
INTRODUCTION TO ROKHLIN PROPERTY FOR C∗-ALGEBRAS

HYUN HO LEE

Abstract. This note serves as a material for a 5-hour lecture series presented at
2017 Winter School of Operator Theory and Operator Algebras which is an annual
meeting among functional analysis people in Korea. The intent of this note is to
introduce Rokhlin property in C∗-algebras which is more delicate and dynamical
than the case of von Neumann algebras. All facts in this note are already known to
experts, and this note is not a comprehensive summary of the developments in this
area which is still rapidly developing but to provide classical facts which somebody
must know to start a research in this area.

1. An overview and two important problems

In this lecture, a group is always assumed to be discrete. But for the definition
of the group action on a C∗-algebra a group needs to be equipped with a suitable
topology, or a topological group. Throughout this note Aut(A) will stand for the
group of automorphisms of a C∗-algebra A.

Definition 1.1. An automorphism α on a unital C∗-algebra is called inner if there
exists a unitary u in A such that α = Adu where Adu(a) = uau∗. α is called outer
if it is not inner. We denote by Inn(A) the group of inner automorphisms of A and
by Out(A) = Aut(A)/ Inn(A) the set of outer automorphisms.

Definition 1.2. Two automorphisms α ∈ Aut(A) and β ∈ Aut(B) are conjugate if
there is an isomorphism γ from A to B such that γ ◦ α = β ◦ γ. In particular, when
A = B, then α and β are said to be outer conjugate if there are a unitary u and
another automorphism γ such that α = Adu ◦ γ ◦ β ◦ γ−1.
Definition 1.3. Given a single automorphism α on a C∗-algebra A, by considering
αn for every n ∈ Z, we naturally have a Z-action on A and vice versa. Thus we say
that α has the Rokhlin property in this case if for every finite subset F , a positive
number ε, and any natural number k there exists a partition of unity {ei}k−1i=0 ∪{fj}kj=0

by projections such that

(1) ‖eia− aei‖ ≤ ε for i = 0, . . . , k − 1, ‖fja− afj‖ ≤ ε for j = 0, . . . , k,
(2) ‖α(ei)− ei+1‖ ≤ ε for 0 ≤ i ≤ k − 2, ‖α(fj)− fj+1‖ ≤ ε for 0 ≤ j ≤ k − 1,
(3) ‖α(ek−1 + fk)− (e0 + f0)‖ ≤ ε.

Remark 1.4. In view of the classical notion in Dynamical system or Connes’ defi-
nition on von Neumann algebras, the above definition is weaker than the usual one
which means that for any integer k and ε > 0 we have a partition of unity consisting
of projections e0, . . . , ek in A such that ‖α(ei) − ei+1‖ < ε for k = 0, . . . , k where
ek+1 = e0.

Proposition 1.5. When α has the Rokhlin property, then α is outer. Moreover, for
any nonzero integer n αn is outer.
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Proof. Suppose that α is inner and is of the form Ad(u). Take F = {u}, ε = 1/3,
k = 1. Then there are two mutually orthogonal projections f0, f1 such that ‖fiu −
ufi‖ ≤ 1/3 for i = 0, 1 and ‖α(f0)− f1‖ ≤ 1/3. Note that ‖f0 − f1‖ ≥ 1. But

2/3 ≥ ‖f0 − uf0u∗‖+ ‖uf0u∗ − f1‖ ≥ ‖f0 − f1‖ ≥ 1

which is a contradiction. We can also show that α2 is outer; if α2 is inner, write it as
Ad(u) for some unitary element u. Then take F = {u}, ε = 1/4, k = 2. Then there
are three mutually orthogonal projections f0, f1, f2 such that

(1) ‖ufi − fiu‖ < 1/4 for i = 0, 1, 2,
(2) ‖α(fi)− fi+1‖ < 1/4 for i = 0, 1.

Then

3/4 ≥ ‖f0−uf0u∗‖+‖uf0u∗−α2(f0)‖+‖α2(f0)−α(f1)‖+‖α(f1)−f2‖ ≥ ‖f0−f2‖ ≥ 1,

which is a contradiction. In this way, we can conclude that αn is outer for any nonzero
positive integer n.

For any nonzero integer m = −n where n > 0, suppose that αm is inner, then write
αm = Ad(u). Then a = u(αn(a))u∗. It follows that u∗au = αn(a) which contradicts
that αn is outer. So we are done. �

One of most important and deepest results in the noncommutative dynamical sys-
tem is the following due to A. Kishimoto.

Theorem 1.6. Let A be a simple C∗-algebra and α be an automorphism of A. Then,
α is outer if and only if for any nonzero hereditary C∗-algebra B ⊂ A and for any
element a ∈M(A) the following holds:

inf{‖xaα(x)‖ | 0 ≤ x ∈ B, ‖x‖ = 1} = 0.

Definition 1.7. As a Z-action on A, we say that an automorphism α is aperiodic, if
αn is outer for any nonzero integer n.

Then two important problems related to Rokhlin property are the following;

(1) Rokhlin type theorem; characterization of the Rokhlin property of an auto-
morphism or determine the conditions when α has the Rokhlin property.

(2) Classification of automorphisms with the Rokhlin property up to outer con-
jugacy.

For a single automorphism case, the following is a prototype result as Rokhlin type
theorem due to A. Kishimoto. Note that a C∗-algebra A is called AT algebra if for
every finite subset F and a positive ε, there is a unital C∗-subalgebra B of the form
⊕ni=1C(T,M i

ni
(C)) for some n such that

dist(F,B) ≤ ε.

Theorem 1.8. Let A be a unital simple AT algebra of real rank zero with unique tra-
cial state τ , and α be an approximately inner automorphism of A. Then the following
conditions are equivalent:

(1) α has the Rokhlin property.
(2) αm is uniformly outer for every nonzero integer m.
(3) α extends to an aperiodic automorphism of the weak closure of the GNS rep-

resentation of τ .
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(4) The crossed product Aoα Z has a unique tracial state.
(5) The crossed product Aoα Z has real rank zero.

Another one in the purely infinite case the following is known due to H. Nakamura.
Note that a unital simple C∗-algebra A is said to be purely infinite if for every nonzero
element x ∈ A, there exist a, b in A such that axb = 1.

Theorem 1.9. Let A be a separable nuclear unital purely infinite simple C∗-algebra
and α be an automorphism of A. Then the following conditions are equivalent.

(1) α is aperiodic.
(2) α has the Rokhlin property.

Related to classification, the following is also a milestone result in this direction.

Theorem 1.10. Let A be a unital simple AT algebra of real rank zero with a unique
tracial state. Let α and β be approximately inner automorphism with the Rokhlin
property such that β−1α is asymptotically inner. Then there exist γ which is asymp-
totically inner and a unitary u in A such that

α = Ad(u) · γ · β · γ−1.

In particular, α and β are outer conjugate.

Thanks to Kirchberg and Phillips’ result, [α] = [β] in KK(A,A) if and only if β−1α
is asymptotically inner. In addition, the group of asymptotically inner automorphisms
coincides with the group of approximately inner automorphisms.

Theorem 1.11. Let A be a separable nuclear unital purely infinite simple C∗-algebra
and α and β be aperiodic automorphisms of A. If α and β are the same class in
KK(A,A), there exist γ which is approximately inner and a unitary u in A such that

α = Ad(u) · γ · β · γ−1.

In particular, α and β are outer conjugate.

Now we analyze the methods for classification results. We may call this strategy as
Kishimoto’s strategy for outer conjugacy. First we phrase so called homotopy lemma
which says that an almost central unitary path can be replaced by an almost central
and rectifiable one of length smaller than a universal constant without changing its
end points.

Theorem 1.12 (Basic Homotopy Lemma). For any given ε > 0 there is a δ > 0 with
the following holds ; let u and v be two unitaries in A with certain properties such
that

[v]1 = 0, ‖vu− uv‖ < δ,Bott(u, v) = 0.

Then there exist a path of unitaries (vt) such that

(1) v0 = v, v1 = 1,
(2) ‖vtu− uvt‖ < ε,
(3) Length(vt) ≤ 5π + 1.
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Theorem 1.13. For any finite(compact) subset F of simple unital AT algebra A and
ε > 0 there exists a finite(compact) subset G of A and δ > 0 satisfying the following
conditions; For any unitary path u ∈ C[0, 1]⊗ A such that

‖utx− xut‖ < δ, x ∈ G
there is a path of unitaries v ∈ C[0, 1]⊗ A such that

v0 = u0, v1 = u1, ‖vtx− xvt‖ < ε, x ∈ F
and the length of vt is bounded by a universal constant C.

Proof. We may assume that u0 = 1. Since A is an increasing union of An’s, where
An = C(T)⊗Bn and zn = z⊗idn is the canonical unitary of An, we can assume that F
consists of z1 and the unit ball of B1. For ε > 0, we can take G = F and a sufficiently
small δ, which comes from Basic Homotopy Lemma as follows: If u ∈ C[0, 1] ⊗ A is
a path of unitaries with

u0 = 1, ‖[ut, x]‖ < δ x ∈ F,
then there is a path unitaries v ∈ (C[0, 1]⊗ (A ∩B′1) with

v0 = 1, v ≈ u, ‖[v, 1⊗ z1]‖ ≈ 0 (up to the order of δ).

In fact, in a matrix picture vt is 1 in B1 part because ut is close to 1 in B1 and we
modify ut to be precisely 1 in B1 without affecting z1. Then we apply Basic Homotopy
Lemma to A∩B′1 and v1 and z1 to obtain a path of unitaries wt in C[0, 1]⊗ (A∩B′1)
which connects 1 to v1 and commutes with z1 up to ε and the length is bounded by
5π + 1 since Bott(z1, v1) = Bott(z1, v0 = 1) = 0. Finally, v1 is close to u1, so does w1

hence we can connect w1 and u1 by a short path. �

Theorem 1.14. (Stability of automorphism with the Rokhlin property) If A is simple
unital AT algebra of real rank zero and α be an automorphism with the Rokhlin prop-
erty, then α has the stability: For a finite or compact subset F of A and ε, there exist a
compact set G and a positive number δ > 0 satisfying the following: If v ∈ C[0, 1]⊗A
a path of unitaries such that

v(0) = 1, ‖[vt, x]‖ < δ x ∈ G, t ∈ [0, 1],

then there is a unitary u ∈ A such that

‖v(1)− uα(u∗)‖ < ε, ‖[u, x]‖ < ε x ∈ F.

Proof. Once we establish homotopy type lemma, then there is a routine argument as
follows. Given (F, ε), choose N such that 6π/N−1 < ε/2 and ε1 such that ε1N is very
small (In the course of the proof, we will see how small ε1 is.) For (∪Nk=0α

k(F ), ε1) we
apply Theorem 1.14 to obtain (G1, δ1) satisfying

Now for a path of unitaries v, we define

v(k)(s) =

{
v(s)α(v(s)) · · ·αk−1(v(s)) k ≥ 1,

1 k = 0

Once we have v, α, ε1, N, F we can choose (G, δ) such that

‖[v(s), y]‖ < δ ∀y ∈ G
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implies

‖[v(k)(s), x]‖ < min{δ1, ε1} x ∈ G1 ∪ F

for k = 1, . . . , N + 1. (In fact, G = ∪Nk=0α
−k(G1 ∪ F ), δ = min{δ1,ε1}

N+1
would work.)

We apply Theorem 1.14 to v(N) to obtain a path of unitaries w0(s)

(1) ‖[w0(s), x]‖ < ε1 for x ∈ ∪Nk=0α
k(F ),

(2) ‖w0(s)− w0(t)‖ < 6π|s− t|.
Similarly, apply Theorem 1.14 to v(N+1) to obtain a path of unitaries w1(s)

(1) ‖[w1(s), x]‖ < ε1 for x ∈ ∪Nk=0α
k(F ),

(2) ‖w1(s)− w1(t)‖ < 6π|s− t|.
Since α has the Rokhlin property, there is a partition of unity consisting of projections
e0, . . . eN−1, f0, . . . , fN which almost commute with

{αi+1−N(w0(
i

N − 1
)) | i = 0, . . . , N − 1},

{αj−N(w1(
j

N
)) | j = 0, . . . , N},

{v(k)(1) | k = 1, . . . , N + 1}, and F up to ε1.
Then we define

U =
N−1∑
i=0

v(i+1)(1)αi+1−N
(
w0

(
i

N − 1

)∗)
ei +

N∑
j=0

v(j+1)(1)αj−N
(
w1

(
j

N

)∗)
fj.

Note that α(eN−1 + fN) = e0 + f0. It follows that

Uα(U∗) = v(1)e0+

N−1∑
k=1

v(k+1)(1)αk+1−N(w0(k/N − 1)∗)ekα
k+1−N(w0(k − 1/N − 1))α(v(k)(1)∗)+

=
N∑
k=1

v(k+1)(1)αk−N(w1(k/N)∗)fkα
k−N(w1(k − 1/N))α(v(k)(1)∗)

+ v(1)f0

≈
6π
N−1

×2ε1 v(1)(e0 + . . . eN−1 + f0 · · ·+ fN) = v(1)

Also U is also almost unitary by the same reasoning, which means if we take the polar
decomposition we get the unitary u which we want. �

Then we proceed to show the outer conjugacy of two automorphisms α and β having
Rokhlin property by so called Evans-Kishimoto intertwining argument. Suppose that
α and β are asymptotically inner, then there is a path of unitaries (ut)t≥0 such that
α = limt→∞Ad(ut) ◦ β. We take an increasing union of finite sets B1 ⊂ B2 ⊂ · · ·
such that A = ∪∞n=1Bn.

Choose t1 > 0 for B1 such that on B1 for all t ≥ t1

α ≈ε/2 Ad(ut) ◦ β.
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Now take u(0)(t) = u(t). We apply the stability result to β for the date (∅, ε/2, u(0)(t1·))
and obtain unitaries u1 and ω1 such that

u(0)(t1) = ω1u1β(u∗1)

where ‖1− ω1‖ < ε/2. Note that

α ≈ε/2 Adω1 ◦ Adu1 ◦ β ◦ Adu∗1

We define

u(1)(t) = u(0)(t+ t1)(u
(0)(t1))

∗(1)

β1 = Adu(0)(t1) ◦ β(2)

Then

(3) lim
t→∞

Ad(u(1)(t))∗ ◦ α = β1.

We choose t2 > t1 > 0 such that on B2 for t ≥ t2

β1 ≈ε/4 Ad(u(1)(t))∗ ◦ α
Also,

(4) β1 ≈δ1/2 Ad(u(1)(t))∗ ◦ α
for G1 = β−11 (G′1) where (G′1, δ1) comes from the stability result for (ε/23, F1 =
B1 ∪ {u1}) with respect to β1. Then we define

u(2)(t)∗ = u(1)(t+ t2)
∗ · u(1)(t2)(5)

α2 = Adu(1)(t2)
∗ ◦ α(6)

Then
Adu(2)(t)∗ ◦ α2 = Adu(1)(t+ t2)

∗ ◦ α
As t→∞, (RHS) goes to β1.

(7) α2 = lim
t→∞

Adu(2)(t) ◦ β1

Again, we apply to the stability result to (∅, ε/4) for u(1)(t2·)∗ for (∅, δ1) and obtain
ω2 and u2 such that

(8) u(1)(t2)
∗ = ω2u2α(u∗2)

where ‖1− ω2‖ < ε/4. Note that

(9) Adω2 ◦ Adu2 ◦ α ◦ Adu∗2 ≈ε/4 β1
From (7), we find t3 > 0 such that

‖α2(x)− (Adu(2)(t) ◦ β1)(x)‖ < ε/8 x ∈ B3(10)

‖α2(y)− (Adu(2)(t) ◦ β1)(y)‖ < δ2/2(11)

for y ∈ G2 = α−11 (G′2) where (G′2, δ2) comes from the stability result for (ε/24, F2 =
B2 ∪ {u2, u0}) with respect to α1. Then we define

u(3)(t) = u(2)(t+ t3) · u(2)(t3)∗(12)

β3 = Adu(2)(t3)
∗ ◦ β1(13)
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Then

Adu(3)(t) ◦ β3 = Adu(2)(t+ t3) ◦ β1
As t→∞, (RHS) goes to α2.

(14) β3 = lim
t→∞

Adu(3)(t)∗ ◦ α2

Using (4) for t ≥ 0

‖β1(y)− (Adu(1)(t+ t2)
∗ ◦ α)(y)‖ < δ1/2

for y ∈ G1. Replacing u(1)(t+t2)
∗ and α by Adu(1)(t+t2)

∗Adu(1)(t2) and Adu(1)(t2)
∗α

respectively we get t ≥ 0

‖β1(y)− (Adu(2)(t) ◦ α2)(y)‖ < δ1/2

for y ∈ G1. In particular, when t = 0, ‖β1(y)− α2(y)‖ < δ1/2. Combining these two
estimates, we have for y ∈ G1

‖[β1(y), u(2)(t)‖ < δ1

Thus we apply the stability result to obtain unitaries ω3, u3 such that

‖u(2)(1)− u3β1(u∗3)‖ < ε/8(15)

‖[u3, x]‖ < ε/8 x ∈ F1(16)

u(2)(t3) = ω3u3β1(u
∗
3) , ‖1− ω3‖ < ε/8(17)

We repeat this process and obtain

β1, α2, β3, α4, . . .(18)

u1, u2, u3, . . .(19)

ω1, ω2, ω3, . . .(20)

with required properties. Since ‖[un, x]‖ < 2−nε, x ∈ Fn = Bn ∪ {uk | k = n− 2, n−
4, . . . } it follows that

lim Ad(u2k+1u2k−1 · · ·u1) = γ1(21)

lim Ad(u2ku2k−2 · · ·u2) = γ0(22)

converge as automorphisms. Then from α2k = Adω2k ◦ Adu2k ◦ α2k−2 Adu∗2k and
β2k+1 = Adω2k+1 ◦Adu2k+1 ◦ β2k−1 ◦Adu∗2k+1, it follows that the sequence β1, α2, β3
converges and the limit is obtained as

AdW1 ◦ γ1 ◦ β ◦ γ−11 = AdW0 ◦ γ0 ◦ α ◦ γ−10 .

2. Examples of actions with the Rokhlin property or the tracial
Rokhlin property

Definition 2.1. Let G be a topological group and A a C∗-algebra. An action of
G on A is a group homomorphism α : G → Aut(A), usually written g 7→ αg, such
that for every a ∈ A, the function g 7→ αg(a) is norm continuous. We say that it is
point-norm continuous.
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It is too much strong to require that g 7→ αg be a norm continuous map viewing αg
as the bounded operators on A. For example, take A = C0(G) and define αg(f)(h) =
f(g−1h) as the translation action. Then for g 6= h, it is always that ‖αg − αh‖ ≥ 2
since we can choose two functions f1 and f2 such that f1(g

−1) = 1 and f2(h
−1) = −1,

and ‖fi‖ = 1 for all i.

Example 2.2. Consider a C∗-algebra On generated by partial isometries s1, s2, . . . , sn
for n ∈ N ∪ {∞} satisfying s∗i si = 1 for 1 ≤ i ≤ n, and

∑n
j=1 sjs

∗
j = 1. Any n-tuple

(ξ1, . . . , ξn) ∈ (S1)
n defines an action On by sending (s1, . . . , sn) to (ξ1s1, . . . , ξnsn).

Definition 2.3. Let G be a finite group and A unital separable C∗-algebra. An
action α : G→ Aut(A) is said to have the Rokhlin property if for every finite subset
F of A and a positive number ε > 0, there is a set of mutually orthogonal projections
{eg} in A such that

(1) ‖ega− aeg‖ ≤ ε for all a ∈ F ,
(2) ‖αh(eg)− egh‖ ≤ ε for all g, h ∈ G,
(3)

∑
g∈G eg = 1.

For a C∗-algebra A, we set the C∗-algebra of bounded sequence over N with values
in A and the ideal of sequences converging to zero as follows;

l∞(N, A) = {(an) | {‖an‖} bounded}

c0(N, A) = {(an) | lim
n→∞

‖an‖ = 0}.

Then we denote by A∞ = l∞(N, A)/c0(N, A) the sequence algebra of A with the
norm of a given by lim supn ‖an‖, where (an)n is a representing sequence of a. We
can embed A into A∞ as a constant sequence, and we denote the central sequence
algebra of A by

A∞ ∩ A′.
For an automorphism of α on A, we also denote by α∞ the induced automorphism
on A∞ and A∞ ∩ A′ without confusion.

We save the notation . for the Cuntz subequivalence of two positive elements;
for two positive elements a, b in A a . b if there is a sequence (xn) in A such that
‖xnbx∗n − a‖ → 0 as n → ∞. Often when p is a projection, we see that p . a if and
only if there is a projection in the hereditary C∗-subalgebra generated by a which is
Murray-von Neumann equivalent to p.

Proposition 2.4 (M. Izumi). Let α : G y A be an action of a finite group G on
a unital separable C∗-algebra A. We say α has the Rokhlin property if there is a
partition of unity {eg}g∈G of projections in A∞ ∩ A′ such that for all g, h ∈ G

α∞,h(eg) = ehg

where α∞ is the induced action.

Proposition 2.5. Let α : G y A be an action of a finite group G on a unital
separable C∗-algebra A. Then α has the Rokhlin property if and only if there exists
a unital and equivariant ∗-homomorphism σ from (C(G), σ) to (A∞ ∩A,α∞). (Here
σ : Gy C(G) is the G-shift action σg(f) = f(g1·).)
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Consider the Cuntz algebra On which is generated by a unit and isometries s′is
with orthogonal images. Then it’s well known that K0(A) is Z/(n − 1)Z, and more
explicitly that

K0(On) = {0, [1]0, 2[1]0, . . . , (n− 2)[1]0}.
Suppose there is a finite group action α : G y On. Then from the conditions 1 =∑

g eg and αg(e1) = eg we have |G|[e1]0 = [1O∞ ]0. This means that |G|m[1]0 = [1]0.

It follows that |G|m − 1 must be divided by n − 1 for m = 1, 2, . . . , n − 2. Thus if
n = 3, and |G| − 1 is odd, then there is no G-action with the Rokhlin property. So
the actions with Rokhlin property are very rigid. Thus the following definition was
suggested by N.C. Phillips and it was observed that generically there are abundant
actions with the tracial Rokhlin property.

Definition 2.6. Let G be a finite group and A unital separable C∗-algebra. An
action α : G → Aut(A) is said to have the tracial Rokhlin property if for every
nonzero positive element a ∈ A for every finite subset F of A and a positive number
ε > 0, there is a set of mutually orthogonal projections {eg} in A such that

(1) ‖ega− aeg‖ ≤ ε for all a ∈ F ,
(2) ‖αh(eg)− egh‖ ≤ ε for all g, h ∈ G,
(3) 1−

∑
g∈G eg is Murray-von Neumann equivalent to a projection in aAa.

Then we give the examples of actions with the Rokhlin property and actions with
the tracial Rokhlin property based N.C. Phillips. Before analyzing examples, we need
some preparations.

Definition 2.7. For a discrete group G and a unital C∗-algebra, we let

A[G] = {
∑
g∈G

agg | it has only finitely many nonzero terms ag’s.}.

This is called a skew group ring with the following algebraic operations

(ag)(bh) = a(gbg−1)gh = aαg(b)gh,

(ag)∗ = αg−1(a∗)g−1.

Then there is one to one correspondence between a nondegenerate ∗-representation
of A[G] on a Hilbert space and a pair of a representation π of A and a group repre-
sentation V on H which satisfies the following covariant representation.

Vgπ(a)V ∗g = π(αg(a))

Definition 2.8. The full crossed product C∗-algebra denoted by AoαG is the com-
pletion of the skew group ring A[G] with respect to the norm

sup{‖π(
∑
g

agg)‖ | nondegenerate ∗ representations π}

Proposition 2.9. Let G be a finite(discrete) group and v : G → B(H) be a unitary
representation, where A is represented as operators on H, such that αg(a) = vgav

∗
g .

We call such a unitary representation implementing unitary representation for α.
Then Aoα G is the norm completion of {

∑
g agvg} in B(H).
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When a group G is abelian, then we can think of the Pontryagin dual of G, denoted

by Ĝ, which consists of characters from G to T. Then there is a dual action of Ĝ

on A oα G which is defined by sending a → a and vg → γ(g)vg for γ ∈ Ĝ. It is an

exercise to check that Ẑn = Zn.

Let Dn = ⊗nm=1Mk(m), αn : Z2 y Dn be the action given by ⊗nm=1 Ad(pm − qm)
where pm + qm = 1 and pm, qm are projections in Mk(m).

Note that Dn oαn Z2 is isomorphic to the direct sum Mt(n) ⊕Mt(n) where t(n) =∏n
m=1 k(m). Moreover, the isomorphism sends a ∈ Dn to (a, a) and sends v to

(v,−v) where v = pn − qn and pn, qn are suitable projections such that (pn − qn) =
⊗nm=1(pm − qm). Then we define a connecting homomorphism ψn : Dn oαn Z2 to
Dn+1 oαn+1 Z2 via the above isomorphism by

(a, b) 7→ (a⊗ pn + b⊗ qn, b⊗ pn + a⊗ qn).

If we let α be the automorphism ⊗∞m=1 Ad(pm − qm) on D = ⊗∞m=1Mk(m) which
is the inductive limit of Dn, then α = limn→∞ αn. Thus we have the following
characterization on D oα Z2

Theorem 2.10. D oα Z2 is the inductive limit of the system (Dn oαn Z2, ψn) which
is an AF -algebra.

Theorem 2.11. T.F.A.E.

(1) α has the Rokhlin property
(2) Infinitely many n, rank(pn) = rank(qn),
(3) α̂0 : K0(D oα Z2)→ K0(D oα Z2) is trivial.

Let Λ(m,n) =
rank(pm+1)− rank(qm+1)

rank(pm+1) + rank(qm+1)
· · · rank(pn)− rank(qn)

rank(pn) + rank(qn)
for n > m, and

Λ(m,∞) = limn→∞ Λ(m,n).

Theorem 2.12. T.F.A.E.

(1) α has the tracial Rokhlin property,
(2) Λ(m,∞) = 0 ∀m,
(3) D oα Z2 has a unique tracial state,
(4) α̂ is trivial on T (D oα Z2).

Example 2.13. Let D = ⊗∞n=1M2, α = ⊗∞n=1 Ad

(
1 0
0 −1

)
. Then pn =

(
1 0
0 0

)
and

qn =

(
0 0
0 1

)
for every n. By Theorem 2.11, α has the Rokhlin property and DoαZ2

is 2∞ UHF-algebra.

Example 2.14. Let D = ⊗∞n=1M2n and α = ⊗∞n=1 Ad

I2n−1 0 0
0 1 0
0 0 −I2n−1−1

. Then

pn =

(
12n−1+1 0

0 0

)
and qn =

(
0 0
0 I2n−1−1

)
. We can check that rank(pn) > rank(qn)

for all n, thus α cannot have the Rokhlin property, but α has the tracial Rokhlin

property since
rank(pn)− rank(qn)

rank(pn) + rank(qn)
=

2

2n
and Λ(m,∞) = 0 for all m.
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3. Rokhlin property and structure theory of C∗-algebras

Now we want to see how the structure of the crossed product C∗-algebra is related to
the structure of the original C∗-algebra. For instance, related to Elliott classification
program, it is desirable for the crossed product C∗-algebra to have Z-stability, finite
nuclear dimension, or the strict comparison property if so is the original one. In
particular, Z-stability is the most important since we cannot distinguish K-theoretic
invariants between A⊗Z and A. In the following we consider a more general property
so called D-stability.

Definition 3.1. A unital C∗-algebra D is strongly self-absorbing (aka s.s.a.) if D � C
and there is an isomorphism φ : D → D⊗D such that φ and idD⊗1D the first factor
imbedding are approximately unitary equivalent, or there is a sequence of unitaries
(un) in D such that

‖uφ(a)u∗ − a⊗ 1D‖ → 0

as n goes to ∞.

It is nice exercise to check that s.s.a implies that approximate inner half flip prop-
erty which means that idD⊗1D and 1D ⊗ idD are approximately unitarily equivalent
in the above sense. It follows that it is nuclear and simple. Moreover, a unital separa-
ble s.s.a C∗-algebra is either purely infinite or stably finite with a unique trace. The
known examples are UHF-algebra of infinite type, O2 and O∞, the Jiang-Su algebra
Z.

Definition 3.2. A unital C∗-algebra is called D-absorbing or D-stable if A⊗D ∼= A.

Theorem 3.3. (Winter and Toms) Let A be unital separable C∗-algebra and D s.s.a.
Then A is D-absorbing if and only if there exist a unital ∗-homomorphism ψ : D →
A∞ ∩ A′.
Theorem 3.4. (Hirshberg-Winter) Let A be a unital separable, simple C∗-algebra
and α an action of a finite group G on A. Suppose that α has the Rokhlin property.
If A is D-absorbing, so is the crossed product Aoα G.

We give a proof the above theorem based on Barlak and Szabo’s approach.

Definition 3.5. (Barlak-Szabo) We say that φ : A→ B is sequentially split if there
is a ∗-homomorphism ψ : B → A∞ such that the following diagram commutes;

(23) A

φ ��

ι // A∞

B
ψ

==

We call ψ in the above diagram a left approximate inverse of φ.

Lemma 3.6. Let A be separable C∗-algebra and C a unital C∗-algebra. There exists
a ∗-homomorphism from C to A∞ if and only if the first factor imbedding idA⊗1C :
A → A ⊗ C is sequentially split. Similarly, when α : G y A, β : G y C are two G-
actions on A,C respectively, there exists an equivariant ∗-homomorphism from (C, β)
to (A∞, α∞) if and only if the first factor imbedding idA⊗1C : (A,α)→ (A⊗C, α⊗β)
is sequentially split.
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Lemma 3.7. If when α : Gy A, β : Gy B are two G-actions on A,B respectively,
then if φA→ B is sequentially split, then φoG which is defined by sending

∑
g agug

to
∑

g φ(ag)vg is sequentially split and a left approximate inverse of it is ψoG where
ψ is the left approximate inverse of φ.

Lemma 3.8. Let the map φ : A→ B be sequentially split. If B is D-stable, so is A.

Proof.

(24) A

�� φ
%%

ι // A∞ // (A∞)∞

A⊗D

φ⊗idD %%

B

idB ⊗1D
��

ψ

;;

// B∞

(ψ)∞

;;

B ⊗D

55

�

Proof of Theorem 3.4
It is enough to show that the first factor embedding Recall that since α : Gy A has
the Rokhlin property, we have the equivariant map δ : (C(G), σ) → (A∞ ∩ A′, α∞).
This means that the first factor embedding idA⊗1C(G) : (A,α)→ (A⊗C(G), α⊗σ) is
sequentially split. By applying Lemma 3.7 we have then idA⊗ 1C(G)oG : AoαG→
A ⊗ C(G) oα⊗σ G is sequentially split. Now note that in general A ⊗ C(G) oα⊗σ G
is isomorphic to A ⊗ K(l2(G)). The latter in our case A ⊗M|G|(C) = M|G|(A). D-
stability is preserved by by tensoring by matrix algebra, thus M|G|(A) is D-stable. It
follows that Aoα is also D-stable by Lemma 3.8.

Now let us turn to finite nuclear dimension. For this we introduce higher dimen-
sional Rokhlin property by Hirshberg-Winter-Zacharias.

Definition 3.9. (Winter-Zacharias). A completely positive map φ : A→ B between
C∗-algebras is said to be of order zero, if for every positive elements a, b ∈ A with
ab = 0 it follows that φ(a)φ(b) = 0. In other words, φ is orthogonality-preserving in
the sense that a ⊥ b implies φ(a) ⊥ φ(b).

Definition 3.10. (Winter-Zacharias). Let A and B be two C∗-algebras. Let κ :
A toB be a completely positive map and n ≥ 0. The map κis said to have nuclear
dimension n, written dimnuc(A) = n, if n is the smallest natural number satisfying
the following property: For every F ⊂ A and ε > 0, there exist a finite-dimensional
C∗-algebra F , a completely positive map ψ : A → F with‖ψ‖ ≤ ‖κ‖; completely
positive contractive maps of order zero φ(0), . . . . , φ(n) : F → B; (denote φ = φ(0) +
· · · + φ(n)) such that (F, ψ, φ) yields a finite-dimensional completely positive (F , ε)-
approximation of κ, meaning ‖κ(a)− φ(ψ(a))‖ < ε for all a ∈ F

(25) A

ψ ��

κ // B

F
φ=

∑n
i=0 φ

(i)

??

If no such n exists, then κ is said to have infinite nuclear dimension, written
dimnuc(κ) =∞.
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Definition 3.11. For a C∗-algebra A, one defines

dimnuc(A) = dimnuc(idA : A→ A).

Lemma 3.12.

dimnuc(A) = dimnuc(ιA : A→ A∞)

where ιA : A→ A∞ is a natural embedding.

Proof. We use the lifting property of order zero map. �

Definition 3.13. (Hirshberg-Winter-Zacharias) A finite group action α : G y A
on a unital C∗-algebra has Rokhlin dimension d, written dimRok(α) = d, if d is the
smallest number with the following properties: Given ε > 0 and a finite set F (⊂ A),

there are positive contractions {f (l)
g | l = 0, . . . , d}g∈G, or l + 1 different towers of

|G|-numbered positive contractions

(1) ‖1−
∑d

l=0

∑
g∈G f

(l)
g ‖ < ε,

(2) ‖f (l)
g f

(l)
h ‖ < ε for g 6= h and 0 ≤ l ≤ d,

(3) ‖αg(f (l)
h )− f (l)

gh‖ < ε,

(4) ‖f (l)
g a− af (l)

g ‖ < ε for all g ∈ G, 0 ≤ l ≤ d and a ∈ F .

Remark 3.14. When A is a unital C∗-algebra, α : Gy A has the Rokhlin property
if and only if dimRok(α) = 0.

There is a neat way to express this in terms of the central sequence algebra.

Proposition 3.15. Let α : G y A be a finite group action on a separable, unital
C∗-algebra A and d ≥ 0. One has dimRok(α) ≤ d if and only if there exist equivariant
order zero maps φ(0), . . . , φ(d) : (C(G), σ)→ (A∞∩A,α∞) with φ(0)(1)+ · · ·+φ(d)(1) =
1.

Now again assume that dimRok(α) ≤ d. One of nice features of A∞ ∩ A′ is that
there is a canonical ∗-homomorphism

(A∞ ∩ A′)⊗ A→ A, x⊗ a 7→ x · a.

For every l = 0, . . . , d, we consider equivariant order zero map φ̃(l) given by the
composition

C(G)⊗ A φ(l)⊗idA // (A∞ ∩ A′)⊗ A
x⊗a7→x·a // A∞

Then φ(0)(1)+ · · ·+φ(d)(1) = 1 will give us the commutative diagram of equivariant
maps:

(A,α)

1⊗idA ((

ιA // (A∞, α∞)

(C(G)⊗ A, σ ⊗ α)

∑d
i=0 φ̃

(i)

66

Again by applying the crossed product functor, we get
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Aoα G

(1⊗idA)oG ((

ιAoG // (A∞ oα∞ G)→ (Aoα G)∞

(C(G)⊗ A)oσ⊗α G

��

(
∑d
i=0 φ̃

(i))oG

44

M|G|(A)

Since dimnuc(Mn(A)) = dimnuc(A) and upward maps are (d+ 1) order zero maps, we
have (d+ 1)× (dimnuc(A) + 1) upward maps. Thus

dimnuc(Aoα G) ≤ (dimRok(α) + 1)(dimnuc(A) + 1)− 1

Corollary 3.16. Let α : G y A be a finite group action on a unital C∗-algebra A.
Assume dimnuc(A) <∞ and α has the Rokhlin property. Then

dimnuc(Aoα G) ≤ dimnuc(A).

4. Concluding remarks

In this note due to limited time we were not able to cover applications of Rokhlin
property to other problems in C∗-algebras, for example fundamental results about the
Cuntz algebra O2, or N. Brown’s characterization of AF-embedibility of Aoα Z. For
those we refer the reader to [13] for the former and [2] the latter. Also, we were not
able to cover H. Matui and Y. Sato ’s weak Rokhlin property of Z-action or amenable
group’s Rokhlin type property [8, 9]. Recently, G.Szabo launched an intensive study
on this subject and refreshed this subject with a newly minded approach not only for
Rokhlin type actions but also any strict group actions, but one of most notables is
his proof of Powers-Sakai conjecture which says every R-action of a UHF-algebra is
approximately inner [15].
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