies (15.9).

Theorem 45 Suppose M = M (`) + M (c) is positive with a single cubic column
relation of (yc3)(XY ) = 0. Let R denote the set of all (a6, a7) ∈ R2 satisfying
∆

(c)
i > 0 for 1 ≤ i ≤ 5. M has a minimal 11-atomic representing measure if and

only if M (`) satisfies (15.9) and M (c) satisfies (15.16) for some (a6, a7) ∈ R.
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Application to Nonsingular Sextic Moment Problems

Recall that

•M(1) > 0 =⇒M(1) has infinitely many 3-atomic representing measures.

•M(2) > 0 =⇒M(2) has infinitely many 6-atomic representing measures.

However, there is an example of a positive definite M(3) such that it has no
representing measure [Curto-Fialkow, 1996].

In particular, suppose M(3) is positive definite and we define a moment matrix

M̃ := M(3)− ρvv∗.

where ρ > 0 and v = (1, a, b, a2, ab, b2, a3, a2b, ab2, b3)T for some (a, b) ∈ R2.

For some cases, it is possible that M̃ may have a reducible conic column
relation for some ρ > 0 and (a, b) ∈ R2. Then we can apply our main results
and will be able to determine the solubility of M(3).
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16 Questions

Question 1 How can we solve sextic moment problems with a single cubic
column relation?

Question 2 How can we solve nonsingular sextic moment problems?

Question 3 Can we realize the numerical conditions appeared in solutions of
sextic moment problems as a generic property of the moment sequence?

Question 4 Can we get a solution of TMP’s related those of the full moment
problems (for example, results based on reproducing kernels, recurrence rela-
tions, and so on)?

Question 5 [Algebraic Geometry]

Can we find a concrete discriminant to classify cubic polynomials?
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Various Moment Problems

Lecture 3. Applications of moment problems and related topics

Operator Theory and Operator Algebras Winter School
(Mungyeong; December 20-23, 2017)



1 Extremal Sextic Moment Problems

1.1 The Multivariable Vandermonde Matrix

For an algebraic variety V(M(n)) = {(x1, y1), · · · , (xr, yr)}, define the multivari-
able Vandermonde matrix W as

W =

1 x1 y1 x1
2 y1x1 y1

2 · · · x1
n xn−1

1 y1 · · · x1y
n−1
1 yn1

...
...

...
...

...
...

. . .
...

...
. . .

...
...

1 xr yr xr
2 yrxr yr

2 · · · xrn xn−1
r yr · · · xryn−1

r ynr


We also may label the columns of W as we did for M(n) and let WB be the
compression of W to a basis B of the column space of M(n).

In the case of one-variable Vandermonde matrices, they are invertible if and
only if all the nodes are different. However, this argument is no longer valid for
multivariable Vandermonde matrices.
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Checking Weak Consistency With Vandermonde Matrices

Recall that:

• (Weak Consistency) p ∈ Pn, p|V(M(n)) ≡ 0 =⇒ Λ(p) = 0;

• (Consistency) p ∈ P2n, p|V(M(n)) ≡ 0 =⇒ Λ(p) = 0.

Lemma 1 [Curto-Fialkow-Möller, 2008]

The following are equivalent for β extremal:

(i) β is weakly consistent;

(ii) For any basis B of CM(n) (the column space of M(n)), WB is invertible;

(iii) There exists a basis B of CM(n) such that WB is invertible.
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Checking Consistency with Vandermonde Matrices

This argument is valid for multidimensional moment problems.

Notations

• Columns of M(n) are labeled with the monomials Xj ∈ Pn (j ∈ Zd+, |j| ≤ m)
in degree-lexicographical order;

• V := {w1, . . . ,ws} is a finite subset in Rd;

•Wm[V ] is a matrix with s rows and with columns labeled with Xj. (Note that
the entry of Wm[V ] in the row i (1 ≤ i ≤ s) and the column Xj is wj

i , and
hence Wm[V ] is a Vandermonde matrix of points in Rd);

• Um[V ] := Wm[V ]T ;

• τ (m) := dimPm =

(
m + d

m

)
;

• p1, . . . , pτ denote the list of monomials in Pm in degree-lexicographical order.
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Given M(n)(β), let τ ≡ τ (2n), r = rank M(n), v = card V(M(n)), and set
Lβ := (Λβ(p1),. . . , Λβ(pτ))

T ∈ Rτ . Let B :=
{

Xi1, . . . ,Xir
}

denote a basis of CM(n).
For the case when V ⊆ V(M(n)), let WB[V ] denote the compression of Wm[V ]

to columns Xi1, . . . ,Xir and let UB[V ] ≡ WB[V ]T .

Theorem 2 [Fialkow, 2008] If a positive M(n) has a flat extension, then UB[V ]

is invertible for a subset V of V(M(n)).

Proposition 3 [Fialkow, 2008] Let v <∞. Then

(i) β is consistent if and only if Lβ ∈ Ran U2n[V(M(n))].

(ii) β is weakly consistent if and only if Ran M(n) ⊆ Ran Un[V(M(n))]; equiva-
lently, there exists a matrix Z such that M(n) = Un[V(M(n))]Z.
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1.2 Division Algorithm for Checking Consistency

Theorem 4 (Division Algorithm) Fix a monomial order > on Zn+, and let F =

(f1, · · · , fs) be an ordered s-tuple of polynomials in R[x1, · · · , xn].

Then every f ∈ R[x1, · · · , xn] can be written as

f = a1f1 + · · · + asfs + r,

where ai, r ∈ R[x1, · · · , xn], and either r = 0 or r is a linear combination of
monomials, with coefficients in R, none of which is divisible by any leading
terms of f1, · · · , fs. We call it r a remainder of f on division by F . Furthermore,
if aifi 6= 0, then we have

multideg(f ) ≥ multideg(aifi).
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1.3 Solutions to Extremal Sextic Moment Problems
(Based on Curto-Yoo, 2017)

The Case: rank M(n) = card V(M(n)) = 7

The basis of M(3) is one of the following:

Case 1. B1 := {1, X, Y,X2, XY, Y 2, X3}
Case 2. B2 := {1, X, Y,X2, XY, Y 2, X2Y }
Case 3. B3 := {1, X, Y,X2, XY, Y 2, XY 2}
Case 4. B4 := {1, X, Y,X2, XY, Y 2, Y 3}

Using the degree-one transformation, X = Ỹ and Y = X̃, we know Case 1 and
Case 4 are equivalent.

6



Theorem 5 Let M(3)(β) ≥ 0, M(2) > 0 and rank M(n) = card V(M(n)) = 7.

Let V := {(x1, y1), · · · , (x7, y7)}.

Let B1 := {1, X, Y,X2, XY, Y 2, X3} be a basis for M(3).

Then β has a representing measure if and only if

•M(3) is weakly consistent;

• For 0 ≤ i + j ≤ 2,

L(xiyj(x4 − a00 − a10x− a01y − a20x
2 − a11xy − a02y

2 − a30x
3)) = 0,

where (a00, a10, a01, a20, a11, a02, a30)T = W−1
B1

(x4
1, · · · , x4

7)T .
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Proof. Recall that in the extremal case, β(2n) is consistent if and only if it admits
a rank M(n)-atomic representing measure.

Let qk(X, Y ) = 0 is the column relation in ith column for k = 8, 9, and 10.

Since WB1 is invertible, there exist unique polynomials with the leading mono-
mial x4 such that vanishes on the variety V, say,

r1(x, y) = x4 − (a00 + a10x + a01y + a20x
2 + a11xy + a02y

2 + a30x
3).

Let I be {p ∈ P6 : p|V ≡ 0}. Now by the division algorithm, we may write for
any p ∈ I,

p(x, y) = Aq8 + Bq9 + Cq10 + Dr1 + r,

where A,B,C ∈ P3, D ∈ P2 and r(x, y) = c00 + c10x + c01y + c20x
2 + c11xy +

c02y
2 + c30x

3 for some c00, · · · , c02, c30 ∈ R.
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Claim: I = {fq8 + gq9 + hq10 + qr1 : f, g, h ∈ P3, q ∈ P2}.

Note that p|V ≡ 0 =⇒ r|V ≡ 0.

Since r|V ≡ 0, we have the matrix form of a linear system:

WB1

(
c00 c10 c01 c20 c11 c02 c30

)T
=
(
0 · · · 0

)T
.

Since the matrix in the left hand side is invertible, we know c00 = c10 = c01 =

c20 = c11 = c02 = c30 = 0, which means r(x, y) = 0.

Consequently,

β is consistent ⇐⇒

{
Lβ(xiyjqk(x, y)) = 0 (0 ≤ i + j ≤ 3; k = 8, 9, 10);

Lβ(xtyur1(x, y)) = 0 (0 ≤ t + u ≤ 2).

But it is immediate from the column relations in M(3) and from hypothesis.
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Solution to Case 2

Theorem 6 Let M(3)(β) ≥ 0, M(2) > 0 and rank M(n) = card V(M(n)) =

7. Let B2 := {1, X, Y,X2, XY, Y 2, X2Y } be a basis for M(3). Then β has a
representing measure if and only if M(3) is weakly consistent.

The Case: rank M(n) = card V(M(n)) = 8

The basis of M(3) is one of the following:

Case 1. B1 := {1, X, Y,X2, XY, Y 2, X3, X2Y }
Case 2. B2 := {1, X, Y,X2, XY, Y 2, X3, XY 2}
Case 3. B3 := {1, X, Y,X2, XY, Y 2, X3, Y 3}
Case 4. B4 := {1, X, Y,X2, XY, Y 2, X2Y,XY 2}
Case 5. B5 := {1, X, Y,X2, XY, Y 2, X2Y, Y 3} (subcase of Case 2)
Case 6. B6 := {1, X, Y,X2, XY, Y 2, XY 2, Y 3} (subcase of Case 1)
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Theorem 7 Let M(3) ≥ 0, M(2) > 0, rank M(n) = card V(M(n)) = 8, and
V := {(x1, y1), · · · , (x8, y8)}.

Let B1 := {1, X, Y,X2, XY, Y 2, X3, X2Y } be a basis for M(3).

Then β has a representing measure if and only if

•M(3) is weakly consistent;

• For 0 ≤ i + j ≤ 2,

L(xiyj(x4 − a00 − a10x− a01y − a20x
2 − a11xy − a02y

2 − a30x
3 − a21x

2y)) = 0,

L(xiyj(x3y − b00 − b10x− b01y − b20x
2 − b11xy − b02y

2 − b30x
3 − a21x

2y)) = 0,

where (a00, a10, a01, a20, a11, a02, a30, a21)T = W−1
B1

(x4
1, · · · , x4

8)T

and (b00, b10, b01, b20, b11, b02, b30, b21)T = W−1
B1

(x2
1y1, · · · , x2

8y8)T .
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Theorem 8 Let M(3)(β) ≥ 0, M(2) > 0 and rank M(n) = card V(M(n)) = 8.

Let V := {(x1, y1), · · · , (x8, y8)}.

Let B2 := {1, X, Y,X2, XY, Y 2, X3, XY 2} be a basis for M(3).

Then β has a representing measure if and only if

•M(3) is weakly consistent;

• For 0 ≤ i + j ≤ 2,

L(xiyj(x4 − a00 − a10x− a01y − a20x
2 − a11xy − a02y

2 − a30x
3 − a12xy

2)) = 0,

where (a00, a10, a01, a20, a11, a02, a30, a12)T = W−1
B2

(x4
1, · · · , x4

8)T

For the other Cases, we have a similar result.
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2 Any Sequence Has an Interpolating Measure!

For real sequence n-sequence β ≡ β(m), we define an interpolating measure
as a (not necessarily positive) Borel measure µ such that

∫
x dµ = βi for |i| ≤ m.

According to Jordan decomposition theorem, we know that every interpolating
measure µ has a unique decomposition into a difference µ = µ+ − µ− of two
positive measures µ+ and µ−, at least one of which is finite.

For the univariate case, R. P. Boas showed that any “infinite” sequence of real
numbers admits an interpolating measure supported in [0,∞); that is, one can
always find a measure for any sequence of the form µ = µ+−µ− such that both
µ+ and µ− are positive Borel measures supported in [0,∞].

Moreover, G. Flessas, K. Burton, and R. R. Whitehead found an algorithm
to find such a measure supported in the real line for a “finite” real sequence
{sj}2n−1

j=0 . As a generalization of these results, we will see that any truncated
moment sequence has an interpolating measure supported in Rd for any d ≥ 2.
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2.1 V -consistency

A moment sequence β ≡ β(2n) (or the associated moment matrix Md(n) ≡
Md(n)(β(2n))) is said to be V -consistent for a set V ∈ Rd if the following holds:

p ∈ P2n, p|V ≡ 0 =⇒ Λ(p) = 0. (2.1)

This property of the moment sequence guarantees the existence of an interpo-
lating measure. Here is a formal result:

Lemma 9 [Curto-Fialkow-Möller, 2008] Let L : P2n → R be a linear functional
and let V ⊆ Rd. Then the following statements are equivalent:

(i) There exist α1, . . . , α` ∈ R and there exist w1, . . . ,w` ∈ V such that

L(p) =
∑̀
k=1

αkp(wk) for all p ∈ P2n. (2.2)

(ii) If p ∈ P2n and p|V ≡ 0, then L(p) = 0.
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If L is the Riesz functional of the moment sequence β, then Lemma 9(ii) is
just the V(M(n))-consistency condition of β and

∑`
k=1 αkδwk

is an interpolating
measure for β. While it seems like Lemma 9 gives a concrete solution for
β to have an interpolating measure, we should indicate that checking the
consistency is a highly nontrivial process. To show that β is V -consistent, it is
essential (but, difficult) to find a representation of all the polynomials vanishing
on V .

For Md(n) to have a (positive) representing measure, β must be V-consistent;
in the case of extremal cases (that is, rank Md(n) = card V), it is known that
a positive Md(n)(β) is consistent if and only if β admits a unique rank Md(n)-
atomic representing measure whose support is exactly V.

In particular, when a positive Md(n) is invertible, we know V = Rd and the only
polynomial vanishing on Rd is the zero polynomial. Thus, Md(n) is naturally
consistent and has an interpolating measure.
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2.2 Rank-one Decompositions

After rearranging the terms in (2.2) by the sign of densities, we write a measure
µ for a consistent Md(n) as

µ =

s∑
k=1

αkδwk
−
∑̀
k=s+1

αkδwk
, (2.3)

where αk > 0 for all k = 1, . . . , `; we denote the first summand in (2.3) as µ+

and the second as µ−. Due to this fact, a bound of the cardinality of the support
of an interpolating measure is established:

Proposition 10 A minimal measure for a consistent Md(n) is at most (2 degPn)-
atomic.
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Notations Let w = (w1, . . . , wd) ∈ Rd and let

(i) v(w) :=
(
1w1 · · · wd w2

1 w1w2 w1w3 · · · wd−1wd w
2
d · · · wn

1 · · · wn
d

)
, which is a

row vector corresponding to the monomials wi in the degree-lexicographic
order.

(ii) P (w) := v(w)Tv(w), which is indeed the rank-one moment matrix gener-
ated by the measure δw.

For example, if d = n = 2 and w = (a, b), then

P (w) =



1 a b a2 ab b2

a a2 ab a3 a2b ab2

b ab b2 a2b ab2 b3

a2 a3 a2b a4 a3b a2b2

ab a2b ab2 a3b a2b2 ab3

b2 ab2 b3 a2b2 ab3 b4


Thus, if Md(n) has an interpolating measure µ supported in a set {w1, . . . ,w`},
then one should be able to write Md(n) =

∑`
k=1 dkP (wk) for some d1, . . . , d` ∈ R.
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2.3 The Existence of an Interpolating Measure

We will verify that any truncated moment matrix turns out to be Rd-consistent
after applying proper perturbations, and so it admits an interpolating measure.
To prove the main result, we begin with auxiliary results:

Lemma 11 Assume A and B are matrices of the same size. Then rank (A +

B) = rank A + rank B if and only if Ran A ∩ Ran B = {0} and Ran AT ∩
Ran BT = {0}.

As a special case, one can easily prove:

Lemma 12 Assume A and B are Hermitian matrices of the same size and
rank B = 1. Then rank (A+B) = 1 + rank A if and only if Ran A∩Ran B = {0}.
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We are ready to introduce a crucial lemma:

Lemma 13 A point w is in VMd(n) if and only if the vector v(w) is in Ran Md(n).

Proof. Assume that
{
pk(X) ≡

∑
a

(k)
i Xi

}`
k=1

is the set of polynomials obtained

from column relations in Md(n). Note that span {p̂k}`k=1 = kerMd(n). Now
observe:

w ∈ VMd(n) ⇐⇒ pk(w) = 0 for k = 1, . . . , `

⇐⇒
∑

a
(k)
i wi = 0 for k = 1, . . . , `

⇐⇒ 〈p̂k,v(w)〉 = 0 for k = 1, . . . , `

⇐⇒ p̂k ⊥ v(w) for k = 1, . . . , `

⇐⇒ v(w) ∈ (kerMd(n))⊥ = Ran Md(n). �
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Theorem 14 Any truncated moment sequence β ≡ β(2n) of degree 2n has an
interpolating measure.

Proof. Pick a point w1 6∈ V. Then we know from Lemma 13 that w 6∈
Ran Md(n)(β). It also follows from Lemma 12 that Ran Md(n) ∩ Ran P (w1) =

{0}. Therefore, rank (Md(n) + P (w1)) = 1 + rank Md(n). Next, choose a point
w2 which not in the algebraic variety of Md(n) + P (w1) and we know from the
same argument that rank (Md(n) +P (w1) +P (w2)) = 2 + rank Md(n). Keep this
process until we obtain an invertible matrix M̃ := Md(n) +

∑`
k=1 P (wk) for some

`. M̃ is naturally consistent, and so it admits an interpolating measure, say µ̃.
Thus, Md(n) has an interpolating measure of the form µ̃−

∑`
k=1 δwk

. �
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Theorem 15 Any finite sequence has an interpolating measure.

Proof. It suffices to cover the cases when the given sequence is not the type
of β(2n). Such a sequence cannot fill up the associated moment matrix, so
we use new parameters to complete the moment matrix. If it is possible to
make the moment matrix invertible, then the extended moment sequence is
consistent. Thus, the given sequence has an interpolating measure. Otherwise,
one can follow the same process in the proof of Theorem 14 and verify that the
sequence admits an interpolating measure. Lastly, if a sequence begins with
zero, then one need take a new nonzero initial moment and repeat the process
used in the above.
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2.4 Interpolating Measures vs Positive Borel Measures

Recall that in the presence of a (positive) representing measure µ for a positive
Md(n)(β), a result states that

p̂ ∈ kerMd(n)(β) ⇐⇒ p(X) = 0 ⇐⇒ supp µ ⊆ Z(p);

that is, the algebraic variety of Md(n) must contain the support of a representing
measure. However, the following example shows such an argument is no longer
valid for the moment problem about an interpolating measure; consider

M2(1) ≡M2(1)
(
β(2)
)

=

−1 −16 −4

−16 −94 −10

−4 −10 2

 . (2.4)

Note that M2(1) has a single column relation X2 = −(4/3)1 + (1/3)X1. Indeed,
the sequence can be generated by an interpolating measure ν = δ(−2,1) +

δ(−2,−2) − δ(1,1) − δ(10,1); but, different from the case for a positive measure,
supp ν 6⊆ Z(x2 + 4/3 − (1/3)x1) = Vβ(2). Nonetheless, one can still find an
interpolating measure supported in the algebraic variety of M2(1) as follows:

22



Example 16 We illustrate how to find a measure of the sequence in (2.4). To
find an interpolating measure supported in the algebraic variety of M2(1), select
a point

(
a, a−4

3

)
∈ Z(x2 + 4/3 − (1/3)x1) for some a ∈ R. Using the rank-one

decomposition, we write

M2(1) = M̃2(1) + u

 1 a a−4
3

a a2 a(a−4)
3

a−4
3

a(a−4)
3

(a−4)2

9

 (2.5)

for some u ∈ R. Note that rank M2(1) = 2 and we are attracted to guess that a
minimal interpolating measure is 2-atomic. To find such a measure, we impose
a condition that rank M̃2(1) = 1; a calculation shows rank M̃2(1) = 1 if and only
if u = 162/(a2 − 32a + 94). If we take u = 162/(a2 − 32a + 94), then

M2(1) =
−(a− 16)2

a2 − 32a + 94


1 2(8a−47)

a−16
2(2a−5)
a−16

2(8a−47)
a−16

4(8a−47)2

(a−16)2
4(2a−5)(8a−47)

(a−16)2

2(2a−5)
a−16

4(2a−5)(8a−47)
(a−16)2

4(2a−5)2

(a−16)2

 +
162

a2 − 32a + 94

 1 a a−4
3

a a2 a(a−4)
3

a−4
3

a(a−4)
3

(a−4)2

9

 .

Therefore, we get an interpolating measure µ = −(a−16)2

a2−32a+94
δ(2(8a−47)

a−16 ,
2(2a−5)
a−16

)+ 162
a2−32a+94

δ(a,a−43 )

(with a2 − 32a + 94 6= 0 and a 6= 16), which is supported in VM2(1).
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3 TMP and Hadamard Product
Preliminaries about the Hadamard Product

Note. (1) A ◦B = AB ⇐⇒ both A and B are diagonal.

(2) P (a, b)P (c, d) 6= P (c, d)P (a, b) but obviously,

P (a, b) ◦ P (c, d) = P (c, d) ◦ P (a, b) = P (ac, bd).

Note. By the result of C. Bayer and J. Teichmann, if M(n) admits one or more
representing measures, then we may write

M(n) =
∑̀
k=1

ρkP (xk, yk),

where ρk > 0 and (xk, yk) ∈ R2 for k = 1, . . . , ` ≤ dimP2n.

In the presence of a representing measure, we should be able to write

M(n) ◦ P (a, b) =
∑̀
k=1

ρkP (axk, byk).
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Proposition 17 A ≥ 0 ⇐⇒ A ◦B ≥ 0 for all B ≥ 0.

Thus, we know that M(n) ◦ P (a, b) ≥ 0 for any (a, b) ∈ R2.

Proposition 18 Suppose A and B are square matrices of the same size and
both positive. Then

(i) det(A ◦B) ≥ (detA)(detB);

(ii) rank (A ◦B) ≤ (rank A)(rank B).

Moreover, if A > 0, then rank (A◦B) is equal to the number of nonzero diagonal
entries of B.

Thus, we know that rank (M(n) ◦ P (a, b)) ≤ rank M(n) for any (a, b) ∈ R2.
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Proposition 19 A > 0, B ≥ 0, ν(B) := the number of nonzero main diagonal
entries of B:

(i) There is a permutation P such that B = P−1(On−ν(B) ⊕ C)P , where C ≥ 0;

(ii) rank (A ◦B) ≥ ν(B) ≥ rank B.

Note If M(n) > 0 and ab 6= 0, then

(n + 1)(n + 2)

2
= ν(P (a, b)) ≤ rank (M(n) ◦ P (a, b)) ≤ rank M(n) =

(n + 1)(n + 2)

2
;

that is, rank (M(n) ◦ P (a, b)) = rank M(n). (Thus the rank-reduction method
via the Hadmard product is not applicable for a positive definite M(n).)

Question 1 If M(n) is positive but not invertible, what would be the lower bound
of rank (M(n) ◦ P (a, b))?
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Proposition 20 If both moment matrices M(α) and M(β) of the same size
admit representing measures, then so does M(α) ◦M(β).

Proof Since M(α) and M(β) admit representing measures, we may write

M(α) =

r∑
k=1

ρkP (ak, bk), M(β) =

s∑
`=1

τ`P (c`, d`).

Thus,
M(α) ◦M(β) =

∑
k,`

ρkτ`P (akc`, bkd`). �

Note The converse of Proposition 20 is not true. For example, consider

M(α) = M(β) =

1 0 0

0 −1 0

0 0 0

 .
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Proposition 21 M(n) admit a representing measure if and only if there are
some moment matrices A and B having a representing measure respectively
such that M(n) = A ◦B.

Question 2 If M(n) admit a representing measure, then are there moment
matrices A and B (both different from P (1, 1)) having a representing measure
respectively such that M(n) = A ◦B?

Note The answer to the question seems to be no for M(n) that has a unique
r-atomic representing measure, where r is a prime number.

Theorem 22 Let P (a, b) :=
(
1 a b · · · an · · · bn

)T (
1 a b · · · an · · · bn

)
. Then

S(n) := M(n) ◦ 1
2[P (1, 1) + P (−1,−1)] is the symmetric moment matrix; that is,

whose odd-degree moments are all zero. Thus, if M(n) admits a representing
measure, then so does S(n).
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Proposition 23 If M(n) has a column relation p(X, Y ) = 0, then M(n) ◦ P (a, b)

has the column relation p(X/a, Y/b) = 0 for ab 6= 0.

Question 3 Suppose a positive M(n) has a single column relation of the form

Xn = p(x, y), p ∈ Pn−1.

Is there (a, b) ∈ R2 (ab 6= 0) such that the column Y n in M̃(n, a, b) := M(n) ◦
P (a, b) is linearly dependent?

If so, M̃(n, a, b) admits a unique recursively generated moment matrix exten-
sion. Moreover, if the extension is positive, then M̃(n, a, b) has a representing
measure, so does M(n).

29



4 Approximation Method and Convex Analysis

Let η = dimP2n, so β ≡ β(2n) ∈ Rη. Define convex cones:

Rd,n := {β ∈ Rη : β has a K-representing measure} ,
Sd,n := {β ∈ Rη : Λβ is K-positive} ,
Fd,n := {β ∈ Rη : M(n)(β) has finitely atomic K-representing measures}

Note β has a K-representing measure =⇒ Λβ is K-positive =⇒M(n)(β) ≥ 0.

Theorem 24 [Fialkow-Nie, 2010]
For a d-dimensional truncated moment sequence β of degree n,

Λβ is K-positive⇐⇒ β ∈ Fd,n(K) ⇐⇒ β ∈ Rd,n(K).

In other words, Λβ is K-positive if and only if limm→∞ ‖β − β(m)‖ = 0 for a
sequence

{
β(m)

}
in which each truncated moment sequence β(m) has a K-

representing measure µ(m).
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Theorem 25 [Fialkow-Nie, 2010]

Let β ≡ β(m) be a d-dimensional moment sequence and M(β) be the moment
matrix of β. Then:

(i) Sd,n = Rd,n.

(ii) If Λβ is K-positive, then there exists a sequence of positive Borel measure
{µk}, each supported in K ⊆ Rd, having finite moments up to degree m,
such that for each i, |i | ≤ m, βi = limk→∞

∫
xi dµk.

Note There is an example such that

β : K-positive, having no measure, M(β) : singular.

Question 4 If Λβ is strictly K-positive, is M(β) positive definite?

Question 5 Is there is any example of a K-positive β such that M(β) is positive
definite but β has no representing measure?
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The Riesz-Haviland Theorem for TMP
Consider an example of a one-dimensional moment sequence:

K = R, β = {β0, β1, β2, β3, β4} ≡ {1, 1, 1, 1, 2} .

It is known that Λβ is positive but that β has no representing measure. Thus,
the direct analogue of the Riesz-Haviland Theorem for TKMP is not valid.

Theorem 26 [Curto-Fialkow, 2009] Let β = β(2n) or β = β(2n+1) and let K be
a closed subset of Rd. β has a K-representing measure if and only if β can be
extended to a sequence β̃ ≡ β(2n+2) such that Λβ̃ is K-positive.

As mentioned before, it is often very difficult to verify K-positivity of β, but here
is a case with a concrete criterion:

Theorem 27 [Blekherman, 2015] Given β = β(2n), it the associated moment
matrix M(n) is psd and satisfy rank M(n) ≤ 3n− 3, then Λβ̃ is K-positive; thus,
β(2n−1) has a representing measure.
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5 Core Varieties

Recall the algebraic variety of M ≡M(n) is V(M(n)) = ∩p∈Pn,Mp̂=0Z(p), which
we not designate by V (0). We can easily see that the positivity of M is equivalent
to the condition that Λβ be square positive, that is, Λβ(p2) ≥ 0 (p ∈ Pn).

We now introduce V (1) := ∩p∈ker Λβ, p|V(0)≥0Z(p) as an initial attempt to refine
V(M(n)). Now, for i ≥ 0, let

V (i+1) := ∩p∈ker Λβ, p|V(i)≥0Z(p).

We define the core variety of β (or of M(n)) by V ≡ V (β) := ∩∞i=0V (i); we also
denote this by V (M).

Proposition 28 [Fialkow, 2017]
(i) If β is a representing measure for β, then supp µ ⊆ V.

(ii) If β is a representing measure for β, then rank M(n) ≤ card V.

(iii) If β is a representing measure for β with int(supp µ) 6= ∅, then V(β) = Rn.
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A set K in Rn is called a determining set for Pm if the conditions p ∈ Pm and
p|K ≡ 0 imply p ≡ 0. If K has nonempty interior, then K is a determining set,
but certain finite sets are also determining sets; see [Fialkow, 2017].

Strict positivity leads to the following existence criterion.

Theorem 29 [Fialkow-Nie, 2010] For β ≡ β(m), if K is a determining set for
Pm and Λβ is strictly K-positive, then β has a K-representing measure.

The next result provides sufficient conditions for positivity of Λβ and representing
measures for β.

Theorem 30 [Fialkow, 2017] Let β ≡ β(2n). If the core variety V ≡ V(β) is
nonempty, then Λβ is strictly V-positive and β(2n−1) has a V-representing mea-
sure. Furthermore, if V is nonempty and is either compact or determining set
for P2n, then β(2n) has a V-representing measure.
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Proposition 31 [Fialkow, 2017] TFAE:

(i) Λβ is strictly positive;

(ii) M(n) > 0 and V = Rn;

(iii) V = Rn.

In general, it is difficult to solve nonsingular moment problems, but here is a
useful information for a positive definite M(3):

Theorem 32 [Fialkow, 2017] If M(3) is positive definite, then exactly one of
the following holds:

(i) V = R2 and there is a representing measure;

(ii) card V = 10 and there is a unique representing measure, whose support is V;

(iii) card V = 0 and there is no representing measure.
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6 Lasserre’s Method for Polynomial Optimization

Consider the polynomial optimization problem:

(P) Minimize a polynomial p over a basic closed semi-algebraic set K
p∗ ≡ pmin := infx∈K p(x),

where K :=
{

x ∈ Rd : h1(x) ≥ 0, . . . , hm(x) ≥ 0
}

and p, h1, . . . , hm ∈ R[x].

For 2t ≥ deg p, the t-th Lasserre moment relxation for (P) is defined by

pt := inf
{

Λβ(p) : β ≡ β(2t), β0 = 1, Mt(β) ≥ 0
}
.

Then pt ≤ p∗, and for t′ ≥ t, pt′ ≥ pt; thus, {pt} is convergent and pmom :=

limt→∞ pt ≤ p∗. In general, for fixed t, pt is not necessarily attained at any β.

Assuming that the infimum is attained, at some optimal sequence β ≡ β{t}, we
seek criteria so that Λβ(p) = p∗, so that we have finite convergence of {ps} at
stage t.
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Lasserre’s Stopping Criterion

Assume at stage t that β ≡ β{w} has a representing measure µ. Then

p∗ = p∗β0 = p∗

∫
1 dµ ≤

∫
p dµ = Λβ(p) = pt ≤ p∗,

so we see the convergence at stage t. Ascertaining the existence of a represent-
ing measure for β is difficult in general but Lasserre pays attention to some east-
to-check cases such as when Mt(β) is flat, that is, rank Mt(β) = rank Mt−1(β).
Since β has a rank Mt(β)-atomic representing measure, the atoms are the
global minimizers for p.

We have a bit more general stopping criterion? We need an additional notion:
For β ≡ β(2t) and 0 ≤ j ≤ m, the localizing matrix M (qi) ≡M (qi)(β) ≡M

(qi)
t (β)

is defined by 〈M (qi)f̂ , ĝ〉 = Λβ(qjfg) (f, g ∈ Pt−kj).

Theorem 33 [Fialkow-Nie, 2013] Suppose pt = Λβ(p) for some sequence
β ≡ β(2t) for which β0 = 1 and M (qi)(β) ≥ 0 (0 ≤ i ≤ m). If Λb is K-positive, then
pt = p∗.
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7 Embry Truncated Complex Moment Problems
(Based on Jung-Ko-Li-Park, 2003)

Subnormality of an operator

Given a cyclic subnormal bounded operator T on a separable, infinite dimen-
sional, complex Hilbert space H with cyclic vector x0, let γij := 〈T ∗iT jx0, x0〉 for
any i, j ∈ Z+.
The Bran-Halmos’ characterization for subnormality of T is the condition that∑

0≤i, j≤n
〈T ∗iT jpi(T )x0, pj(T )x0〉 ≥ 0

for any pi(z) ∈ P[z] of complex polynomials, i = 0, 1, . . . , n, and for all n ∈ N.
This characterization is equivalent to the fact that M(n)(γ) ≥ 0 for all n ∈ N,
where γ is the truncated complex moment sequence

γ ≡ γ(2n) : γ01, γ10, γ02, γ11, γ20, . . . , γ0,2n, γ1,2n−1, . . . , γ2n−1,1, γ2n,0

with γ00 > 0 and γji = γ̄ij. The entry of M(n) ≡ M(n)(γ) in row Z̄kZ` and
column Z̄ iZj is γ`+i,j+k, that is, 〈M(n)(γ)Z̄kZ`, Z̄ iZj〉 = γ`+i,j+k.
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In a parallel approach, Embry described subnormality by the condition that∑
0≤i, j≤n

〈T ∗i+jT i+jpi(T )x0, pj(T )x0〉 ≥ 0

for any pi(z) ∈ P[z̄, z] of complex polynomials, i = 0, 1, . . . , n, and for all n ∈ N.
We will see this condition is equivalent to the fact that E(n)(γ) ≥ 0 for all n ∈ N,
where the Embry moment matrix E(n) ≡ E(n)(γ) is defined as follows:

As a subcollection of γ, we consider

γE ≡ {γij} (0 ≤ i + j ≤ 2n, |i− j| ≤ n).

We indeed select the following rows and columns of M(n):

1, Z, Z2, Z̄Z, Z3Z̄Z2, Z4, Z̄Z3, Z̄2Z2, Z5, . . .

Note. E(n) is a submatrix of M(n), that is, when k ≤ ` and i ≤ j, we see that
〈E(n)(γ)Z̄kZ`, Z̄ iZj〉= 〈M(n)(γ)Z̄kZ`, Z̄ iZj〉.
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For example,

E(1) =

(
γ00 γ01

γ10 γ11

)
and E(2) =


γ00 γ01 γ02 γ11

γ10 γ11 γ12 γ21

γ20 γ21 γ22 γ31

γ11 γ12 γ13 γ22

 .

Solution to Embry Truncated Moment Problems

Theorem 34 Let γ ≡ {γij} (0 ≤ i + j ≤ 2n, |i− j| ≤ n) be given.
(i) If n is an even number, then γ has a rank E(n)-atomic representing mea-

sure if and only if E(n) ≥ 0 and E(n) admits a flat extensions E(n + 2).

(ii) If n is an odd number, then γ has a rank E(n)-atomic representing measure
if and only if E(n) ≥ 0 and E(n) admits a flat extensions E(n + 1).

Question 6 Is there any M(2) that cannot admit a representing measure but
E(2) does?

Question 7 If E(2) > 0 has a 4-atomic measure µ, then does it admit M(2) ≥ 0

with a 4-atomic measure?
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8 An Operator that Admits a Moment Sequence

Invariant subspace problem

Definition 35 An operator T ∈ L(H) admits a moment sequence if there
exist nonzero vectors x and y inH and a (finite, regular, positive) Borel measure
µ supported on the spectrum σ(T ) of T such that for every complex polynomial
p,

〈p(T )x, y〉 =

∫
σ(T )

p(λ)dµ(λ).

Note If we set βj := 〈T jx, y〉 for j ∈ Z+, then

〈p(T )x, y〉 =

∫
σ(T )

p(λ)dµ(λ) = Λ(p),

where Λ is the Riesz functional.
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Remark If T ∈ L(H) has a nontrivial invariant subspace (NIS), then it admits a
moment sequence.

Proof. Let µ ≡ 0 on σ(T ). Also, let Y in X be a NIS. Then for any polynomial p

p(T )x ∈ Y if x ∈ Y .

Thus,
there is nonzero y ∈ Y⊥ such that p(T ) ⊥ y,

which leads to
〈p(T )x, y〉 = 0 =

∫
σ(T )

p(λ)dµ(λ).

Notice that if p(T )x 6∈ Y, then 〈p(T )x, y〉 6= 0. �

42



Theorem 36 [Atzmon-Goderfroy, 2001] Suppose X is a real separable Ba-
nach space and T is a bounded linear operator on X that admits a moment
sequence (with associated Borel measure µ supported on σ(T ) ⊆ R). Then T
has a nontrivial invariant subspace.

Theorem 37 [Foias-Jung-Ko-Pearcy, 2005; Chevreau-Jung-Ko-Pearcy, 2006]
Let T ∈ L(H). Then:

(i) If T = N + K for some normal operator N and some compact operator K,
then T admits a moment sequence.

(ii) If T = S + K for some subnormal operator S and some compact operator
K, then T admits a moment sequence.

(iii) If T is either nonbiquasitriangular, essentially normal, or hyponormal admits
a moment sequence.
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Theorem 38 Suppose T ∈ L(H) and σ(T ) contains at least one isolated point.
Then:

T has an nontrivial invariant subspace ⇐⇒ T admits a moment sequence.

Question 8 (i) Does every essentially subnormal or essentially hyponormal
operator in L(H) admit a moment sequence?

(ii) Let T be an invertible operator in L(H) admitting a moment sequence.
Does T−1 admit a moment sequence?

(iii) Suppose that {Tn} is a sequence of operators in L(H) admitting a moment
sequence and that ‖T − T0‖ → 0. Does T0 admit a moment sequence?

(iv) Does every quasinilpotent operator admits a moment sequence?
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9 Subnormal Completion Problem

If α(j) =
{
α

(j)
m

}
Nd0
∈ `∞(Nd

0) for j = 1, . . . , d, then we define the d-variable

weighted shift T = (T1, . . . , Td) by

Tjεm := α(j)
m εm+ej for j = 1, . . . , d.

It is easy to check that TjTk = TkTj if and only if

α
(k)
m+ej

α(j)
m = α

(j)
m+ek

α(k)
m for j, k = 1, . . . , d. (9.1)

Given m ∈ Nd
0, the moment of C∞ = (α(1), . . . , α(d)) of order m is given by

sm =

{
1 if m = 0d,

(α
(j)
m−ej)

2sm−ej if m = (m1, . . . ,md) where mj 6= 0.
(9.2)
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Given a finite collection of positive real numbers

C =
{
α(1)
γ , . . . , α

(d)
γ

}
γ∈Γ

which satisfies (9.1), where Γ is a lattice set, the subnormal completion
problem in d-variable entails finding necessary and sufficient conditions for
the existence of a subnormal d-variable weighted shift whose initial weights are
given by C.

More precisely, given C as above, we wish to establish the existence of a
d-variable weighted shift T = (T1, . . . , Td) such that

Tjεγ := α(j)
γ εγ+ej for j = 1, . . . , d and γ ∈ Γ.

The infinite collection of positive numbers C∞ =
{
α

(1)
γ , . . . , α

(d)
γ

}
γ∈Nd0

is called a

subnormal completion of C.
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Theorem 39 [Berger’s Theorem] The d-variable weighted shift T = (T1, . . . , Td)

is subnormal if and only if there is a probability measure ν on the rectangle
R = [0, κ1]× · · · × [0, κd] ⊆ [0,∞)d, where κj = ‖Tj‖2 for j = 1, . . . , d such that

sm =

∫
R

xmdν(x) for m ∈ Nd
0.

Cubic Subnormal Completion Problem in 2-variable

Let C be as in (9.1) with d = 2 and Γ =
{
γ ∈ N2

0 : 0 ≤ |γ| ≤ 2
}

. The correspond-
ing moment sequence given by (9.2) is s = {sω}0≤|ω|≤3.

Solutions given by Curto-Lee-Yoon and D. Kimsey independently.
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10 Interpolation

10.1 Vandermonde Matrix Method for Interpolation

Definition 40 [Indexing Sets]

(i) A finite set Γ ⊆ Nd
0 is called a lattice set when for all ξ ∈ Γ, there exist ξ1 =

0, ξ2, . . . , ξk ∈ Ξ and j1, . . . , jk ∈ {1, . . . , d} such that ξ2 = ξ1 + ej1, . . . , ξ =

ξk + ejk, where k = |ξ| and ejk are basis elements for k = 1, . . . , d, that is,
every element of ξ is path connected to 0d.

(ii) A finite set Γ ⊆ Nd
0 is said to be lower inclusive if for anym = (m1, . . . ,md) ∈

Nd
0 and ξ = (ξ1, . . . , ξd) ∈ Γ with mj ≤ ξj for j = 1, . . . , d, we get m ∈ Γ.

Note that every lower inclusive set is a lattice set, but the converse is not true.

An index set whose elements correspond to the set of all the monomials in Pdn
is lower inclusive.
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For example,

Lattice set Lower inclusive
{(0, 0), (0, 1), (1, 0)} Yes Yes
{(0, 0), (0, 1), (1, 1)} Yes No
{(0, 0), (1, 1), (2, 2)} No No

T. Sauer[1997] investigated the minimal degree interpolation problem. This
problem is interesting from the fact that interpolating polynomials with small
total degree can be stored and computed more easily.

To introduce the problem, we need have some notations and definitions. Let
Pd be the space of polynomials in Rd and let Pdn :=

{
p ∈ Pd : deg p ≤ n

}
. Given

a set of distinct points W = {w1, . . . ,wk} ⊆ Rd, the Lagrange interpolation
problem with respect to W is poised in the subspace P(W ) ⊆ Pdn if given any
f : Rd → R, there exists a unique polynomial p := LP(W )(f ) ∈ P(W ), where
LP(W ) is the interpolating operator of f with respect to P(W ), such that

p(xi) = f (xi), i = 1, . . . , k.
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The minimal degree interpolation problem is to seek a subspace P(W ) ⊆
Pdn with n as small as possible so that the Lagrange interpolation problem,
with respect to the set of distinct points W , is poised. Moreover, we require
that P(W ) is degree reducing, that is, whenever q ∈ Pdm for m ≤ n, we get
LP(W )(q) ∈ Pdm.

T. Sauer[1997] provided an algorithm for a unique minimal degree interpolation
subspace P̃(W ) ⊆ Pdn for a set of distinct points W = {w1, . . . ,wk} ⊆ Rd.

Note that Example 42 will illustrate that even though all the points are distinct,
multivariable Vandermonde matrices could be singular unlike the case of one-
variable.
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The set of indices for the monomials generated by Sauer’s algorithm, say
Γ = {λ1, . . . , λk} ⊆ Nd

0, corresponds to a lower inclusive set. Given a function
f : Rd → R, the coefficients of the unique interpolating polynomial p ∈ P̃(W )

are evaluated by the following equation:

V (w1, . . . ,wk; Γ)

c1

...

ck

 =

f (w1)
...

f (wk)

 ,where V (w1, . . . ,wk; Γ) :=


wλ1

1 · · · wλk
1

...
. . .

...

wλ1
k · · · wλk

k

 .

Note that the multivariable Vandermonde matrix V (w1, . . . ,wk; Γ) is invertible.
Thus, the construction of P̃(W ) may be considered as selecting some columns
of such a multivariable Vandermonde matrix associated to P(W ).

Theorem 41 [Sauer, 1997] Given a set of distinct points W = {w1, . . . ,wk} ⊆
Rd, there is a lower inclusive set Γ ⊆ Nd

0, with card Γ = k, so that V (w1, . . . ,wk; Γ)

is invertible.
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10.2 Runge’s Example

Example 42 Consider to find an interpolating polynomial to approximate the
rational function f (x) = 1

1+x2. We use evenly spaced ten nodes

N = {(0, 0), (±1, 1/2), (±2, 1/5), (±3, 1/10), (±4, 1/17), (±5, 1/26)}

and the Lagrange interpolation formula gives

P10 = (44200− 29800x2 + 8724x4 − 1079x6 + 56x8 − x10)/44200

52



Interpolation with a Vandermonde Matrix:

For the set of 11 points N ≡ {(x1, y1), · · · , (x11, y11)}, consider the multivariable
Vandermonde matrix V (N):

V (N) =

1 x1 y1 x1
2 y1x1 y1

2 · · · x1
4 x3

1y1 · · · x1y
3
1 y4

1
...

...
...

...
...

...
. . .

...
...

. . .
...

...

1 x11 y11 x11
2 y11x11 y11

2 · · · x11
4 x3

11y11 · · · x11y
3
11 y4

11


The row reduced form of V (N) is

1 0 0 0 0 0 0 1 0 0 0 0 0 0 − 1253
44200 0 −1 0 0 0 − 5121229

97682000

0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 −1194 0 0 0 − 59
44200 0

0 0 1 0 0 0 0 −1 0 0 0 0 1 0 12307
44200 0 1 0 0 0 48701521

97682000

0 0 0 1 0 0 0 0 0 0 0 0 0 0 59
44200 0 1 0 0 0 245177

97682000

0 0 0 0 1 0 0 0 0 0 0 −1 0 0 0 11054 0 1 0 1253
44200 0

0 0 0 0 0 1 0 0 0 0 0 0 −1 0 −25357
22100 0 0 0 1 0 −46361333

24420500

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 58 0 0 0 1
44200 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 −39660 0 −1 0 − 5527
22100 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 4193
2210 0 0 0 −1 0 2994338

1221025

0 0 0 0 0 0 0 0 0 0 1 0 0 0 − 1
44200 0 0 0 0 0 − 4193

97682000

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 44200 0 0 0 1983
2210 0


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We may label the columns in V (N) as we did for M(n)(β) and all the column
relations have corresponding polynomials; for example, the column relation in
the 8th column (X2Y ) can be written as X2Y = 1− Y , whose corresponding
polynomial is x2y = 1− y, equivalently, y = 1/(1 + x2). Also, from 15th we have
the polynomial y4 = − 1253

44200 + 12307
44200y+ 59

44200x
2− 25357

22100y
2 + 4193

2210y
3− 1

44200x
4, and so on.

All these polynomials vanish on N , and so they are interpolating polynomials
with respect to N .

Interpolation with a Moment Matrix:

Let us find a two variable polynomial passing through the 11 nodes. First,
define the moments

βij :=

5∑
k=−5

kif (k)j
(

=

∫
xiyjdµ

)
,

where µ =
∑5

k=−5 δ(k,f(k)).
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Now build the moment matrix M(3)(β) with the moments:

M(3)(β) =


11 0 3088

1105 110 0 786281
488410 0 9067

1105 0 6846118999
5396930500

0 110 0 0 9067
1105 0 1958 0 115723

97682 0
3088
1105 0 786281

488410
9067
1105 0 6846118999

5396930500 0 115723
97682 0 13459008802027

11927216405000
110 0 9067

1105 1958 0 115723
97682 0 112483

1105 0 1842286051
5396930500

0 9067
1105 0 0 115723

97682 0 112483
1105 0 1842286051

5396930500 0
786281
488410 0 6846118999

5396930500
115723
97682 0 13459008802027

11927216405000 0 1842286051
5396930500 0 28024033625192083

26359148255050000
0 1958 0 0 112483

1105 0 41030 0 3428999
488410 0

9067
1105 0 115723

97682
112483
1105 0 1842286051

5396930500 0 3428999
488410 0 1670914185763

11927216405000
0 115723

97682 0 0 1842286051
5396930500 0 3428999

488410 0 1670914185763
11927216405000 0

6846118999
5396930500 0 13459008802027

11927216405000
1842286051
5396930500 0 28024033625192083

26359148255050000 0 1670914185763
11927216405000 0 12016344901455416423

11650743528732100000


We then use the row reduction and identify a column relation:

X2Y = 1− Y,

which is exactly equal to y = 1/(1 + x2) in the polynomial level.
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Invertible Vandermonde Matrices (Based on Curto-Fialkow, 2013)

Lemma 43 For N ≥ 1, let v1, . . . , vN be distinct points in R2, and consider
the multivariable Vandermonde matrix VN := (vαi )1≤i≤N,α∈Z2

+, |α|≤N−1, of size
N ×N(N + 1)/2. Then the rank of VN equals N .

Corollary 44 Let x ≡ {x1, . . . , xm} and y ≡ {y1, . . . , yn} be sets of distinct real
numbers, and consider the grid x × y := {(xi, yj)}1≤i≤m, 1≤j≤n consisting of
N := mn distinct points in R2. Then the generalized Vandermonde matrix Vx×y,
obtained from VN by removing all columns indexed by monomials divisible by
xm or yn, is invertible.

Corollary 45 Let G ≡ x× y be a grid as in Corollary 44, let N := mn, and let
p ∈ R[x, y] be such that degx p < m and degy p < n. Assume also that p|G ≡ 0.
Then p ≡ 0.

Proposition 46 Let P (x, y) := (x − x1) · · · (x − xd) and let Q(x, y) := (y −
y1) · · · (y − yd). If ρ := multideg(f ) ≥ d and f |V((P,Q)) ≡ 0, then there exists
u, v ∈ Pρ−d such that f = uP + vQ.
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10.3 Pencil Problem

According to the Bézout’s theorem, two non-degenerate conics may intersect
at most 4 different points, naturally so do 3 conics. For example,

x2 = 1, y2 = 1, and x2 + y2 = 2

intersect at 4 points {(±1,±1)} in R2.

However, if we impose a condition, we may show:

Theorem 47 Any three conics with different leading terms cannot intersect at 4
distinct points.

Question 9 Can we prove the following?:

There is no set of n+ 1 bivariate polynomials of degree n with all different
leading terms such that their intersection has n2 or more distinct points.
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11 Minimal Quadrature Rules on a Parabolic Arc

We describe the minimal quadrature rules of degree 4 for arc-length measure ν
on the segment of the parabola y = x2 corresponding to 0 ≤ x ≤ 1. Let

K :=
{

(x, y)R2 : y = x2, 0 ≤ x ≤ 1
}
.

By a K-quadrature rule for ν of degree 4 we mean a finite collection of points
of K, (x0, y0), . . . , (xd, yd), and corresponding positive weights, ω0, . . . , ωd such
that for every real polynomial p(x, y) with deg p ≤ 4,∫

K

p(x, y) dν(x, y) ≡
∫ 1

0

p(t, t2)
√

1 + 4t2 dt =

d∑
i=0

ωip(xi, yi);

a minimal quadrature rule is one for which d is as small as possible.

First, complexify:

γkj =

∫
K

z̄kzj dν =

∫ 1

0

(t− it)k(t + it)j
√

1 + 4t2 dt, 0 ≤ k + j ≤ 4.
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Each γkj ∈ Q[i,
√

5, ln(2 +
√

5)]. Since M(2)(γ) has a representing measure
(namely, ν), it follows that M(2)(γ) ≥ 0. Also,

{
1, Z, Z̄, Z2, Z̄Z

}
is a basis for

CM(2); moreover y = x2 means

Z2 + 2Z̄Z + Z̄2 + 2iZ − 2iZ̄ = 0.

To each γ23 ≡ r + is (r, s ∈ R) there exists a unique moment matrix block
B(3)[γ23] satisfying Ran M(2); moreover, γ23 gives rise to a flat extension M(3)

if and only if the relation C21 = C32 holds in the C(3)-block.
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12 Image Reconstruction

Images are nonstationary two-dimensional signals with edges, textures, and
deterministic objects at different locations.

An image can be considered as an element of a vector space, so we may
represent it as a linear combination of the elements of any non necessarily
orthogonal basis of this space.

Once an image is viewed as finite moments (datum), we may attempt to find
a way to represent partial datum (it is the goal of the “truncated” moment
problem); an approximation to the full datum can be discovered for the image
reconstruction.
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