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Alice and Bob

Information theory studies the quantification, storage, and
communication of information, which was originally proposed by
Claude E. Shannon in 1948 (from Wikipedia).
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Alice and Bob: continued

Information theory has a quantum counterpart called Quantum
Information Theory (shortly, QIT).

QIT serves as a background theory for Quantum
Computing(양자컴퓨팅)/Quantum Cryptography(양자암호)

Hun Hee LeeSeoul National University Quantum information theory with functional analysis techniques: Lecture 1
SNU, December 18th - 21st, 2018 4 /

43



Quantum Computer
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Quantum Computer: continued

Quantum computers are machines that can run quantum algorithms,
such as Shor’s quantum integer factorization, ‘94 and Grover’s
quantum search, ‘96.

(Existing quantum computers)
by Google, IBM, Intel, Rigetti, D-wave.

(Reference on the current status):
John Preskill, Quantum Computing in the NISQ era and beyond,
arXiv:1801.00862.
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Quantum information theory for functional analysts

Traditionally QIT preferred finite dimensional Hilbert spaces, so that
linear algebras and matrix analysis were the main tools.

Recently, many branches of functional analysis are being crucially
used in QIT including Banach/operator space theory, operator system
theory and quantum probability, which we will see in this series of
lectures.
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Postulates of Quantum Mechanics I

(P1)

Any isolated physical system is associated to a complex Hilbert space H
called the state space

The state of the system is described by a unit vector ψ ∈ H, which is
called the state vector.

When dimH = 2 the system is called a qubit system.
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Postulates of Quantum Mechanics II

Remark

We assume that H is finite dimensional unless specified.

Bra-ket notation

For h ∈ H, A ∈ B(H)

- vector |h〉 ∈ H, functional 〈h| ∈ H∗;
- A|h〉 ∈ H, 〈h|A ∈ H∗ and 〈h|A|h〉 ∈ C.

- When H = `2(I ) we denote the canonical basis by |i〉, i ∈ I and |i〉〈j |
refers to the matrix unit in B(H) usually denoted by ei and eij in
mathematics.
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Postulates of Quantum Mechanics III

(P2)

A discrete time evolution of a closed quantum system is described by a
unitary transformation, i.e. |h〉 ∈ H 7→ U|h〉 ∈ H for some U ∈ U(H).
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Postulates of Quantum Mechanics IV

(P3)

We could “read out” quantum states only by quantum measurements.

A quantum measurement is a family of operators {Mi}i∈I ⊆ B(H)
satisfying

∑
i∈I M

∗
i Mi = IH.

The index i ∈ I refers to the measurement outcome and we say that
the probability p(i) of the outcome being i after we apply the
measurement to the state ψ is given by ‖Mi |ψ〉‖2 = 〈ψ|M∗i Mi |ψ〉.

-
∑
i∈I

p(i) = 〈ψ|
∑
i∈I

M∗i Mi |ψ〉 = 〈ψ|IH|ψ〉 = ‖ψ‖2 = 1.
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Postulates of Quantum Mechanics V

(P3)-related

{Pi = M∗i Mi}i∈I is called a POVM (positive operator valued
measure).

(Ex) A POVM on H = C2: {M0 = |0〉〈0|,M1 = |1〉〈1|}.
The state |ψ〉 = a|0〉+ b|1〉 collapses into a

|a| |0〉 with prob. |a|2 and

into b
|b| |1〉 with prob. |b|2 after the above measurement.

After applying the measurement to the state ψ with the outcome i
the state collapses to another state Mi |ψ〉

‖Mi |ψ〉‖ .
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Postulates of Quantum Mechanics VI

(P4)

The state space of a composite physical systems is the Hilbert space
tensor product of the component state spaces.

(Ex) Suppose we have the system A and B with the state spaces HA

and HB , then the composite system, which we denote by AB, has the
state space HA ⊗2 HB , which we denote by HAB .

(Def) A state vector |ψ〉 ∈ HAB is called separable if |ψ〉 = |a〉 ⊗ |b〉
for some |a〉 ∈ HA and |b〉 ∈ HB . A non-separable state vector in
HAB is called entangled.
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Extended Postulates I

A state vector h ∈ H ⇒ an operator |h〉〈h| acting on H, which we
call a pure state.

(P1’)

A “state” of a system is described by a mixed state

ρ =
∑
i≥1

pi |hi 〉〈hi |,
∑
i

pi = 1, pi ≥ 0,

which we interpret as the pure states |hi 〉〈hi | being “mixed” with
“probability” pi .

The state ρ is nothing but a positive matrix with trace 1 by spectral
decomposition, which we call a density matrix.

We denote the set of all density matrices on H by D(H).
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Extended Postulates II

(P2’)

Evolution on a closed system is given by unitary conjugations, i.e.
ρ 7→ UρU∗.

(P3’)

For a POVM (Pi )i∈O we have

the “probability” of outcome i = Tr(Piρ) = 〈ρ,Pi 〉.
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Extended Postulates III

Embedding of a quantum state

When a physical system, say A with the state space HA, is “open” we
assume that it interacts with another system E (with the state space HE )
called “environment”. In this case we think the original system is
“embedded” in the composite system AE by an isometry

V : |ψ〉 ∈ HA 7→ |ψ〉 ⊗ |ϕ〉 ∈ HA ⊗2 HE

for a fixed state vector ϕ ∈ HE . In the density operator level this becomes

ρ ∈ D(HA) 7→ ρ⊗ |ϕ〉〈ϕ| ∈ D(HA ⊗2 HE ).
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Extended Postulates IV

Reduction

A density matrix σ ∈ D(HAE ) can be reduced to a density matrix σA by
taking partial trace over the system E , i.e.

σA = IA ⊗ TrE (σ) (simply denoted by TrE (σ)).

Purification

For a density matrix ρ ∈ D(HA), a state vector |v〉 ∈ HAB is called a
purification of ρ if TrB(|v〉〈v |) = ρ.

The spectral decomposition ρ =

dA∑
k=1

λk |xk〉〈xk | with an ONB {|xk〉}

of HA gives us the canonical purification

|v〉 =

dA∑
k=1

√
λk |xk〉 ⊗ |xk〉 ∈ HA ⊗2 HA.
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Extended Postulates V

(P2”) Quantum channels as generalized quantum evolutions

Evolution on an open quantum system is given by

Φ : B(HA)→ B(HB), ρ 7→ (IB ⊗ TrE )(U(ρ⊗ ρE )U∗)

for some environment HE , a state ρE on HE and a unitary
U : HAE → HBE , which is nothing but a completely positive and
trace-preserving linear map. We call it a quantum channel. We may also
write (which is called the Stinespring representation)

Φ(ρ) = IB ⊗ TrE [V ρV ∗]

for the isometry

V : HA → HB ⊗HE , |ψ〉 7→ U(|ψ〉 ⊗ |ϕ〉).
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Extended Postulates VI

Remark

We “think” quantum channels describe all possible “noises” in quantum
world!
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Theory of completely positive maps I

Completely positive maps

(Def) A linear map T : B(H)→ B(K) is called completely positive
(shortly, CP) if In ⊗ T : Mn(B(H))→ Mn(B(K)) is positive for all n ≥ 1.
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Theory of completely positive maps II

Lemma
1 For a positive matrix P ∈ B(H) the following map is CP.

T : C→ B(H), α 7→ α · P.

2 Let T : B(H)→ B(K) be a (completely) positive map. Then, the
adjoint (via trace duality)

T ∗ : B(K)→ B(H)

given by 〈T ∗Y ,X 〉 := 〈Y ,TX 〉, X ∈ B(H), Y ∈ B(K) is also
(completely) positive.

3 The trace functional B(H)→ C, X 7→ Tr(X ) is CP.

(Proof)
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Theory of completely positive maps III

Various characterizations of completely positive maps

Let T : B(HA)→ B(HB) be a linear map. Then, T.F.A.E.

1 T is CP.

2 T is n-positive, (n = dimHA = dA) i.e.
In ⊗ T : Mn(B(HA))→ Mn(B(HB)) is positive.

3 The Choi matrix CT =
n∑

i=1

T (|i〉〈j |)⊗ |i〉〈j | ∈ B(HB ⊗2 HA) is

positive.

4 (Kraus representation) ∃ ∃ {Aj : j ∈ J} ⊆ B(HA,HB) such that

T (X ) =
∑
j∈J

AjXA
∗
j .

5 (Stinespring representation) ∃ HC and A ∈ B(HA,HBC ) such that
T (X ) = TrC (AXA∗).

(Proof)
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Theory of completely positive maps IV

Choi rank

(Def) The rank of the Choi matrix CT is called the Choi rank.

We may take |J| = dimHC = the Choi rank.

Quantum channels = CP trace preserving (CPTP) maps

A CP map T satisfies trace preserving property if and only if

(Choi matrix) TrB(CT ) = IA.

(Kraus representation)
∑
j∈J

A∗j Aj = IA.

(Stinespring representation) A∗A = IA, i.e. an isometry.
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Including Classical into Quantum I

Classical states

(Def) Classical states are probability distributions on a finite set I .

The set of all probability distributions on I will be denoted by P(I )

A classical state (pi )i∈I can be understood as a quantum state acting
on `2(I ) as a diagonal matrix, namely diag(pi ).
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Including Classical into Quantum II

Classical channels

(Def) A classical (discrete and memoryless) channel consists of the input
set A, the output set B and the map

Φ : A→ P(B), x 7→ (p(y |x))y∈B.

Example: Binary symmetric channel

A = B = {0, 1}, 0 ≤ p ≤ 1: the flipping probability
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Including Classical into Quantum III

Correlation set

(Notation) We denote the set of all classical channels from A into B by
P(B|A).

Remarks

The ideal situation for communication is “Alice and Bob agree on
what was sent” ⇒ Channels represents all possible noises.

We assume that the relationship between the output y ∈ B given the
input x ∈ A is described probabilistically, or more precisely by its
“conditional probability” p(y |x).
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Including Classical into Quantum IV

Classical channels as quantum channels

For a classical channel Φ : A→ P(B), x 7→ (p(y |x))y∈B we can associate
a quantum channel

Φ : B(HA)→ B(HB), exx ′ 7→ δx ,x ′diag(p(y |x))y∈B.

We use the same symbol Φ by abuse of notation and this is usually called
as a classical-classical channel.
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Examples of quantum channels I

Classical-quantum channel

(Def) A classical-quantum channel is a map

Φ : A→ D(HB), x 7→ ρx ,

where the associated quantum channel is

Φ : B(HA)→ B(HB), exx ′ 7→ δx ,x ′ρx .

We sometimes call it a classical-quantum coding.

Hun Hee LeeSeoul National University Quantum information theory with functional analysis techniques: Lecture 1
SNU, December 18th - 21st, 2018 28 /

43



Examples of quantum channels II

Quantum-classical channel and quantum measurement

Let {Mi}i∈I ⊆ B(H) be a quantum measurement. Then, we can
associate two types of quantum channels.

The first one is

Ψ : B(H)→ B(H), ρ 7→
∑
i

Tr(MiρM
∗
i )

MiρM
∗
i

Tr(MiρM∗i )
,

which describes the after-effect of measurement as in (P3’).

The second one is the following “quantum-classical channel”:

Φ : B(H)→ P(I ) ⊆ B(`2(I )), ρ 7→
∑
i

Tr(MiρM
∗
i )|i〉〈i |.

Ψ = Φ when Mi ’s have 1 dimensional orthogonal ranges with
dimH = |I |.
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Examples of quantum channels III

Further examples of quantum channels

(Random unitary channel) For a family of unitaries {Ui}i∈I ⊆ B(H)
we consider

Φ : B(H)→ B(H), X 7→ 1

|I |
∑
i∈I

UiXU
∗
i .

(Isometry channel) For an isometry V : HA → HB

Φ : B(HA)→ B(HB), X 7→ VXV ∗.
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Examples of quantum channels IV

Further examples of quantum channels 2

(Replacement channel) For a fixed state ρ ∈ B(HB)

Φ : B(HA)→ B(HB), X 7→ Tr(X )ρ.

When ρ = IA
dA

, we call it the completely depolarizing channel.

(Completely dephasing channel)

Φ : B(H)→ B(H), X 7→
dimH∑
i=1

Xii |i〉〈i |.
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Examples of quantum channels V

More on completely depolarizing channel

(Discrete Weyl operators) For H = `2n = `2(Zn) with
Zn = {0, 1, · · · , n − 1}. We define two operators on H as follows:

U :=
∑
c∈Zn

|c + 1〉〈c | and V :=
∑
c∈Zn

zc |c〉〈c |, where z = exp(2πin ).

For (a, b) ∈ Zn × Zn we also define

Wa,b : UaV b.

(Completely depolarizing channel) For X ∈ B(H) we have

1

n2

∑
a,b∈Zn

Wa,bXW
∗
a,b =

Tr(X )

n
IH.

In other words, completely depolarizing channels are random unitary
channels.

Hun Hee LeeSeoul National University Quantum information theory with functional analysis techniques: Lecture 1
SNU, December 18th - 21st, 2018 32 /

43



Basic concepts of information theory I

Communication Scenario

Alice and Bob are communicating using a classical channel

Φ : A→ P(B), x 7→ (p(y |x))y∈B.
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Basic concepts of information theory II

Classical state as a random source

A classical state in Alice side will be a probability distribution on A(or a
random variable with A-values) describing randomly arriving messages.

The Shannon entropy

(Def) The Shannon entropy H(X ) of random variable
X : (Ω,P)→ {1, · · · , n} is defined by

H(X ) := −
n∑

i=1

pi log pi = H(p1, · · · , pn),

where pi = P(X = i) satisfying pi ≥ 0,
∑n

i=1 pi = 1.
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Basic concepts of information theory III

Exercise

In the above case we have

0 ≤ H(X ) ≤ log n.

The Shannon entropy: interpretation

The Shannon entropy H(X ) = −
n∑

i=1

pi log pi is understood as the

average information after we learn the value of X or the average
uncertainty before we learn the value of X .

High probability ≈ less surprise ≈ less valuable information.

(Ex) Uniform distribution ( 1n , · · · ,
1
n ) ⇒ max entropy log n

Point mass (1, 0, · · · , 0) ⇒ min entropy 0.
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Basic concepts of information theory IV

The Source coding theorem

Let X be a random message source (i.e. a prob. dist. p on I ). For
n ∈ N, α > 0, 0 < δ < 1 an (n, α, δ)-coding for X refers to an
encoding f : I n → {0, 1}bαnc, a decoding g : {0, 1}bαnc → I n such
that P({A ∈ I n : g(f (A)) = A}) > 1− δ, where P = p × · · · × p,
which means we use X independently n-times.

(Shannon’s source coding theorem)
I If α > H(X ), then ∃ (n, α, δ)-coding for X eventually for n ∈ N.
I If α < H(X ), then ∃ (n, α, δ)-coding for X at most finitely many n ∈ N.

(Meaning of entropy) We can say that we need H(X )-bits per one
letter to encode a random message from X in average.
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Basic concepts of information theory V

Joint entropy and mutual information

For two random variables

{
X : (Ω,P)→ {1, · · · , n},
Y : (Ω,P)→ {1, · · · ,m}

we can associate

another random variable (X ,Y ) : (Ω,P)→ {1, · · · , n} × {1, · · · ,m}.
The entropy H(X ,Y ) of (X ,Y ) is called the joint entropy of X and
Y .

The mutual information of X and Y is defined by

I (X ;Y ) := H(X ) + H(Y )− H(X ,Y ).

I (X ;Y ) quantifies the “information that X and Y share”. In other
words, how much knowing one of these variables reduces uncertainty
about the other.
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Basic concepts of information theory VI

Channel capacity

(Def) The channel capacity C (Φ) of a given channel Φ is defined by

C (Φ) := sup
prob. dist. X on A

I (X ;Y ).

(Ex) Binary symmetric channel: C (Φ) = 1− H(p, 1− p), where
H(p, 1− p) is the binary entropy function.
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Basic concepts of information theory VII

Multiple use of channels

(Scenario) Use the same channel Φ repeatedly (n-times) and
independently to send a message from M = {1, · · · ,N}.
More precisely, we consider the classical channel

Φn : An → P(Bn), (x1, · · · , xn) 7→ Φ(x1)× · · · × Φ(xn),

where the latter means the product of measure, which implies that we
are assuming independency.
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Basic concepts of information theory VIII

Codings

(Def) An (N, n)-coding for the channel Φ consists of encoding
f : M = {1, · · · ,N} → An and decoding g : Bn → M.

We define the transmission rate to be
logN

n
.

We also define the maximum error probability
Pe,max := max

1≤i≤N
P(g(Y n) 6= i |X n = f (i)).
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Basic concepts of information theory IX

Shannon’s channel coding theorem

(Def) We say that R > 0 is an achievable rate if ∃ (N, n)-coding’s
whose transmission rate is R such that lim

n→∞
Pe,max = 0.

This means that we can send R-bits per one use of the channel in
average.

(Shannon’s channel coding theorem)

C (Φ) = supR.
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Basic concepts of information theory X

Zero error capacity

(Def) We say that an (N, n)-coding is zero error if Pe,max = 0.

The zero error capacity C0(Φ) of a channel Φ is the supremum of
R > 0 such that ∃ a zero error (N, n)-coding for Φ.

The one-shot zero error capacity C 1
0 (Φ) of a channel Φ is the

supremum of R > 0 such that ∃ a zero error (N, 1)-coding for Φ.
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Thank you for your attention!
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Basic concepts of quantum information theory I

Communication Scenario

Alice and Bob are communicating using a quantum channel

Φ : B(HA)→ B(HB).
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Basic concepts of quantum information theory II

The von Neumann entropy

(Def) For a quantum state ρ =
n∑

i=1

pi |hi 〉〈hi | ∈ B(H) we define the von

Neumann entropy by

S(ρ) := −
n∑

i=1

pi log pi .
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Basic concepts of quantum information theory III

Comparing quantum states: fidelity

(Def) For quantum state ρ, σ ∈ B(H) we define the fidelity F (ρ, σ)
by

F (ρ, σ) := Tr[(ρ
1
2σρ

1
2 )

1
2 ].

We always have 0 ≤ F (ρ, σ) ≤ 1.

F (ρ, σ) = 1⇔ ρ = σ.

F (ρ, σ) = 0⇔ ρσ = 0, i.e. orthogonal ranges.

Fidelity measures how close the two quantum states are.
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Basic concepts of quantum information theory IV

Comparing input/output quantum states: channel fidelity

(Def) For a quantum state ρ ∈ B(H) with the canonical purification
|u〉 ∈ H ⊗2 H and a quantum channel Φ : B(H)→ B(H) we define
the channel fidelity F (Φ, ρ) by

F (Φ, ρ) := F (|u〉〈u|,Φ⊗ IH(|u〉〈u|)).
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Basic concepts of quantum information theory V

Recall: The Source coding theorem

Let X be a random message source (i.e. a prob. dist. p on I ). For
n ∈ N, α > 0, 0 < δ < 1 an (n, α, δ)-coding for X refers to an
encoding f : I n → {0, 1}bαnc, a decoding g : {0, 1}bαnc → I n such
that P({A ∈ I n : g(f (A)) = A}) > 1− δ, where P = p × · · · × p,
which means we use X independently n-times.

(Shannon’s source coding theorem)
I If α > H(X ), then ∃ (n, α, δ)-coding for X eventually for n ∈ N.
I If α < H(X ), then ∃ (n, α, δ)-coding for X at most finitely many n ∈ N.

(Meaning of entropy) We can say that we need H(X )-bits per one
letter to encode a random message from X in average.
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Basic concepts of quantum information theory VI

The quantum source coding theorem

Let ρ ∈ D(H) with H = `2(I ). For n ∈ N, α > 0, 0 < δ < 1 an
(n, α, δ)-quantum coding for ρ refers to quantum channels
Φ : B(H⊗n)→ B((C2)bαnc) and Ψ : B((C2)bαnc)→ B(H⊗n) such
that F (Ψ ◦ Φ, ρ⊗n) > 1− δ.

(Schumacher’s quantum source coding theorem)
I If α > H(ρ), then ∃ (n, α, δ)-Q-coding for X eventually for n ∈ N.
I If α < H(ρ), then ∃ (n, α, δ)-Q-coding for X at most finitely many

n ∈ N.

(Meaning of entropy) We can say that we need H(ρ)-qubits to
quantum-encode a “quantum message from ρ” in average.
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Basic concepts of quantum information theory VII

Joint entropy and mutual information for quantum states

For two quantum states ρA ∈ B(HA) and ρB ∈ B(HB) we assume that
there is a quantum state ρ ∈ B(HA ⊗HB) which reduces to ρA and ρB .
We call ρ “a joint distribution” of ρA and ρB .

The joint entropy S(A,B) is given by S(ρ) when we fixed a “joint
distribution” ρ.

The quantum mutual information Iq(A,B) by

Iq(A,B) := S(A) + S(B)− S(A,B).
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Classical capacity of quantum channels I

Recall: channel capacity

(Def) The channel capacity C (Φ) of a given channel Φ is defined by

C (Φ) := sup
prob. dist. X on A

I (X ;Y ).
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Classical capacity of quantum channels II

The Holevo capacity

Let Φ : B(HA)→ B(HB) be a quantum channel.

(Def) The Holevo capacity of Φ is defined by

χ(Φ) := sup
prob. dist. (pi )

n
i=1, states (ρi )

n
i=1 on HA

Iq(A;B),

where A represents the classical state (pi )
n
i=1, B represents the

quantum state
∑n

i=1 piΦ(ρi ) with a specific joint distribution

ρ =
n∑

i=1

pi |i〉〈i | ⊗ Φ(ρi ).

The collection of states (ρi )
n
i=1 refers to the classical-quantum

encoding i 7→ ρi .
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Classical capacity of quantum channels III

Multiple use of quantum channels

(Scenario) Use the same quantum channel Φ repeatedly (n-times)
and independently to send a message from M = {1, · · · ,N}.
More precisely, we consider the quantum channel

Φ⊗n : B(H⊗nA )→ B(H⊗nB ), (ρ1, · · · , ρn) 7→ Φ(ρ1)⊗ · · · ⊗ Φ(ρn).

Independency is being reflected by taking tensor product.
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Classical capacity of quantum channels IV

Quantum codings

(Def) An (N, n)-quantum coding for the quantum channel Φ consists
of classical-quantum encoding f : M = {1, · · · ,N} → D(H⊗nA ) and
quantum-classical decoding given by a POVM {Pk}Nk=0 acting on
H⊗nB .

We define the transmission rate to be
logN

n
.

We also define the maximum error probability
Pe,max := max

1≤i≤N
[1− Tr(Φ⊗n(ρi )Pi )].
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Classical capacity of quantum channels V

Channel quantum coding theorem

(Def) We say that R > 0 is an achievable rate if ∃ (N, n)-quantum
coding’s whose transmission rate is R such that lim

n→∞
Pe,max = 0.

This means that we can send R-bits per one use of the quantum
channel in average.

(Holevo-Schumacher–Westmoreland theorem)

C (Φ) := supR = lim
n→∞

χ(Φ⊗n)

n
.
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Classical capacity of quantum channels VI

Additivity of Holevo Capacity

The “regularized” quantity lim
n→∞

χ(Φ⊗n)

n
is a new quantum phenomenon,

which leads us to the following question.

(Additivity Conjecture for χ)
For any quantum channel Φ we have

χ(Φ⊗ Φ) = 2χ(Φ).

(Hastings, 2008) There is a quantum channel Φ such that

χ(Φ⊗ Φ) > 2χ(Φ).

(Rem) The above can be interpreted as “repeated use of Φ will
increase classical information transmission”!
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Brief history of Banach space theory (A. Pietsch) I

The beginning

1920 (Birth): Thesis by S. Banach

1920 – 1932 (Youth): Monographs by Dunford/Schwarz and
Hille-Yoshida

1932 – 1958 (Post-Banach): Uniform boundedness principle,
Hahn-Banach thm, Open mapping thm
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Brief history of Banach space theory (A. Pietsch) II

Modern Banach space theory, 1958 –

Grothendieck - tensor norms, Dvoretzky - local theory

Local theory of Banach spaces, 1970 –

(Q1) Can we distinguish Banach spaces upto (bi-continuous) linear
isomorphisms?

The above is usually quite difficult. Even the statement Lp 6∼ Lq for
1 < p < q <∞ is not easy to prove.

Banach space theorists started to look at (arbitrary) finite
dimensional subspaces of a given (infinite dimensional) Banach space
in the hope that it tells us the “global” structure.

- Closed subspaces of Hilbert space are again Hilbert spaces.
- Lp(R), 1 ≤ p <∞ contains a closed subspace isomorphic to `2.

(Q2) Can we embed a B-sp. X into another B-sp. Y isomorphically?
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Local theory of Banach spaces and QIT I

Dvoretzky’s Theorem and QIT

(Thm, Dvoretzky, ‘61) For each k ∈ N and ε > 0 there is
N = N(k, ε) such that any N-dim Banach space X contains a k-dim’l
subspace E which is (1 + ε)-isomorphic to `2

k .

(Thm, Dvoretsky-Milman, ‘71) The above holds for a random
subspace E with high probability. Here, the probability is the
canonical translation invariant measure on the Grassmanian manifold

Gr(k ,RN) ∼= O(N)/(O(k)× O(N − k)),

which is a homogeneous space of quotient type.

(Additivity violation of Holevo capacity) One approach is based on
a refinement of the above theorem, which uses concentraion of
measure phenomenon, a then popular technique in Banach space
local theory.
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Local theory of Banach spaces and QIT II

Minimum output entropy (MOE)

(Def) For a quantum channel Φ : B(HA)→ B(HB) we define the
minimum output entropy Smin(Φ) by

Smin(Φ) := min
ρ∈D(HA)

S(Φ(ρ)).

(Remark) Recall the completely depolarizing channel on HB written
as a ramdom unitary channel Y 7→ 1

|J|
∑

j∈J UjYU
∗
j . Then we can

associate another quantum channel

Ψ : B(`2(J)⊗HA)→ B(HB), |j〉〈k | ⊗ X 7→ δj ,kUjYU
∗
j .

Then, we have the following:

χ(Ψ) = log dB − Smin(Φ).
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Local theory of Banach spaces and QIT III

Additivity Conjecture for MOE

(Additivity Conjecture for Smin)
For any quantum channel Φ we have

Smin(Φ⊗ Φ) = 2Smin(Φ).

(Hastings, 2008) There is a quantum channel Φ such that

Smin(Φ⊗ Φ) < 2Smin(Φ).
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Zero error capacity of a classical channel I

Recall: Zero error capacity

(Def) An (N, n)-coding for the channel Φ consists of encoding
f : M = {1, · · · ,N} → An and decoding g : Bn → M.

We define the transmission rate to be
logN

n
.

We also define the maximum error probability
Pe,max := max

1≤i≤N
P(g(Y n) 6= i |X n = f (i)).

(Def) We say that an (N, n)-coding is zero error if Pe,max = 0.

(Def, Shannon ‘56) The one-shot zero error capacity C 1
0 (Φ) of a

channel Φ is the supremum of R > 0 such that ∃ a zero error
(N, 1)-coding for Φ.

(Rem) In other words, N = 2C
1
0 (Φ) is the maximal number of different

inputs that Alice can send through Φ so that Bob knows exactly
which input was sent.
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Zero error capacity of a classical channel II

Confusability graph

(Def) For a classical channel Φ : A→ P(B), x 7→ (p(y |x))y∈B the
confusability graph G = (V ,E ) is given by

V = A, E = {(x , x ′) : ∃y ∈ B s.t. p(y |x)p(y |x ′) 6= 0}

(Ex) Binary symmetric channel

(Def) For a graph G = (V ,E ) (no loop, un-directed) we say that a
subset S ⊆ V is called independent if for all u, v ∈ S we have
(u, v) /∈ E . The independence number α(G ) is the maximal
cardinality of independent subsets of V .

(Thm) Let G be the confusability graph of a classical channel Φ,
then we have

logα(G ) = C 1
0 (Φ).
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Zero error capacity of a classical channel III

Zero error capacity: asymptotic version

(Prop) The zero error capacity of a classical channel Φ : A→ P(B)

can be calculated by C0(Φ) = lim
n→∞

C 1
0 (Φn)

n
, where Φn refers to

n-times independent use of Φ.

(Prop) Let G be the confusability graph of a classical channel Φ,
then the confusability graph of Φn is the strong graph product
G � · · ·� G (n-times).

(Def) For two graphs Gi = (Vi ,Ei ), i = 1, 2 we define the strong
graph product G1 � G2 = (V ,E ) by V := V1 × V2 and

E := {(x1, x2) ∼ (x ′1, x
′
2) : x1 ' x ′1, x2 ' x ′2, (x1, x2) 6= (x ′1, x

′
2)}.

Here, x ' x ′ means that x ∼ x ′ or x = x ′.

Computing C0(Φ) is usually very difficult!
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Zero error capacity of quantum channels I

One-shot zero error capacity of quantum channels

(Def) For a a quantum channel Φ : B(HA)→ B(HB) we define the
one-shot zero error capacity C 1

0 (Φ) as follows:

C 1
0 (Φ) := max{d : ∃ perfectly distinguishable {ρ1, · · · , ρd} ⊆ D(HS)

s.t. {Φ(ρ1), · · · ,Φ(ρd)} is perfectly distinguishable}.

Distinguishing quantum states

(Def) We say that {ρ1, · · · , ρd} ⊆ D(H) is perfectly distinguishable if ∃ a
quantum measurement {M1, · · · ,Mk} with k ≥ d s.t.

Tr(MjρiM
∗
j ) = δij for 1 ≤ i , j ≤ d .
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Zero error capacity of quantum channels II

Lemma

P,Q ∈ B(H): positive matrices.

Tr(P)⇒ P = 0.

T.F.A.E.
1 〈P,Q〉 = Tr(PQ) = 0,
2 PQ = 0,
3 ranP ⊥ ranQ.

More on distinguishability

(Prop) {ρ1, · · · , ρd} ⊆ D(H) is perfectly distinguishable iff ρiρj = 0
for all i 6= j . (proof)

When ρi = |vi 〉〈vi |, i.e. pure states, then perfectly distinguishability is
the same as vi ⊥ vj for all i 6= j .
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Zero error capacity of quantum channels III

One-shot zero error capacity of quantum channels: repeatition

(Def) For a a quantum channel Φ : B(HA)→ B(HB) we define the
one-shot zero error capacity C 1

0 (Φ) by

C 1
0 (Φ) := max{d : ∃ v1, · · · , vd orthonormal in HA

s.t. Φ(|vi 〉〈vi |)Φ(|vj〉〈vj |) = 0, ∀i 6= j}.

Remark

In the above we are using the fact that we may assume that the quantum
encodings are done by pure states. (why?)
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Zero error capacity of quantum channels IV

One-shot zero error capacity and operator systems

(Def) A subspace S ⊆ B(H) is called an operator system if (1)
IH ∈ S and (2) X ∈ S ⇒ X ∗ ∈ S.

(Def) For a quantum channel Φ : B(HA)→ B(HB) with the Kraus
representation Φ(X ) =

∑
j∈J AjXA

∗
j we define the associated operator

system SΦ by
SΦ := span{A∗i Aj : i , j ∈ J}.

This definition does not depend on the choice of Kraus
representations.

(Thm) For a quantum channel Φ : B(HA)→ B(HB) we have

C 1
0 (Φ) := max{d : ∃ v1, · · · , vd orthonormal in HA

s.t. Tr(|vi 〉〈vj |X ) = 0, ∀X ∈ SΦ, ∀i 6= j}.

Thus, C 1
0 (Φ) depends only on the associated operator system!
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Zero error capacity of quantum channels V

Graphs and operator systems

From the previous theorem we might guess graphs and operator
systems have some relationship.

(Def) For a graph G = (V ,E ) with |V | = n we can associate an
operator system SG ⊆ B(`2(V )) given by

SG := span({|i〉〈i | : i ∈ V } ∪ {|i〉〈j | : (i , j) ∈ E}).

(Prop) Let Φ : B(HA)→ B(HB) be a quantum channel and G is the
confusability graph of Φ. Then we have SΦ = SG . (proof)

(Remark) For this reason we call operator systems (⊆ Mn) as
non-commutative graphs! Many concepts of graph theory are being
transferred to operator system setting.
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Thank you for your attention!
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Tensor norms of Banach spaces I

Preliminaries

X ,Y ,Z : Banach spaces
B(X ,Y ): linear maps from X into Y with operator norm
B(X × Y ,Z ): bilinear maps from X × Y into Z with the norm

‖T‖ := sup
x∈BX ,y∈BY

‖T (x , y)‖Z , T ∈ B(X × Y ,Z ),

where BX refers to the unit ball of X .
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Tensor norms of Banach spaces II

Algebraic correspondence

For finite dimensional X ,Y we have

X ∗ ⊗ Y ∗ ∼= (X ⊗ Y )∗ ∼= B(X ,Y ∗) ∼= B(X × Y ,C)

φ⊗ ψ 7→ φ⊗ ψ 7→ S 7→ T ,

where 〈S(x), y〉 = 〈x ⊗ y , φ⊗ ψ〉 = φ(x)ψ(y) = T (x , y) for x ∈ X and
y ∈ Y .
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Tensor norms of Banach spaces III

Injective tensor norm of Banach spaces

Assume that X ,Y are finite dimensional Banach spaces.

(Def) We define the injective norm ‖ · ‖ε on X ⊗ Y by

‖z‖ε := sup
φ∈BX∗ ,ψ∈BY∗

|〈z , φ⊗ ψ〉|

for z ∈ X ⊗ Y . We write the corresponding Banach space as X ⊗ε Y
and call it the injective tensor product of X and Y .

(Prop) We have an isometric identification

X ∗ ⊗ε Y ∗ ∼= B(X × Y ,C) ∼= B(X ,Y ∗).
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Tensor norms of Banach spaces IV

γ2 tensor norm and its trace dual γ∗2
Assume that X ,Y are finite dimensional Banach spaces.

(Def) We define the γ2-norm ‖ · ‖γ2 on X ⊗ Y by

‖z‖γ2 := inf ‖A‖ · ‖B‖

for z ∈ X ⊗ Y and the infimum is taken for all possible factorization

Sz : X
A→ H B→ Y ∗ of the corresponding linear map for some Hilbert

space H.

(Def) We define the γ∗2 -norm ‖ · ‖γ∗2 on X ⊗ Y by

‖z‖γ∗2 := sup |〈z ,w〉|

for z ∈ X ⊗ Y , where the supremum is taken over all w ∈ X ∗ ⊗ Y ∗

with ‖w‖γ2 ≤ 1. Note that we are using trace duality here.
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Tensor norms of Banach spaces V

Grothendieck’s theorem and γ∗2-norm on `1-spaces

(Prop) For n,m ∈ N and z = (zij)1≤i≤n,1≤j≤m ∈ `1n ⊗ `1m we have

‖z‖γ∗2 = sup
d∈N,ui ,vj∈B`2

d

∣∣∣ ∑
1≤i≤n,1≤j≤m

zij〈ui , vj〉
∣∣∣.

(Thm, Grothendieck, ‘53)
There are universal constants KR

G and KC
G such that for any n,m ∈ N,

z1 ∈ `1n(R)⊗ `1m(R) and z2 ∈ `1n(C)⊗ `1m(C) we have

‖z1‖γ∗2 ≤ KR
G ‖z1‖`1n(R)⊗ε`1m(R) and ‖z2‖γ∗2 ≤ KC

G ‖z2‖`1n(C)⊗ε`1m(C).
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Tensor norms of operator spaces I

Operator space

Recall that any Banach space X is isometrically embedded in C (Σ)
for a compact Hausdorff space Σ.

(Def) An operator space E is a closed subspace of B(H) for some
Hilbert space H.

(Ex)
1 Any closed subspaces of C∗-algebras are operator spaces.
2 Dn, Rn, Cn: the spaces of diagonal, (1st) row, (1st) column matrices in

Mn, respectively
3 We also have that Dn

∼= `∞n as commutative C∗-algebras.
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Tensor norms of operator spaces II

Ruan’s abstract characterization of operator spaces

For an operator space E ⊆ B(H) we may equip a natural norm ‖ · ‖n
on Mn(E ) as a subspace of Mn(B(H)) ∼= B(`2n ⊗2 H) for any n ≥ 1.
We call (Mn(E ), ‖ · ‖n)n≥1 an operator space structure (shortly, o.s.s.
(or a matricial norm structure) on E .

(Ruan’s theorem)
Let E be a Banach space with matricial norm structure
(Mn(E ), ‖ · ‖n)n≥1 satisfying the following.

(R1) ‖x ⊕ y‖n+m = max{‖x‖n, ‖y‖m} for x ∈ Mn(E ), y ∈ Mm(E ).
(R2) ‖αxβ‖n ≤ ‖α‖ · ‖x‖n · ‖β‖ for x ∈ Mn(E ) and α, β ∈ Mn.

Then, there is an isometric embedding E ↪→ B(H) for some Hilbert
space H.
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Tensor norms of operator spaces III

Completely bounded maps and duality

(Def) A linear map T : E → F between operator spaces is called
completely bounded (shortly, cb) if

‖T‖cb := sup
n≥1
‖In ⊗ T : Mn(E )→ Mn(F )‖ <∞.

We denote the space of all cb-maps by CB(E ,F ) endowed with
cb-norm.

(Def) For an operator space E we define its dual operator space E ∗

by the Banach space E ∗ equipped with the o.s.s. given by

Mn(E ∗) := CB(E ,Mn)

via the canonical identification.

(Ex) `1n = (`∞n )∗ has a canonical o.s.s.
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Tensor norms of operator spaces IV

Injective tensor norm of operator spaces

Assume that E ,F are finite dimensional operator spaces.

(Def) We define the injective norm ‖ · ‖ε on E ⊗ F by

‖z‖min := ‖Sz‖CB(E ,F∗)

for z ∈ E ⊗ F and its corresponding linear map Sz : E → F ∗. We
write the corresponding Banach space as E ⊗min F and call it the
injective tensor product of E and F .

(Prop) We have an isometric identification
E ∗ ⊗min F

∗ ∼= CB(E ,F ∗) ∼= CB(E × F ,C), where the space
CB(E × F ,C) of cb-bilinear maps is equipped with the norm
‖T‖cb := sup

d∈N, x=(xij )∈BMd (E), y=(ykl )∈BMd (F )

‖T (xij , ykl)‖Md2
for

T ∈ CB(E × F ,C).
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Tensor norms of operator spaces V

Comparing two injective norms and Grothendieck’s theorem

(Prop) Let z = (zij)1≤i≤n,1≤j≤m ∈ `1n(R)⊗ `1m(R). Then,

‖z‖`1n⊗min`1m
= sup

d∈N,Ai ,Bj∈BMd

‖
n∑

i=1

m∑
j=1

zijAi ⊗ Bj‖Md2

= sup
d∈N,Ai ,Bj∈BMd

, |φ〉,|ψ〉∈B
`2
d
⊗2`

2
d

|
n∑

i=1

m∑
j=1

zij〈φ|Ai ⊗ Bj |ψ〉|

= sup
d ,Ai ,Bj , |φ〉,|ψ〉

|
n∑

i=1

m∑
j=1

zij〈φ|Ai ⊗ Id · Id ⊗ Bj |ψ〉|

≤ sup
d∈N, ui ,vj∈B`2

d

|
n∑

i=1

m∑
j=1

zij〈ui , vj〉|

= ‖z‖γ∗2 ≤ KR
G ‖z‖`1n(R)⊗ε`1m(R).
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Correlation sets and two player games I

Recall: Classical channels

(Def) A classical (discrete and memoryless) channel consists of the input
set A, the output set B and the map

Φ : A→ P(B), x 7→ (p(y |x))y∈B.

Recall: Correlation set

(Notation) We denote the set of all classical channels from A into B by
P(B|A). In other words,

P(B|A) = {(p(y |x))x∈A, y∈B : p(y |x) ≥ 0,
∑
y

p(y |x) = 1}.

When we have two input sets X, Y and two output sets A, B, we simply
write

P(AB|XY) = P(A× B|X× Y).
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Correlation sets and two player games II

Two player games

Alice and Bob plays a game against the referee.

(1) The referee sends inputs x ∈ X and y ∈ Y to Alice and Bob
respectively. (2) Alice and Bob use their own “strategy” and return
their output a ∈ A and b ∈ B to the referee. (3) The referee declares
“win” or “lose” according to the “rule”.
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Correlation sets and two player games III

Two player games: formal definition

(Def) A two player one-round game G = (X,Y,A,B, π,V ) consists
of input sets X,Y and output sets A,B for Alice and Bob,
respectively, a initial prob. dist. π on X× Y and the rule function

V : A× B× X× Y → {0, 1}.

(Ex) Graph coloring game for a graph (V ,E )
I Alice and Bob want to claim that they have c-coloring of (V ,E ).

I X = Y = V , A = B = {1, · · · , c}, Winning ⇔

{
x ∼ y ⇒ a 6= b

x = y ⇒ a = b
.
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Correlation sets and two player games IV

More on correlation sets

(Def) With input sets X, Y and output sets A, B we define the
classical correlation set PC(AB|XY) ⊆ RABXY

+ = RA×B×X×Y
+ by

PC(AB|XY) := Conv{P × Q : P ∈ P(A|X),Q ∈ P(B|Y)}.

In other words, they are “local distributions with shared randomness”.

(Def) We also define the quantum correlation set
PQ(AB|XY) ⊆ RABXY

+ by

PQ(AB|XY)

:= {(〈ψ|Aa
x ⊗ Bb

y |ψ〉)x ,y ,a,b : d ∈ N, |ψ〉 ∈ B`2d⊗2`2d
,

(Aa
x)a, (B

b
y )b POVMs on `2d , ∀x , y}.

PC(AB|XY) ⊆ PQ(AB|XY) ⊆ P(AB|XY) ⊆ RABXY: convex sets.
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Correlation sets and two player games V

Bell functionals and Bell inequality

(Def) A linear functional M = (Mab
xy )x ,y ,a,b of RABXY is called a Bell

functional.

(Def) For a Bell functional M = (Mab
xy )x ,y ,a,b we define its classical

value ω(M) by ω(M) := sup
P∈PC(AB|XY)

|
∑

x ,y ,a,b

Mab
xy p(a, b|x , y)|.

We also define its quantum (or entangled) value ω∗(M) by

ω∗(M) := sup
P∈PQ(AB|XY)

|
∑

x ,y ,a,b

Mab
xy p(a, b|x , y)|.

Any inequality of the form ω(M) ≤ C is called a Bell inequality.

We always have ω(M) ≤ ω∗(M). The situation ω(M) < ω∗(M) is
called a Bell inequality violation.
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XOR games and Bell’s/Grothendieck’s inequality I

Values of games

(Def) A two player one-round game G = (X,Y,A,B, π,V ) give rise to a
Bell functional

G ab
xy := π(x , y)V (a, b, x , y),

which allows us to define classical/quantum values of G , namely ω(G ) and
ω∗(G ).
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XOR games and Bell’s/Grothendieck’s inequality II

XOR games

(Def) A two player one-round game G = (X,Y,A,B, π,V ) is called
an XOR game if A = B = {0, 1} and V is of the following form:

V (a, b, x , y) =
1

2
(1 + (−1)a⊕b⊕cxy )

for some cxy ∈ {0, 1}, where ⊕ means the binary addition. In other
words, V depends on x , y and the parity of a and b.

(Ex) CHSH game: X = Y = A = B = {0, 1} and cxy = xy , the binary
product.
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XOR games and Bell’s/Grothendieck’s inequality III

Note that ∑
x ,y ,a,b

π(x , y)V (a, b, x , y)p(a, b|x , y)

=
∑

x ,y ,a,b

π(x , y)
1 + (−1)a⊕b⊕cxy

2
p(a, b|x , y)

=
1

2
+

1

2

∑
x ,y

π(x , y)(−1)cxy (p(0, 0|x , y) + p(1, 1|x , y)

− p(0, 1|x , y)− p(1, 0|x , y))

=
1

2
+

1

2
β(G ;P)

The last sum β(G ;P) in the above looks better to deal with. By extreme
point argument we propose the following definition.
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XOR games and Bell’s/Grothendieck’s inequality IV

Classical bias of games

(Def) We define classical bias β(G ) by

β(G ) := sup
P∈PC(A,B|X,Y)

|β(G ;P)|.

We actually have

β(G )

:= sup
A∈P(A|X)
B∈P(B|Y)

|
∑
x ,y

π(x , y)(−1)cxy (A(0|x)− A(1|x))(B(0|y)− B(1|y)|

= sup
a∈B`∞(X ,R)
b∈B`∞(Y ,R)

|
∑
x ,y

π(x , y)(−1)cxy axby |

= ‖(π(x , y)(−1)cxy )x ,y‖`1(X ,R)⊗ε`1(Y ,R)
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XOR games and Bell’s/Grothendieck’s inequality V

Quantum bias of games and its upper bound

(Def) We define quantum (or entangled) bias β∗(G ) by

β∗(G ) := sup
P∈PQ(A,B|X,Y)

|β(G ;P)|.

We may check that

β∗(G )

= sup
d∈N,A∈B`∞(X ,Md ),B∈B`∞(Y ,Md )

|
∑
x ,y

π(x , y)(−1)cxyAx ⊗ By |

= ‖(π(x , y)(−1)cxy )x ,y‖`1(X )⊗min`1(Y )

(Thm, Tsirelson, 87) For any XOR game G we have

β∗(G ) ≤ KR
G β(G ).
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XOR games and Bell’s/Grothendieck’s inequality VI

Three-player XOR games and unbounded violation

We may extend the concept of XOR games for n ≥ 3 players.

(Thm, Junge et al, 08) There is C > 0 s.t. for any n there is a
three-player XOR game G with input set size n2 such that

β∗(G ) ≥ C

√
n

log3/2 n
β(G ).

Thus, we can say that tripartite Bell inequality may have unbounded
violation!
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Thank you for your attention!
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