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Alice and Bob

@ Information theory studies the quantification, storage, and
communication of information, which was originally proposed by
Claude E. Shannon in 1948 (from Wikipedia).
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Alice and Bob: continued

@ Information theory has a quantum counterpart called Quantum
Information Theory (shortly, QIT).

<> [t <«
‘ Quantum States }—-‘ Quantum Channel }—“ Quantum States ‘

@ QIT serves as a background theory for Quantum
Computing(ZAtAFE)/Quantum Cryptography( A S)
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Quantum Computer: continued

@ Quantum computers are machines that can run quantum algorithms,
such as Shor's quantum integer factorization, ‘94 and Grover's
quantum search, ‘96.

o (Existing quantum computers)
by Google, IBM, Intel, Rigetti, D-wave.
o (Reference on the current status):

John Preskill, Quantum Computing in the NISQ era and beyond,
arXiv:1801.00862.
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Quantum information theory for functional analysts

@ Traditionally QIT preferred finite dimensional Hilbert spaces, so that
linear algebras and matrix analysis were the main tools.

@ Recently, many branches of functional analysis are being crucially
used in QIT including Banach/operator space theory, operator system
theory and quantum probability, which we will see in this series of
lectures.
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Postulates of Quantum Mechanics |
(P1)

Any isolated physical system is associated to a complex Hilbert space ‘H
called the state space

@ The state of the system is described by a unit vector ¢ € H, which is
called the state vector.

@ When dim?H = 2 the system is called a qubit system.
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Postulates of Quantum Mechanics |l

Remark

We assume that H is finite dimensional unless specified.

Bra-ket notation
For he H, Ae B(H)
- vector |h) € H, functional (h| € H*;
- Alh) € H, (h|A € H* and (h|A|h) € C.
- When H = ¢?(1) we denote the canonical basis by |i), i € I and |i){j]

refers to the matrix unit in B(#) usually denoted by e; and ej in
mathematics.
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Postulates of Quantum Mechanics IlI

(P2)

A discrete time evolution of a closed quantum system is described by a
unitary transformation, i.e. |h) € H — U|h) € H for some U € U(H).
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Postulates of Quantum Mechanics IV

(P3)
We could “read out” quantum states only by quantum measurements.

@ A quantum measurement is a family of operators {M;};c; C B(H)
satisfying > i, M M; = Iy.

@ The index i € | refers to the measurement outcome and we say that
the probability p(7) of the outcome being i after we apply the
measurement to the state 1 is given by |[M;[1)]|2 = (| M3 M; ).

- Y () = (W] > MEMi) = @lhly) = 9] =1,

i€l iel
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Postulates of Quantum Mechanics V

(P3)-related
o {P;i = M*M,;}ic; is called a POVM (positive operator valued
measure).
o (Ex) A POVM on H = C?: {Mo = |0)(0|, My = [1)(1]}.
The state ) = a|0) + b|1) collapses into ﬁ]O) with prob. |a|? and
into |—g||1> with prob. |b|? after the above measurement.
o After applying the measurement to the state ¢ with the outcome i

M)
the state collapses to another state TV
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Postulates of Quantum Mechanics VI

(P4)
The state space of a composite physical systems is the Hilbert space
tensor product of the component state spaces.

o (Ex) Suppose we have the system A and B with the state spaces Ha
and Hpg, then the composite system, which we denote by AB, has the
state space Ha ®2 Hpg, which we denote by H ap.

o (Def) A state vector |1)) € Hap is called separable if 1)) = |a) @ |b)
for some |a) € H and |b) € Hp. A non-separable state vector in
Hap is called entangled.
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Extended Postulates |

@ A state vector h € H = an operator |h)(h| acting on H, which we
call a pure state.

(P1)
A “state” of a system is described by a mixed state

p="_pilhi)hil, Y pi=1, pi >0,

i>1
which we interpret as the pure states |h;)(h;| being “mixed” with
“probability” p;.

@ The state p is nothing but a positive matrix with trace 1 by spectral
decomposition, which we call a density matrix.

@ We denote the set of all density matrices on H by D(H).
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Extended Postulates I

(P2')
Evolution on a closed system is given by unitary conjugations, i.e.
p— UpU*.

(P3")
For a POVM (Pj)ico we have

the “probability” of outcome i = Tr(Pip) = (p, P;).
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Extended Postulates Il1

Embedding of a quantum state

When a physical system, say A with the state space H 4, is “‘open” we
assume that it interacts with another system E (with the state space Hpg)
called “environment”. In this case we think the original system is
“embedded” in the composite system AE by an isometry

Vily) € Ha [¢) ®|p) € Ha®2 He
for a fixed state vector ¢ € Hg. In the density operator level this becomes

p € D(Ha) = p® |p)(p| € D(Ha ®2 He).
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Extended Postulates IV

Reduction

A density matrix 0 € D(Hag) can be reduced to a density matrix o4 by
taking partial trace over the system E, i.e.

oa = la® Tre(o) (simply denoted by Trg(o)).

Purification

@ For a density matrix p € D(Ha), a state vector |v) € Hap is called a
purification of p if Trg(|v){v|) = p.
da
@ The spectral decomposition p = Z)\k|xk><xk| with an ONB {|xx)}

k=1
of Ha gives us the canonical purification

Z \/_]xk ® |xk) € Ha ®2 Ha.

v
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Extended Postulates V

(P2") Quantum channels as generalized quantum evolutions

Evolution on an open quantum system is given by
®: B(Ha) = B(Hg), p— (I ® Tre)(U(p @ pe)U7)

for some environment H g, a state pg on Hg and a unitary

U : Hae — Hpe, which is nothing but a completely positive and
trace-preserving linear map. We call it a quantum channel. We may also
write (which is called the Stinespring representation)

®(p) = Ip ® Tre[VpV*]

for the isometry

V:Ha— He ®He, [) = U(J9) @ |0)).
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Extended Postulates VI

Remark

We “think” quantum channels describe all possible “noises” in quantum
world!

SNU, December 18th - 21st, 2018 19
Hun Hee LeeSeoul National University =~ Quantum information theory with functional ¢




Theory of completely positive maps |

Completely positive maps

(Def) A linear map T : B(H) — B(K) is called completely positive
(shortly, CP) if I, ® T : My(B(H)) — M,(B(K)) is positive for all n > 1.
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Theory of completely positive maps |l

Lemma
@ For a positive matrix P € B(H) the following map is CP.

T:C—B(H), a—a-P.

@ Let T : B(H) — B(K) be a (completely) positive map. Then, the
adjoint (via trace duality)

T : B(K) — B(H)

given by (T*Y, X) := (Y, TX), X € B(H), Y € B(K) is also
(completely) positive.
© The trace functional B(H) — C, X — Tr(X) is CP.

(Proof)
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Theory of completely positive maps Il

Various characterizations of completely positive maps

Let T : B(Ha) — B(*g) be a linear map. Then, T.F.A.E.
Q T isCP.

@ T is n-positive, (n = dimHa = da) i.e.
In®@ T : My(B(Ha)) — Mn(B(Hg)) is positive.

© The Choi matrix C1 = Z T(HU) @ i){j| € B(Hg ®2 Ha) is
positive. =
Q (Kraus representation) 3 3 {A; : j € J} € B(Ha,Hg) such that
T(X) =) AXA:
Jjed
© (Stinespring representation) 3 H¢ and A € B(Ha, Hpc) such that
T(X) = Trc(AXA®).

(Proof)
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Theory of completely positive maps IV

Choi rank
o (Def) The rank of the Choi matrix Cr is called the Choi rank.

e We may take |J| = dim# ¢ = the Choi rank.

Quantum channels = CP trace preserving (CPTP) maps
A CP map T satisfies trace preserving property if and only if
@ (Choi matrix) Trg(Crt) = Ia.

o (Kraus representation) ZA}*AJ- = 4.
jeJ
o (Stinespring representation) A*A = I, i.e. an isometry.
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Including Classical into Quantum |

Classical states
o (Def) Classical states are probability distributions on a finite set /.
@ The set of all probability distributions on / will be denoted by P(/)

@ A classical state (p;)ic/ can be understood as a quantum state acting
on £2(1) as a diagonal matrix, namely diag(p;).
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Including Classical into Quantum I

Classical channels

(Def) A classical (discrete and memoryless) channel consists of the input
set A, the output set B and the map

¢:A— P(B), x = (p(y|x))yeB-

Example: Binary symmetric channel
A =B =1{0,1}, 0 < p < 1: the flipping probability
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Including Classical into Quantum [l

Correlation set

(Notation) We denote the set of all classical channels from A into B by
P(B|A).

Remarks

@ The ideal situation for communication is “Alice and Bob agree on
what was sent” =- Channels represents all possible noises.

@ We assume that the relationship between the output y € B given the
input x € A is described probabilistically, or more precisely by its
“conditional probability” p(y|x).

SNU, December 18th - 21st, 2018 26 /
Hun Hee LeeSeoul National University — Quantum information theory with functional 43



Including Classical into Quantum IV

Classical channels as quantum channels

For a classical channel ® : A — P(B), x — (p(y|x))yeB We can associate
a quantum channel

® : B(Ha) = B(HB), ex — Oy diag(p(y|x))yes-

We use the same symbol ® by abuse of notation and this is usually called
as a classical-classical channel.
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Examples of quantum channels |

Classical-quantum channel

(Def) A classical-quantum channel is a map
®: A — D(Hg), X — pxs
where the associated quantum channel is
®: B(Ha) = B(HB), € — dxxPx-

We sometimes call it a classical-quantum coding.
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Examples of quantum channels Il

Quantum-classical channel and quantum measurement

o Let {M;}ic; C B(H) be a quantum measurement. Then, we can
associate two types of quantum channels.

@ The first one is

MipM?

V:B B E Tr(MipM}) ———_—,
(H) - (H)’ p = i r( pIVI; )TF(M,,OMI*)

which describes the after-effect of measurement as in (P3').

@ The second one is the following “quantum-classical channel”:
O : B(H) = P(I) C B(*(1)), pr> Y Tre(MipM;)|i){il.
i

o U = & when M;'s have 1 dimensional orthogonal ranges with
dimH = |/].
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Examples of quantum channels IlI

Further examples of quantum channels

o (Random unitary channel) For a family of unitaries {U;}ic; C B(H)
we consider

®: B(H) — B(H) |I|ZUXU*

iel

o (Isometry channel) For an isometry V : Ha — Hp

® : B(Ha) — B(Hg), X — VXV*.
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Examples of quantum channels IV

Further examples of quantum channels 2
o (Replacement channel) For a fixed state p € B(Hp)

®: B(Ha) — B(Hg), X — Tr(X)p.
When p = d , we call it the completely depolarizing channel.
o (Completely dephasing channel)

dimH
O B(H) = B(H), X Y Xili)(i
i=1
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Examples of quantum channels V

More on completely depolarizing channel
o (Discrete Weyl operators) For H = (2 = (?(Z,) with

Zn=1{0,1,---,n—1}. We define two operators on H as follows:
U:= Z |c+ 1)(c| and V := Z z¢|c){c|, where z = exp(2Z").
CEZn CEZn

e For (a,b) € Z,, X Z,, we also define
W,p: UVP.
o (Completely depolarizing channel) For X € B(?) we have

Tr(X)

]' *
P > W pXWy, =
a,beZ,

B,

In other words, completely depolarizing channels are random unitary
channels.

v
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Basic concepts of information theory |

Communication Scenario

" Noise ‘ r‘
Alice Bob
‘ Messages H En;:f:d H Channel H Tran;:;;tted H Messages

L'{’ Encoding }—[ L" Decoding F{

Error correcting correctmg
~ code

Alice and Bob are communicating using a classical channel

®:A— P(B), x = (p(ylx))yes-
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Basic concepts of information theory |l

Classical state as a random source

A classical state in Alice side will be a probability distribution on A(or a
random variable with A-values) describing randomly arriving messages.

The Shannon entropy

(Def) The Shannon entropy H(X) of random variable
X :(Q,P)— {1,---,n} is defined by

n
H(X) = _ZPiIOgPi = H(p17 7Pn)7
i=1

where p; = P(X = i) satisfying p; >0, >-7_, pj = 1.
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Basic concepts of information theory Il

Exercise

In the above case we have

0 < H(X) < logn.

The Shannon entropy: interpretation

n
@ The Shannon entropy H(X) = — Zp; log p; is understood as the
i=1
average information after we learn the value of X or the average
uncertainty before we learn the value of X.

@ High probability ~ less surprise = less valuable information.

o (Ex) Uniform distribution (%, , 1) = max entropy log n
Point mass (1,0,---,0) = min entropy 0.
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Basic concepts of information theory IV

The Source coding theorem

o Let X be a random message source (i.e. a prob. dist. p on /). For
neN, a>0 0<d<1an (n, a,d)-coding for X refers to an
encoding f : I" — {0,1}l*") | a decoding g : {0,1}L*") — I” such
that P({A € I": g(f(A)) =A}) >1—0, where P=px--- X p,
which means we use X independently n-times.

@ (Shannon’s source coding theorem)

If « > H(X), then 3 (n, a, §)-coding for X eventually for n € N.
If o < H(X), then 3 (n, @, §)-coding for X at most finitely many n € N.

o (Meaning of entropy) We can say that we need H(X)-bits per one
letter to encode a random message from X in average.
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Basic concepts of information theory V

Joint entropy and mutual information

X-(QP)—>{1--- n},
Y (Q,P)—= {1, ,m}
another random variable (X, Y) : (2, P) — {1 : ,n} x{1,---,m}.

@ The entropy H(X, Y) of (X, Y) is called the joint entropy of X and
Y.

@ The mutual information of X and Y is defined by

For two random variables we can associate

I(X; Y) == H(X) + H(Y) — H(X, Y).

e /(X;Y) quantifies the “information that X and Y share”. In other

words, how much knowing one of these variables reduces uncertainty
about the other.
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Basic concepts of information theory VI

Channel capacity
(Def) The channel capacity C(®) of a given channel ® is defined by

C(P) := sup 1(X;Y).
prob. dist. X on A

o (Ex) Binary symmetric channel: C(®) =1 — H(p,1 — p), where
H(p,1 — p) is the binary entropy function.
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Basic concepts of information theory VII

Multiple use of channels

@ (Scenario) Use the same channel ® repeatedly (n-times) and
independently to send a message from M = {1,--- , N}.

@ More precisely, we consider the classical channel
®": A" — P(B"), (x1,--- ,xn) = P(x1) X -+ X D(xp),

where the latter means the product of measure, which implies that we
are assuming independency.

Decoding

@ Encoding
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Basic concepts of information theory VIII

Codings
o (Def) An (N, n)-coding for the channel ® consists of encoding
f:M={1,---,N} — A" and decoding g : B" — M.

. . log N
@ We define the transmission rate to be g .

@ We also define the maximum error probability
Pe,max = 1?,3<XN P(g(yn) # i|Xn = f(’))

Decoding

@jcoding
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Basic concepts of information theory IX

Shannon's channel coding theorem

o (Def) We say that R > 0 is an achievable rate if 3 (N, n)-coding’s

whose transmission rate is R such that lim Pe max = 0.
n—o0

@ This means that we can send R-bits per one use of the channel in
average.

@ (Shannon’s channel coding theorem)

C(®) =supR.
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Basic concepts of information theory X

Zero error capacity
o (Def) We say that an (N, n)-coding is zero error if Pe max = 0.

@ The zero error capacity Co(®P) of a channel @ is the supremum of
R > 0 such that 3 a zero error (N, n)-coding for ®.

@ The one-shot zero error capacity C3(®) of a channel & is the
supremum of R > 0 such that 3 a zero error (N, 1)-coding for ®.
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Thank you for your attention!
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Basic concepts of quantum information theory |

Communication Scenario

" Noise ‘ r‘
Alice Bob
‘ Messages H En;:ged H Channel H Tran;::;tted H Messages

L'{’ Encoding }—[ L" Decoding F{

Error correcting correctmg
~ code

Alice and Bob are communicating using a quantum channel

O : B(Ha) — B(Hp).
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Basic concepts of quantum information theory Il

The von Neumann entropy

(Def) For a quantum state p = Zp,-|h,-)(h,-| € B(H) we define the von
i=1
Neumann entropy by

S(p) == Z pi log p.
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Basic concepts of quantum information theory Il

Comparing quantum states: fidelity

o (Def) For quantum state p, o € B(H) we define the fidelity F(p, o)

by
11,1
F(p,0) :=Tr[(p20p2)2].

o We always have 0 < F(p,0) < 1.

e F(po)=1<p=o.

e F(p,0) =0« po =0, i.e. orthogonal ranges.

o Fidelity measures how close the two quantum states are.
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Basic concepts of quantum information theory IV

Comparing input/output quantum states: channel fidelity

o (Def) For a quantum state p € B(#) with the canonical purification
|u) € H ®, H and a quantum channel ¢ : B(H) — B(H) we define
the channel fidelity F(®, p) by

F(®,p) := F(lu){ul, ® @ hy(|u){ul)).
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Basic concepts of quantum information theory V

Recall: The Source coding theorem

o Let X be a random message source (i.e. a prob. dist. p on /). For
neN, a>0 0<d<1an (n, a,d)-coding for X refers to an
encoding f : I" — {0,1}l*") | a decoding g : {0,1}L*") — I” such
that P({A € I": g(f(A)) =A}) >1—0, where P=px--- X p,
which means we use X independently n-times.

@ (Shannon’s source coding theorem)

If « > H(X), then 3 (n, a, §)-coding for X eventually for n € N.
If o < H(X), then 3 (n, @, §)-coding for X at most finitely many n € N.

o (Meaning of entropy) We can say that we need H(X)-bits per one
letter to encode a random message from X in average.
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Basic concepts of quantum information theory VI

The quantum source coding theorem

o Let p € D(H) with H =¢%(]). Frne N, a>0,0<d <1 an
(n, «, 6)-quantum coding for p refers to quantum channels
® : B(H®") — B((C?)len)y and W : B((C?)le")) — B(H®") such
that F(Wo &, p®") > 1 — 4.
@ (Schumacher’s quantum source coding theorem)
If @ > H(p), then 3 (n, o, 0)-Q-coding for X eventually for n € N.
If & < H(p), then 3 (n, @, §)-Q-coding for X at most finitely many
neN.
e (Meaning of entropy) We can say that we need H(p)-qubits to
quantum-encode a “quantum message from p" in average.
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Basic concepts of quantum information theory VII

Joint entropy and mutual information for quantum states
For two quantum states pa € B(Ha) and pg € B(Hpg) we assume that

there is a quantum state p € B(Ha ® Hp) which reduces to pa and pg.

We call p “a joint distribution” of pa and pg.

@ The joint entropy S(A, B) is given by S(p) when we fixed a “joint
distribution” p.

@ The quantum mutual information /I4(A, B) by

Io(A, B) := S(A) + S(B) — S(A, B).
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Classical capacity of quantum channels |

Recall: channel capacity
(Def) The channel capacity C(®) of a given channel @ is defined by

C(®) = sup 1(X;Y).
prob. dist. X on A
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Classical capacity of quantum channels |l

The Holevo capacity
Let ® : B(Ha) — B(Hp) be a quantum channel.
o (Def) The Holevo capacity of ® is defined by

x(®) = sup I4(A; B),

prob. dist. (p;)7_,, states (p;)7_; on Ha

where A represents the classical state (p;)?_;, B represents the
quantum state > ; pi®(p;) with a specific joint distribution

p=_pili)(il ® d(p;).
i=1

@ The collection of states (p;j)7_; refers to the classical-quantum
encoding i — p;.
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Classical capacity of quantum channels Il

Multiple use of quantum channels

@ (Scenario) Use the same quantum channel ® repeatedly (n-times)
and independently to send a message from M = {1,--- , N}.

@ More precisely, we consider the quantum channel
=" B(HZ") — B(HE"), (p1.-++ 1 pn) = P(p1) @ - @ D(pn).

@ Independency is being reflected by taking tensor product.

Decoding

mj\coding

SNU, December 18th - 21st, 2018 12/
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Classical capacity of quantum channels IV

Quantum codings
o (Def) An (N, n)-quantum coding for the quantum channel ® consists
of classical-quantum encoding f : M = {1, , N} — D(H%") and
quantum-classical decoding given by a POVM {Pk}LVZO acting on
HEP.

: .. log N
@ We define the transmission rate to be g .

@ We also define the maximum error probability
Pemax = max [1 = TH(®"(p7) P)].
1<i<N

0}
B

@ Encoding . . Decoding @
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Classical capacity of quantum channels V

Channel quantum coding theorem

o (Def) We say that R > 0 is an achievable rate if 3 (N, n)-quantum

coding’s whose transmission rate is R such that lim P max = 0.
n—o0

@ This means that we can send R-bits per one use of the quantum
channel in average.

o (Holevo-Schumacher-Westmoreland theorem)

X(®°7)

C(®) :=supR = lim
n—o0 n

SNU, December 18th - 21st, 2018 14 /
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Classical capacity of quantum channels VI

Additivity of Holevo Capacity
®on

The “regularized” quantity lim X
. 7= [
which leads us to the following question.

is a new quantum phenomenon,

o (Additivity Conjecture for x)
For any quantum channel ® we have

X(® ® ®) = 2(©).
o (Hastings, 2008) There is a quantum channel ® such that
X(P @ ®) > 2x(P).

o (Rem) The above can be interpreted as “repeated use of ¢ will
increase classical information transmission”!

SNU, December 18th - 21st, 2018 15 /
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Brief history of Banach space theory (A. Pietsch) |

The beginning
@ 1920 (Birth): Thesis by S. Banach

@ 1920 — 1932 (Youth): Monographs by Dunford/Schwarz and
Hille-Yoshida

@ 1932 — 1958 (Post-Banach): Uniform boundedness principle,
Hahn-Banach thm, Open mapping thm

y
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Hun Hee LeeSeoul National University — Quantum information theory with functional 29




Brief history of Banach space theory (A. Pietsch) Il
Modern Banach space theory, 1958 —

Grothendieck - tensor norms, Dvoretzky - local theory

Local theory of Banach spaces, 1970 —
@ (Q1) Can we distinguish Banach spaces upto (bi-continuous) linear
isomorphisms?
@ The above is usually quite difficult. Even the statement LP 4 L9 for
1 < p< g < oo is not easy to prove.

@ Banach space theorists started to look at (arbitrary) finite
dimensional subspaces of a given (infinite dimensional) Banach space
in the hope that it tells us the “global” structure.

- Closed subspaces of Hilbert space are again Hilbert spaces.
- LP(R),1 < p < oo contains a closed subspace isomorphic to £2.

@ (Q2) Can we embed a B-sp. X into another B-sp. Y isomorphically?

SNU, December 18th - 21st, 2018 17 /
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Local theory of Banach spaces and QIT |

Dvoretzky's Theorem and QIT
o (Thm, Dvoretzky, ‘61) For each k € N and € > 0 there is
N = N(k,¢) such that any N-dim Banach space X contains a k-dim’l
subspace E which is (1 + €)-isomorphic to £2.
o (Thm, Dvoretsky-Milman, ‘71) The above holds for a random
subspace E with high probability. Here, the probability is the
canonical translation invariant measure on the Grassmanian manifold

Gr(k,RN) = O(N)/(O(k) x O(N — k)),

which is a homogeneous space of quotient type.

o (Additivity violation of Holevo capacity) One approach is based on
a refinement of the above theorem, which uses concentraion of
measure phenomenon, a then popular technique in Banach space
local theory.

v
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Local theory of Banach spaces and QIT I

Minimum output entropy (MOE)

o (Def) For a quantum channel ® : B(Ha) — B(Hg) we define the
minimum output entropy Smin(®) by

Srmin(®) := penpﬁ(iglA)S(d’(p))-

o (Remark) Recall the completely depolarizing channel on Hg written
: 1 *
as a r_amdom unitary channel Y — & > jes UiYU?. Then we can
associate another quantum channel

W B((J) ® Ha) = B(Hg), Li)(k|® X — &« U; YUS.
Then, we have the following:

X(V) = log dg — Smin(P).

v
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Local theory of Banach spaces and QIT Il

Additivity Conjecture for MOE

o (Additivity Conjecture for Syi,)
For any quantum channel ¢ we have

Smin(® @ @) = 255in(P).
o (Hastings, 2008) There is a quantum channel ® such that

5min(<I> &® (D) < 25min(¢)-
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Zero error capacity of a classical channel |

Recall: Zero error capacity
o (Def) An (N, n)-coding for the channel ® consists of encoding
f:M={1,--- N} — A" and decoding g : B" — M.
log N

@ We define the transmission rate to be

@ We also define the maximum error probability

Pe,max = lgiang P(g(y ) 7& ’|X = f(’))

o (Def) We say that an (N, n)-coding is zero error if Pe max = 0.
o (Def, Shannon '56) The one-shot zero error capacity C}(®) of a

channel ® is the supremum of R > 0 such that 3 a zero error
(N, 1)-coding for ®.

e (Rem) In other words, N = 2G5(®) is the maximal number of different

inputs that Alice can send through ® so that Bob knows exactly
which input was sent.

v
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Zero error capacity of a classical channel Il

Confusability graph

o (Def) For a classical channel ¢ : A — P(B), x — (p(y|x))yep the
confusability graph G = (V, E) is given by

V=A, E={(x,x"):3yeBst p(ylx)p(y|x) # 0}

o (Ex) Binary symmetric channel

o (Def) For a graph G = (V, E) (no loop, un-directed) we say that a
subset S C V is called independent if for all u,v € S we have
(u,v) ¢ E. The independence number a(G) is the maximal
cardinality of independent subsets of V.

@ (Thm) Let G be the confusability graph of a classical channel @,
then we have

log a(G) = C}(P).
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Zero error capacity of a classical channel Il

Zero error capacity: asymptotic version
@ (Prop) The zero error capacity of a classical channel  : A — P(B)

1(pn
can be calculated by Co(P) = Ii_}m & (nq> )
n—oo

n-times independent use of ®.

, Where @7 refers to

o (Prop) Let G be the confusability graph of a classical channel ®,
then the confusability graph of ®” is the strong graph product
GKX---X G(n-times).

o (Def) For two graphs G; = (V;, E;), i = 1,2 we define the strong
graph product G; X G, = (V,E) by V := V; x V; and

E = {(x1,x2) ~ (X1, X5) : x1 > X1, X2 = X3, (x1,x2) # (X1, %3) }-

Here, x ~ x’ means that x ~ x’ or x = x’.

e Computing Co(®) is usually very difficult!

v
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Zero error capacity of quantum channels |

One-shot zero error capacity of quantum channels
(Def) For a a quantum channel ® : B(Ha) — B(#Hg) we define the
one-shot zero error capacity C3(®) as follows:
C3(®) := max{d : 3 perfectly distinguishable {p1,--- , pqg} C D(Hs)
sit. {®(p1),--- ,P(pg)} is perfectly distinguishable}.

Distinguishing quantum states

(Def) We say that {p1,---,pq} € D(H) is perfectly distinguishable if 3 a
quantum measurement {My,--- , M} with k > d s.t.

Tr(/\/ljp,-l\/lj‘) = 5,1 for1 < i,j < d.
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Zero error capacity of quantum channels Il

Lemma
P, Q € B(H): positive matrices.
e Tr(P)=P=0.
o T.FAE.
Q (P,Q)=Tr(PQ)=0,

Q@ PQ =0,
© ranP L ranQ.

More on distinguishability
o (Prop) {p1,--- ,pa} € D(H) is perfectly distinguishable iff pjp; =0
for all i # j. (proof)
@ When p; = |v;)(vi|, i.e. pure states, then perfectly distinguishability is
the same as v; L v; for all i # j.
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Zero error capacity of quantum channels Ill

One-shot zero error capacity of quantum channels: repeatition

(Def) For a a quantum channel ® : B(Ha) — B(#Hg) we define the
one-shot zero error capacity C3(®) by

Col(cb) :=max{d: 3 vy, -, vg orthonormal in Ha
s.t. O(Jvi) (vil)®(lvj){vi]) = 0, Vi # j}.

Remark

In the above we are using the fact that we may assume that the quantum
encodings are done by pure states. (why?)
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Zero error capacity of quantum channels IV

One-shot zero error capacity and operator systems
o (Def) A subspace S C B(H) is called an operator system if (1)
hyeSand (2) XeS=X"eS.

o (Def) For a quantum channel ¢ : B(Ha) — B(#Hg) with the Kraus
representation ®(X) = >_. ; A;XAT we define the associated operator
system S¢ by

So :=span{AiA;:i,je J}.
This definition does not depend on the choice of Kraus
representations.

@ (Thm) For a quantum channel  : B(Ha) — B(Hg) we have

C3(®) :=max{d : 3 vy, -, vg orthonormal in H,
s.t. Tr(|vi)(vj|X) = 0,VX € So, Vi # j}.

e Thus, C}(®) depends only on the associated operator system!
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Zero error capacity of quantum channels V

Graphs and operator systems
@ From the previous theorem we might guess graphs and operator
systems have some relationship.
o (Def) For a graph G = (V, E) with |V| = n we can associate an
operator system Sg C B(¢2(V)) given by

Se = span({[/){i] - 7 € VI UL[N{] - (7)) € E}).

o (Prop) Let ¢ : B(Ha) — B(Hpg) be a quantum channel and G is the
confusability graph of ®. Then we have Sp = Sg. (proof)

o (Remark) For this reason we call operator systems (C M,) as
non-commutative graphs! Many concepts of graph theory are being
transferred to operator system setting.
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Thank you for your attention!
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Tensor norms of Banach spaces |

Preliminaries

e X,Y,Z: Banach spaces
B(X,Y): linear maps from X into Y with operator norm
B(X x Y, Z): bilinear maps from X x Y into Z with the norm

[Tl == sup [[T(x,y)llz, T € B(X xY,2),

XEBx,y€By

where By refers to the unit ball of X.
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Tensor norms of Banach spaces |l

Algebraic correspondence
For finite dimensional X, Y we have
XYY" 2 (XY) 2B(X,Y)=B(XxY,C)
PRY— ¢®Y =S — T,

where (5(x),y) = (x®y,¢ ® ¥) = ¢(x)¥(y) = T(x,y) for x € X and
yey.
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Tensor norms of Banach spaces Il|

Injective tensor norm of Banach spaces
Assume that X, Y are finite dimensional Banach spaces.
o (Def) We define the injective norm || - || on X ® Y by
lzlle:==" sup  [{z,¢ @)

$EBxx YEBy+

for z € X ® Y. We write the corresponding Banach space as X ®. Y
and call it the injective tensor product of X and Y.

@ (Prop) We have an isometric identification

X*®. Y* 2 B(X x Y,C) = B(X, Y*).
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Tensor norms of Banach spaces IV

72 tensor norm and its trace dual v;
Assume that X, Y are finite dimensional Banach spaces.
o (Def) We define the y2-norm || - ||5, on X @ Y by

2[5, = inf [[A]l - [|B]]

for z € X ® Y and the infimum is taken for all possible factorization

S, X A H B v+ of the corresponding linear map for some Hilbert
space H.

o (Def) We define the y3-norm || - |, on X ® Y by

12ll5; == sup[{z, w)|

for z€ X ® Y, where the supremum is taken over all w € X* ® Y*
with [|wlly, < 1. Note that we are using trace duality here.

v
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Tensor norms of Banach spaces V

Grothendieck's theorem and ~3-norm on (!-spaces
o (Prop) For n,m € N and z = (zj)1<i<ni<j<m € €% @ £, we have

2l = sup |3 z{u v

GN,U,',VjEBeg 1<i<nl<j<m

o (Thm, Grothendieck, ‘53)
There are universal constants K% and Kg such that for any n,m € N,
z1 € A(R) ® £1(R) and zp € £1(C) ® £% (C) we have

R C
|zl < Kellzillamygee @) and [|22]l4; < Kéllz2lla(c)z.e )
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Tensor norms of operator spaces |

Operator space

@ Recall that any Banach space X is isometrically embedded in C(X)
for a compact Hausdorff space ¥.

o (Def) An operator space E is a closed subspace of B(#) for some
Hilbert space H.
o (Ex)
@ Any closed subspaces of C*-algebras are operator spaces.
@ D,, R,, C,: the spaces of diagonal, (1st) row, (1st) column matrices in

M,,, respectively
© We also have that D, = ¢5° as commutative C*-algebras.
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Tensor norms of operator spaces |l

Ruan’s abstract characterization of operator spaces

@ For an operator space E C B(#) we may equip a natural norm || - ||,
on M,(E) as a subspace of M,(B(H)) = B({2 @, H) for any n > 1.

We call (M,(E), || - |[n)n>1 an operator space structure (shortly, o.s.s.

(or a matricial norm structure) on E.

o (Ruan’s theorem)
Let E be a Banach space with matricial norm structure
(Mn(E), || - |ln)n>1 satisfying the following.
(R1) [Ix ® yllntm = max{|[x[[n, lyl[m} for x € Ma(E), y € Mm(E).
(R2) flaxBlln < lledll - lixlln - [|B]] for x € Ma(E) and av, 5 € Mp,.

Then, there is an isometric embedding E — B(H) for some Hilbert
space H.
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Tensor norms of operator spaces ||

Completely bounded maps and duality

o (Def) A linear map T : E — F between operator spaces is called
completely bounded (shortly, cb) if

Tl = Sl;[i @ T : Mp(E) = My(F)| < oc.
n>

We denote the space of all cb-maps by CB(E, F) endowed with
cb-norm.

o (Def) For an operator space E we define its dual operator space E*
by the Banach space E* equipped with the o.s.s. given by

M,(E*) := CB(E, M,)

via the canonical identification.

o (Ex) ¢} = (¢2°)* has a canonical o.s.s.

v
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Tensor norms of operator spaces |V

Injective tensor norm of operator spaces
Assume that E, F are finite dimensional operator spaces.
o (Def) We define the injective norm || - ||c on E® F by

(| 2] min = ”SZHCB(E,F*)

for z € E® F and its corresponding linear map S, : E — F*. We
write the corresponding Banach space as E ®n,in, F and call it the
injective tensor product of E and F.

e (Prop) We have an isometric identification
E* @min F* =2 CB(E, F*) = CB(E x F,C), where the space
CB(E x F,C) of cb-bilinear maps is equipped with the norm

| Tllep := sup 1T (x5, yai)lm, for
deN, x=(x;3)€Bwm, (£), Y=y )€ Bumy(F)
T € CB(E x F,C).
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Tensor norms of operator spaces V

Comparing two injective norms and Grothendieck's theorem
(Prop) Let z = (zij)lﬁiﬁn,lﬁjﬁm € é%(R) & E,l.n(R) Then,

n m
2]l agpner, = sup 1Y) " ziAi® Bjllm
T deN, A, Bi€By, i j=1 s e

= sup |ZZZU<¢|Ai®Bj|¢>|

deN, A;,Bi€Bu,, |¢>7|¢>€ng®2g(2j i=1 j=1

n m
= sup DD zi{dlAI® - la® Bily)]

d,AiBjs [9):1¥) =1 j=1

n m
< sup |ZZZU<Ui=Vj>|

deN, ”"’VJ'GB@ = =1l

R
= ||Z||~/§‘ < KGHZHZ},(R)@J},,(R)'
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Correlation sets and two player games |

Recall: Classical channels

(Def) A classical (discrete and memoryless) channel consists of the input
set A, the output set B and the map

®:A = P(B), x = (p(y[x))yes-

Recall: Correlation set

(Notation) We denote the set of all classical channels from A into B by
P(BJ|A). In other words,

P(BJA) = {(p(y]x))xea,yes : p(y|x) = 0, Y p(ylx) =1}.

When we have two input sets X, Y and two output sets A, B, we simply
write

P(AB|XY) = P(A x B|X x Y).

SNU, December 18th - 21st, 2018 13/
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Correlation sets and two player games I

Two player games
@ Alice and Bob plays a game against the referee.

@ (1) The referee sends inputs x € X and y € Y to Alice and Bob
respectively. (2) Alice and Bob use their own “strategy” and return
their output a € A and b € B to the referee. (3) The referee declares
“win" or “lose” according to the “rule”.

Referee

y
Alice Bob

x Referee /b

v
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Correlation sets and two player games lI

Two player games: formal definition
o (Def) A two player one-round game G = (X,Y,A,B,x, V) consists
of input sets X, Y and output sets A, B for Alice and Bob,
respectively, a initial prob. dist. 7 on X X Y and the rule function

V:AxBxXxY — {01}

o (Ex) Graph coloring game for a graph (V, E)
Alice and Bob want to claim that they have c-coloring of (V, E).
x~y=a#bhb

X=Y=V,A=B={1,---,c}, Winning &
x=y=a=>b
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Correlation sets and two player games IV

More on correlation sets

o (Def) With input sets X, Y and output sets A, B we define the
classical correlation set Pe(AB|XY) C RABXY — RAXBXXXY

Pe(AB|XY) := Conv{P x Q : P € P(A|X),Q € P(B|Y)}.

In other words, they are “local distributions with shared randomness” .

o (Def) We also define the quantum correlation set
Po(AB|XY) C RABXY py

Po(AB|XY)
= {((VIA ® B [¥))xy,ab - d EN, [) € Bpg,e,
(A2)a, (BL)s POVMs on 3, Vx, y}.

o Pc(AB|XY) C Po(AB|XY) C P(AB|XY) C RABXY: convex sets.

v
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Correlation sets and two player games V

Bell functionals and Bell inequality
o (Def) A linear functional M = (Mab) x.y.ab of RABXY is called a Bell

functional.
o (Def) For a Bell functional M = (M20),.,, . » we define its classical
value w(M) by w(M) = sup | Z Mabp (a, blx,y)|.

PEPc(ABIXY)

We also define its quantum (or entangled) value w*(M) by

w*(M) = sup Z M"bp (a, b|x, y)|-

PEPo(ABIXY) T,

@ Any inequality of the form w(M) < C is called a Bell inequality.
o We always have w(M) < w*(M). The situation w(M) < w*(M) is
called a Bell inequality violation.
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XOR games and Bell's/Grothendieck'’s inequality |

Values of games

(Def) A two player one-round game G = (X,Y,A,B,m, V) give rise to a
Bell functional

G2 :=n(x,y)V(a, b,x,y),

which allows us to define classical /quantum values of G, namely w(G) and
w*(G).
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XOR games and Bell's/Grothendieck’s inequality I

XOR games

o (Def) A two player one-round game G = (X,Y,A,B, 7, V) is called
an XOR game if A =B = {0,1} and V is of the following form:

1
V(a,b,x,y) = 5(1 o (_1)a®b@cxy)

for some ¢, € {0,1}, where @ means the binary addition. In other
words, V' depends on x, y and the parity of a and b.

o (Ex) CHSH game: X =Y = A =B = {0,1} and ¢,, = xy, the binary
product.

v
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XOR games and Bell's/Grothendieck’s inequality 11

Note that

> w(x,y)V(a b,x,y)p(a, blx, y)

X7y7a7b
1+ —1 a@b@cxy
= Y 7(xy) ( 2) p(a, blx, y)
X?.y,a7b

1 1 _
= — = _ %
575 ;W(X’Y)( 1) (p(0,0]x,y) + p(1,1|x,y)

- p(0,1]x,y) — p(1,0[x,y))

1 1
=—-+4+ -p(G; P
>+ 58(G:P)
The last sum (G; P) in the above looks better to deal with. By extreme
point argument we propose the following definition.
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XOR games and Bell's/Grothendieck’s inequality IV
Classical bias of games
o (Def) We define classical bias 3(G) by

B(G) = sup  [B(G; P)].
PEPe(ABIX,Y)

@ We actually have

8(G)
= sup [ m(x,y)(=1)* (A(0]x) — A(1[x))(B(Oly) — B(1]y)]

AEP(AX) 5
BeP(BY)

= sup |Z7r(x,y)(—1)‘:xyaxby]

aGBgoo(X,R) X,y
be BZOO(Y,R)

= [[(m (6 ¥)(=1) )xy

£(X,R)®LH(Y,R)

v
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XOR games and Bell's/Grothendieck’s inequality V

Quantum bias of games and its upper bound
o (Def) We define quantum (or entangled) bias 5*(G) by

B*(G) := sup IB(G; P)|.
PePo(A,B|X,Y)

@ We may check that
8*(G)
= sup | YT ) (D)7 A By

dEN,AEBzoo(X,Md),BeBeoo(KMd) X,y
= (w6, ) (1) )xyller(x)@miner ()

@ (Thm, Tsirelson, 87) For any XOR game G we have

B*(G) < KEB(G).
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XOR games and Bell's/Grothendieck’s inequality VI

Three-player XOR games and unbounded violation
@ We may extend the concept of XOR games for n > 3 players.

@ (Thm, Junge et al, 08) There is C > 0 s.t. for any n there is a
three-player XOR game G with input set size n® such that

/i

5(6)2 €57 8(6).

Thus, we can say that tripartite Bell inequality may have unbounded
violation! )
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Thank you for your attention!
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