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There are two notions of the Square Root Problems.
One is for measures and the other is for operators.
For the the Square Root Problems for measures,
we let µ and ν be probability measures supported in a compact
interval in R+.
Consider the following equation:∫

tndµ(t) =

(∫
tndν(t)

)2

· · · · · · (1)

We are now interested in the following question [CuE, SS]:
Given a measure µ, does there exist a measure ν satisfying
(1)?
Also, if such a ν exists, represent ν in terms of µ.
We call this problem the Square Root Problem of measures.
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By [LY2], we notice that (1) can be rewritten as∫

tndµ(t) =

∫
tnd(ν ∗ ν)(t),

where ∗ means the convolution [KiYo2].
Thus, the Square Root Problem of measure says that given a
measure µ,
does there exist a measure ν such that

µ = ν ∗ ν ?

In this sense, ν is called a square root of the measure µ.
If (1) is satisfied, then we say that µ has a square root ν.
Actually, (1) is related to the subnormality and Aluthge
transform of operators.
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H : complex Hilbert space
B(H) : algebra of bounded operators on H
S ∈ B(H) is normal if S∗S = SS∗

quasinormal if S commutes with S∗S, i.e., SS∗S = S∗S2

subnormal if S = N|H, where N is normal and N(H) ⊆ H
and hyponormal if S∗S ≥ SS∗, that is, S∗S − SS∗ ≥ 0,
where ≥ means 〈(S∗S − SS∗) x , x〉 ≥ 0 ∀x ∈ H.
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For k ≥ 1, S is k -hyponormal if

Mk (S) : = ([S∗j ,Si ])k
i,j=1 ≥ 0

=


[S∗,S] [S∗2,S] · · · [S∗k ,S]
[S∗,S2] [S∗2,S2] · · · [S∗k ,S2]

...
...

. . .
...

[S∗,Sk ] [S∗2,Sk ] · · · [S∗k ,Sk ]

 ≥ 0,

where [A,B] := AB − BA.
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Equivalently,

I S∗ S∗
2 · · · S∗

k

S S∗S S∗
2
S · · · S∗

k
S

S2 S∗S2 S∗
2
S2 · · · S∗

k
S2

...
...

... · · ·
...

Sk S∗
2
Sk S∗

2
Sk · · · S∗

k
Sk


(k+1)×(k+1)

≥ 0.

(By Choleski’s Algorithm [CHO]).
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(Bram-Halmos Criterion for Subnormality) [Bra, Con]:
S ∈ B(H) : subnormal⇐⇒

∑
i,j
〈Sixj ,Sjxi〉 ≥ 0,

∀x0, x1, · · · , xk ∈ H, ∀k ≥ 1.
The Bram-Halmos criterion can be then rephrased as saying
that [CMX]
S is subnormal if and only if S is k -hyponormal for every k ≥ 1.
Thus,

normal =⇒ quasinormal =⇒ subnormal
=⇒ k -hyponormal =⇒ hyponormal.

Jasang Yoon



(1) Background

9
We consider the polar decomposition of bounded linear
operator.
We can write any complex number z = a + ib in polar form
using the formulas:
a = r cos θ and b = r sin θ, where θ = tan−1 (b

a

)
and

r =
√

a2 + b2. In other words,

z = r (cos θ + i sin θ)

where r ≥ 0 and |cos θ + i sin θ| = cos2 θ + sin2 θ = 1.
The motivation for polar decomposition of bounded linear
operator acting on a Hilbert space would be the following
equation:
z =

(
z
|z|

)
|z| =

(
z
|z|

)√
zz and |z|2 = zz for any nonzero

complex number z.
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Let S ∈ B(H), with the polar decomposition S ≡ UQ,
where U is a partial isometry and Q is a positive operator.
If ker U = ker Q, then U and Q are unique and
Q := |S| =

√
S∗S.

The Aluthge transform of S is the operator

S̃ := |S|
1
2 U|S|

1
2 ,

the Duggal transform S̃D of S is

S̃D := |S|U.

the generalized Aluthge transform S̃ε of S is S̃ε := |S|εU|S|1−ε,
where 0 ≤ ε ≤ 1
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For a matrix S, the polar decomposition of S is

S =

(
1 −1
1 1

)
=

(
1√
2
− 1√

2
1√
2

1√
2

)( √
2 0

0
√

2

)
≡ U|S|.

The Aluthge transform S̃ of S is

S̃ =

( 4
√

2 0
0 4
√

2

)( 1√
2
− 1√

2
1√
2

1√
2

)( 4
√

2 0
0 4
√

2

)
≡ |S|

1
2 U|S|

1
2 .
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The singular value decomposition (SVD) is a decomposition of
a matrix into the products of a unitary matrix, a diagonal matrix,
and another unitary matrix, that is, A = UDV , where U and V
are unitary and D is a diagonal matrix.
The Cholesky decomposition (CD) is a decomposition of a
Hermitian, positive definite matrix into the product of a lower
triangular matrix and its conjugate transpose.
That is, for a given symmetric positive definite matrix A, there is
a unique factorization of the lower triangular matrix with positive
diagonal entries U such that UU∗ = A.
Example of SVD:

A =

(
2 1
1 1

)
=

(
1 1
−1 1

)(
1 0
0 3

)( 1
2 −1

2
1
2

1
2

)
= UDV .
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Example of CD:
A = UU∗, where

A =

 4 1 −1
1 2 1
−1 1 2

 and U =

 2 0 0
1
2

√
7

2 0

−1
2

5
√

7
14

√
6
7


However, it is not easy to find matrices B,C such that B2 = A
and C2 = B.
We might get B using a numerical algorithm without a long
calculation.
However, when I try to find C, I feel that it is not easy to find C.
If A,B are arbitrary positive operators in B(H), then more.
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1-variable weighted shifts:
H ≡ `2(Z+) with orthonomal basis {en}∞n=0

S ≡Wα ≡ shift(α0, α1, · · · ), where 0 < αn (called weight)
Wα : `2(Z+)→ `2(Z+) such that Wαen = αnen+1 for all n ≥ 0,
that is,

Wα =


0 0 0 0 · · ·
α0 0 0 0 · · ·
0 α1 0 0 · · ·
0 0 α2 0 · · ·
...

...
...

...
. . .

 : `2(Z+)→ `2(Z+).

W ∗
αen = αn−1en−1 for all n ≥ 0, where e−1 ≡ 0 and α−1 ≡ 0
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For Wα ≡ shift(α0, α1, · · · ), let W̃α (reps. W̃ D

α ) be
the Aluthge (resp. Duggal) transform of Wα.

Then W̃α ≡ shift(
√
α0α1,

√
α1α2, · · · )

and W̃ D
α ≡ shift(α1, α2, · · · ).

Wα = U+Dα (polar decomposition)

W̃α = D
1
2
αU+D

1
2
α and W̃ D

α = DαU+

where U+ :=


0
1 0

1 0
. . . . . .

 and Dα :=

 α0
α1

. . .


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The Aluthge transformation was first studied by A. Aluthge in
the paper [Alu] in relation with the p-hyponormal and
log-hyponormal operators.
Definitions:
T ∈ B(H) is said to be p-hyponormal, 0 < p ≤ 1, if
(T ∗T )p ≥ (TT ∗)p

and log-hyponormal, if log (T ∗T ) ≥ log (TT ∗).
If p = 1, T becomes hyponormal and if p = 1

2 , T is called
semi-hyponormal.
Semi-hyponormal operators were introduced by Xia [Xia], and
p-hyponormal operators have been studied by Aluthge.
Any p-hyponormal operators are q-hyponormal if q ≤ p.
But there are examples to show that the converse of the above
statement is not true [Alu].
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Over the last two decades, Aluthge transform has been studied
extensively.
One reason is the connection of Aluthge transformation with
the invariant subspace problem. Another one is that Aluthge
transformation is very useful in the study of non-normal
operators.
Roughly speaking, the Aluthge transform converts an operator
into another operator which is closer to being a normal
operator.
Since every normal operators has nontrivial invariant
subspaces, the Aluthge transform has a natural connection with
the invariant subspace problem.
Moreover, S, S̃D, and S̃ have the same spectrum.
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For n ≥ i , we let Li :=

∨
{en : n ≥ i} denote the invariant

subspace of Wα obtained by removing the first i vectors in the
canonical orthonormal basis of `2(Z+).
The moment of Wα is defined by

γn ≡ γn(Wα) :=

{
1, if n = 0;
α2

0 · · ·α2
n−1, if n 6= 0.

Recall the Berger Theorem [Con, GeWa] for Wα:
Wα is subnormal if and only if there exists a probability
measure µ (called the Berger measure associated with Wα)
supported on [0, ||Wα||2] satisfying

γn =

∫ ||Wα||2

0
tndµ(t) (n = 0,1,2, · · · ).
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If Wα is subnormal with Berger measure µ, then the Berger
measure of Wα|Li is dµLi (t) = t i

γi
dµ(t), where Wα|Li means the

restriction of Wα to Li [CuP].
Recall that the Schur product A ◦ B of matrices A and B is the
entry-wise product, i.e., if A = (aij) and B = (bij) then
A ◦ B = (aijbij).
For two bounded sequences α ≡ {αk}∞k=0 and β ≡ {βk}∞k=0, the
Schur product α ◦ β of α and β is defined by
α ◦ β := {αkβk}∞k=0. Then, for weighted shifts Wα and Wβ, we
can see that Wα ◦Wβ = Wα◦β ≡ shift(α0β0, α1β1, · · · ).
It is known that if Wα and Wβ are subnormal, then the Schur
product Wα ◦Wβ is also subnormal [CuP].
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Recall that for Wα, its Aluthge transform W̃α is a weighted shift
with weight sequence {√αkαk+1}∞k=0 [LLY1].
In particular, in [KiYo2], it was shown that if Wα and Wβ are
subnormal weighted shifts with Berger measure ξ1 and ξ2,
respectively,
then the Berger measure associated with the Schur product
Wα ◦Wβ is the convolution ξ1 ∗ ξ2.
Note that if we write

√
α ≡ {√αk}∞k=0 for α ≡ {αk}∞k=0, then

since W√α ◦W√α = Wα, it follows that
W√α is subnormal =⇒Wα is subnormal.
Therefore, if W√α is subnormal with Berger measure ν, then
Wα has the Berger measure ν ∗ ν.
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tndµ(t) =

(∫
tndν(t)

)2

=

∫
tnd(ν ∗ ν)(t) · · · · · · (1)

Hence again, (1) is reformulated as the following:
If Wα is subnormal, under what conditions, is W√α subnormal ?
We now consider why this is related to the Aluthge transform.
Note that W̃α can be viewed as the Schur product of two
weighted shifts W̃α = W√α ◦W√α|L1 ,
where W√α|L1 = shift(

√
α1,
√
α2, · · · ).

Evidently, if W√α is subnormal, then W√α|L1 is also subnormal.
Moreover, since the Schur product of two subnormal weighted
shifts is also subnormal, we can see that

W√α is subnormal =⇒ W̃α is subnormal · · · · · · (2)
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Therefore, from the viewpoint of the Square Root Problem of
measures,
we can say that if Wα is subnormal with Berger measure µ, then

µ has a square root =⇒ W̃α is subnormal · · · · · · (3)

We can ask whether the converse of (3) is true.
Hence, by (3), we see that the study of the Square Root
Problem of measures is strongly connected to the study of the
subnormality and Aluthge transform of operators.
However, we don’t know whether the converse of (3) is true.
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If Wα is subnormal with Berger measure µ and µ has a square
root ν, then∫

tndµ(t) =

(∫
tndν(t)

)2

=

∫
tnd(ν ∗ ν)(t) · · · · · · (1)

By the Berger Theorem and (1), we have that W√α is
subnormal with Berger measure ν and

W√α is subnormal =⇒ W̃α is subnormal · · · · · · (2)

Therefore,

µ has a square root =⇒ W̃α is subnormal · · · · · · (3)

But
W̃α is subnormal ???

=⇒ µ has a square root.
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Question 1:
If Wα is a subnormal weighted shift with Berger measure µ, are
the following statements equivalent?
(i) µ has a square root;
(ii) The Aluthge transform W̃α is subnormal.
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For the Square Root Problems for operators,
recall that matrix B is said to be a square root of A if the matrix
product B2 is equal to A

(
B2 = A

)
.

We also recall that an n× n matrix A is diagonalizable if there is
a matrix V and a diagonal matrix D such that V−1AV = D.
This happens if and only if A has n eigenvectors which
constitute a basis for Cn.
In this case, V can be chosen to be the matrix with the n
eigenvectors as columns, and thus a square root of A is
VD

1
2 V−1.

Indeed, we get(
VD

1
2 V−1

)2
=
(

VD
1
2 V−1

)(
VD

1
2 V−1

)
= VDV−1 = A · · · · · · (4)
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Motivated by (4), we are interested in the following question:
For S ∈ B(H), if S2 has a property,

when does S have the same property ?· · · · · · (5)

Similarly, for a positive operator S, we can ask what is
√

S?
Furthermore, if S has a property,

when does
√

S have the same property ?· · · · · · (6)

Jasang Yoon



(1) Background

27
We call (5) and (6) the Square Root Problems of operators.

(5) and (6) are related to the following long-open problems in
operator theory:
(a) characterize the subnormal operators having a square root;
(b) classify all subnormal operators whose square roots are
also subnormal (cf. [KiYo4], [OlTh], [Wog].
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Recall:∫

tndµ(t) =

(∫
tndν(t)

)2

=

∫
tnd(ν ∗ ν)(t) · · · · · · (1)

If we consider the above Square Root Problems, that is, (1), (5),
and (6), to the case of commuting pairs of subnormal operators,
then these are also strongly related to the Lifting Problem for
Commuting Subnormals (LPCS) which is another long-open
problem in operator theory.

The LPCS asks for finding necessary and sufficient conditions
for a pair of commuting subnormal operators on a Hilbert space
to admit commuting normal extensions.
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Recall:
If ξ1 and ξ2 are two measures (over R+ for example), the
convolution of ξ1 and ξ2 is defined by

(ξ1 ∗ ξ2)(E) =

∫
1E (x + y) ξ1 (x) ξ2 (y)

or
(ξ1 ∗ ξ2)(E) =

∫
1E (xy) ξ1 (x) ξ2 (y)

for any measurable set E in R+.
So the convolution of two measures is a measure.
For example, we use convolution of measures in probability
theory.
If a random variable X has the probability distribution P and a
random variable Y has the probability Q, X independent from
Y , then the distribution of X + Y is P ∗Q.
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Example:
X is the set of numbers of “head" after 3 flips of a fair coin, that
is,
X = {HHH,HHT ,HTH,HTT ,THH,THT ,TTH,TTT}.
Then, we have:
Prob(x = 0) = 1

8 ; Prob(x = 1) = 3
8 ; Prob(x = 2) = 3

8 ;

Prob(x = 3) = 1
8 .

The discrete probability distribution P for X : 1
8 for x = 0, 3

8 for
x = 1, 3

8 for x = 2, and 1
8 for x = 3.
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A special case is when P and Q are absolutely continuous with
respect to the Lebesgue measure, i.e. dP(x) = f (x)dx and
dQ(y) = g(y)dy .
In that case P ∗Q has a density which is the convolution of the
two densities: f ∗ g (this time it’s a convolution of functions,
which results in a function).
So d(P ∗Q)(z) = (f ∗ g)(z)dz, where

(f ∗ g)(z) =

∫
R+

f (x)g(z − x)dx =

∫
R+

f (z − y)g(y)dy

or

(f ∗ g)(z) =

∫
R+

f (x)g(zx−1)dx =

∫
R+

f (zy−1)g(y)dy
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Theorem 2:(∫

tndν(t)
)2

=
∫

tnd(ν ∗ ν)(t)
Proof:
Recall that if ξ1 and ξ2 are probability measures on R+,
then the convolution of ξ1 and ξ2 (denoted by ξ1 ∗ ξ2) is defined
by:
For every Borel set E ⊂ R+,

(ξ1 ∗ ξ2)(E) := (ξ1 × ξ2)(p−1(E)),

where p : R+ × R+ → R+ is defined by p(s, t) = st .
Since p is a continuous function, p−1(E) is a
ξ1 × ξ2-measurable set,
so that the convolution ξ1 ∗ ξ2 is a well-defined measure on R+.
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(continue Proof)
Moreover, ξ1 ∗ ξ2 is also a probability measure because

(ξ1 ∗ ξ2)(R+) = (ξ1 × ξ2)(p−1(R+)) = (ξ1 × ξ2)(R+ × R+)

= ξ1(R+)ξ2(R+) = 1.

Observe that by the Fubini Theorem,(∫
tndν(t)

)2
=
∫∫

sntndν(s)dν(t)
=
∫

sntnd (ν × ν) (s, t) =
∫∫

sntnd(ν × ν)(p−1(st))
=
∫

tnd(ν ∗ ν)(t).
· · · · · · (7)
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Theorem 3:
If Wα and Wβ are subnormal weighted shifts with Berger
measure ξ1 and ξ2, respectively,
then Wα ◦Wβ is also subnormal and the Berger measure
associated with the Schur product Wα ◦Wβ is the convolution
ξ1 ∗ ξ2.
Proof:
The subnormality of Wα ◦Wβ comes from the following facts:
For k ≥ 1, if Wα and Wβ are k -hyponormal, then Wα ◦Wβ is
also k -hyponormal.
By the Bram-Halmos criterion, if k −→∞, then
Wα and Wβ are subnormal =⇒Wα ◦Wβ =: Wα◦β is subnormal.
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(continue Proof)
We now want to show that ξ1 ∗ ξ2 is the Berger measure of
Wα◦β.
Let γk1(Wα◦β) be the moment of order k1 ≥ 0 for the subnormal
weighted shift Wα◦β.
Note that for k1 ≥ 1

γk1(Wα◦β) = (α0β0)2 · · ·
(
αk1−1βk1−1

)2

=
(
α2

0 · · ·α2
k1−1

)(
β2

0 · · ·β2
k1−1

)
= γk1(Wα)γk1(Wβ)

· · · · · · (8)

where γk1(Wα)
(
resp. γk1(Wβ)

)
is the moment of order k1 for

Wα (resp. Wβ).
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(continue Proof)
Recall Berger Theorem:
If T ≡Wα, then Wα is subnormal if and only if there exists a
probability measure ξα supported in [0, ‖Wα‖2] such that
γk1(Wα) =

∫
sk1dξα(s) for all k1 ≥ 1.

Recall the continuous function p from R+ × R+ to R+ such that
p (s1, s2) = s1s2.
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(continue Proof)
Then, by (7) and (8), we have that for k1 ≥ 0,

γk1(Wα◦β) = γk1(Wα)γk1(Wβ)

=
(∫

sk1
1 dξ1 (s1)

)(∫
sk1

2 dξ2 (s2)
)

=
∫

sk1
1 sk1

2 d (ξ1 × ξ2) (s1, s2) =
∫

(s1s2)k1 d
([

(ξ1 × ξ2)
(
p−1)]) (s1s2)

=
∫

(s1s2)k1 d (ξ1 ∗ ξ2) (s1s2) =
∫

tk1d (ξ1 ∗ ξ2) (t = s1s2).

It follows from the Berger Theorem that Wα◦β has the Berger
measure ξ1 ∗ ξ2.
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Recall the following result:
Proposition 4 [CuEx]:
Let µ =

∑N
i=0 αiδxi be a finitely atomic probability measure

supported in [0,1],
where 0 ≤ x0 < x1 < · · · < xN = 1 and αi > 0 for i = 0, · · · ,N.
If µ has a square root ν, i.e. µ = ν ∗ ν, then

supp(ν) =

{
{0} ∪ ([

√
x1,1] ∩ supp(µ)) (x0 = 0)

[
√

x0,1] ∩ supp(µ) (x0 6= 0)
· · · · · · (9)
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Theorem 5:
If φ =

∑m
i=1 αiδxi and ϕ =

∑n
j=1 βjδyj are probability measures,

then
φ ∗ ϕ =

∑
i,j

αiβjδ{xi yj}.

Proof:
Recall p : R+ × R+ → R+ is defined by p(s, t) = st . Note

(φ ∗ ϕ)(R+) = (φ× ϕ)(p−1(R+)) = (φ× ϕ)(R+ × R+)

= φ(R+)ϕ(R+) = (
m∑

i=1

αiδxi )(
n∑

j=1

βjδyj )

=
∑
i,j

αiβjδ{xi yj}.
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Example 6: Let a and b be such that 0 < a < b2 < b < 1.
Then, 0 < a2 < ab < a < b2 < b < 1.
Let µ = α0δa2 + α1δab + α2δa + α3δb2 + α4δb + α5δ1, where

5∑
i=0

αi = 1, αi > 0 with α2
1 = 4α0α3, α

2
2 = 4α0α5, and α2

4 = 4α3α5.

Note that we can always find infinitely many α0, · · · , α5
satisfying the above relations.
For example, α0 = 1

9 , α1 = 2
9 , α2 = 2

9 , α3 = 1
9 , α4 = 2

9 , α5 = 1
9

satisfy the relations.
Let ν =

√
α0δa +

√
α3δb +

√
α5δ1.
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(continue Example 6)
Then, by Theorem 5 we have

ν ∗ ν = (
√
α0δa +

√
α3δb +

√
α5δ1) ∗ (

√
α0δa +

√
α3δb +

√
α5δ1)

= α0δa2 + 2
√
α0α3δab + 2

√
α0α5δa + α3δb2 + 2

√
α3α5δb + α5δ1

= α0δa2 + α1δab + α2δa + α3δb2 + α4δb + α5δ1
= µ.

However, we obtain

supp(ν) = {a,b,1} 6= {a,b2,b,1}
= [a,1] ∩ {a2,ab,a,b2,b,1} = [

√
x0,1] ∩ supp(µ)

which shows that the second row of the set equality in (9) in
Proposition 4 does not hold.
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Theorem 7:
Let µ =

∑N
i=0 αiδxi be a finite atomic probability measure

supported in [0,1],
where 0 ≤ x0 < x1 < · · · < xN = 1 and αi > 0 for i = 0, · · · ,N.
If µ has a square root ν, i.e. µ = ν ∗ ν, then

{xN−1,1} ⊆ supp(ν)

⊆
{
{0} ∪ ([

√
x1,1] ∩ supp(µ)) (x0 = 0)

[
√

x0,1] ∩ supp(µ) (x0 6= 0).
· · · · · · (10)
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Proof:
Let ν =

∑k
j=0 βjδyj , where y0 < y1 < · · · < yk . Then, by

Theorem 5, we have

ν ∗ ν = (
k∑

j=0

βjδyj ) ∗ (
k∑

j=0

βjδyj )

= β2
0δy2

0
+ β0β1δy0y1 + · · ·+ β2

k δy2
k
.

Note
supp(ν ∗ ν) =

{
y2

0 , y0y1, . . . , yk−1yk , y2
k

}
.

For convenience, we will use the following notation:
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(continue proof)

PO (supp(ν ∗ ν)) =



y2
0 < y0y1 < · · · < y0yk

∧ ∧
y2

1 < · · · < y1yk
∧

...
...

∧ ∧
y2

k−1 < yk−1yk
∧
y2

k


· · · · · · (#)
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(continue proof)
where < is the standard inequality of real numbers which
produces a partial order on supp(ν ∗ ν).
Since 0 ≤ x0 < x1 < · · · < xN = 1 and µ = ν ∗ ν, we have

y2
0 = x0, yk−1yk = xN−1, and y2

k = xN = 1.

Hence, we have yk−1 = xN−1 and yk = 1. Therefore, we obtain
the first inclusion in (10).
Let x0 = 0.
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(continue proof)
Let x0 = 0.
Since y0 = 0, we have

PO (supp(ν ∗ ν)) =



0 < y2
1 < · · · < y1

∧
...

...
∧ ∧

y2
k−1 < yk−1

∧
1


.
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Since µ = ν ∗ ν, it follows that

supp(ν)\{0} = {y1, · · · , yk} ⊆ supp(µ)\{0}.

Since y2
1 = x1, we have

supp(ν)\{0} = {y1, · · · , yk}
⊆ [
√

x1,1] ∩ supp(µ)\{0} · · · · · · (11).

Let x0 6= 0. Then, we get that supp(ν ∗ ν) has the partial order
shown in (#). Since y2

0 = x0, we have

supp(ν) = {y0, · · · , yk}
⊆ [y0,1] ∩ supp(µ) = [

√
x0,1] ∩ supp(µ)

· · · · · · (12).

Therefore, by (11) and (12), we have the second inclusion in
(10), as desired.
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Recall:
Question 1:
If Wα is a subnormal weighted shift with Berger measure µ, are
the following statements equivalent?
(i) µ has a square root;
(ii) The Aluthge transform W̃α is subnormal.
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Lemma 8: Let µ be a finitely atomic probability measure that
always has its largest atom at 1 in a compact interval in R+.
(a) If µ has 2 atoms, i.e., µ = aδp + bδ1 (0 ≤ p < 1), then µ has
a square root if and only if p = 0;
(b) If µ has 3 atoms, i.e., µ = aδp + bδq + cδ1 (0 ≤ p < q < 1),
then µ has a square root if and only if p = q2 and b2 = 4ac;
(c) If µ has 4 atoms, i.e., µ = aδp + bδq + cδr + dδ1
(0 ≤ p < q < r < 1), then µ has a square root if and only if
p = 0, q = r2, and c2 = 4bd .
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Proof: Since the proofs for (a) and (b) are similar to the one of
(c), we only want to show (c).
(=⇒)
Assume that µ has a square root.
Then, by Theorem 7, we have

{xN−1,1} ⊆ supp(ν)

⊆
{
{0} ∪ ([

√
x1,1] ∩ supp(µ)) (x0 = 0)

[
√

x0,1] ∩ supp(µ) (x0 6= 0).
· · · · · · (10)
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(continue Proof)
Thus, if p = 0 (µ = aδp + bδq + cδr + dδ1), then
supp(v) = {0, r ,1} or {r ,1}, because
0 ≤ x0 = p < x1 = q < r < xN = 1.
If supp(v) = {r ,1}, then by Theorem 5, we have

supp(µ) = (supp(ν))2 = {r2, r ,1},

a contradiction.
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(continue Proof)
If supp(v) = {0, r ,1}, then

supp(µ) = (supp(ν))2 = {0, r2, r ,1}.

In this case, we have p = 0 and q = r2.
If instead p 6= 0 (µ = aδp + bδq + cδr + dδ1), then
supp(v) = {r ,1} or {q, r ,1}.
In this case, (supp(ν))2 is different from supp(µ).
Thus, the case p 6= 0 cannot occur.
Therefore, we must have that p = 0, q = r2 and
supp(v) = {0, r ,1}.
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(continue Proof)
We now write

ν = xδ0 + yδr + zδ1 (0 < x , y , z < 1; x + y + z = 1).

Since ν ∗ ν = µ, it follows from Theorem 5 that c2 = 4bd , that is,

(xδ0 + yδr + zδ1) ∗ (xδ0 + yδr + zδ1) = aδ0 + bδr2 + cδr + dδ1
=⇒ a = x2 + 2xy + 2xz; b = y2; c = 2zy ; d = z2

=⇒ c2 = 4bd .
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(continue Proof)
(⇐=)
Assume that p = 0, q = r2, and c2 = 4bd . Put

ν :=
(

1−
√

b −
√

d
)
δ0 +

√
bδr +

√
dδ1

Then, we have

ν ∗ ν
= (1−

√
b −
√

d)(1 +
√

b +
√

d)δ0 + bδr2 + 2
√

b
√

dδr + dδ1

= (1− b − d − 2
√

b
√

d)δ0 + bδr2 + cδr + dδ1 = µ

and µ has a square root.
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Theorem 9: Let Wα be a subnormal weighted shift with finitely
atomic Berger measure µ having at most 4 atoms.
Then, µ has a square root if and only if the Aluthge transform
W̃α of Wα is subnormal.
Proof: (=⇒) If µ has a square root, then by (3), W̃α is
subnormal, as desired.
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(continue Proof)
(⇐=) Briefly stated, our strategy to prove the converse is as
follows:
(a) Compute µL1 and note that the weight sequence of W̃α is a
square root of that of Wα ◦Wα|L1 .
(b) Observe that ν is a square root of µ ∗ µL1 .
(c) Predict supp (ν) based on Theorem 7 and (b).
(d) Compute the equation ν ∗ ν = µ ∗ µL1 to obtain our desired
results.
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(continue Proof)
We suppose that W̃α is subnormal.
Case 1: Let µ has 2 atoms, then µ = aδp + (1− a) δ1, where
0 < a < 1 and 0 ≤ p < 1.
Recall that
if Wα is a subnormal weighted shift with Berger measure µ and
Lj :=

∨
{ek : k ≥ j} is the invariant subspace obtained by

removing the first j vectors in the canonical orthonormal basis
of `2(Z+),
then the Berger measure µLj of Wα|Lj is given by (cf. Cu)

dµLj (t) =
t j

γj
dµ(t) · · · · · · (14)
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(continue Proof)
Thus, in particular, the Berger measure ξ of Wα|L1 is
dξ = t

α2
0
dµ, where α := {αk}∞k=0.

Then, by (14) we have

dµL1 (t) =
t

γ1(µ)
dµ (t) =

apδp + (1− a) δ1

ap + (1− a)
.

Note that Wα ◦Wα|L1 is a weighted shift with {αkαk+1}∞k=0.

Thus, the weight sequence of W̃α is a square root of that of
Wα ◦Wα|L1 .
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(continue Proof)
Hence, if W̃α has the Berger measure ν, then since Wα ◦Wα|L1

has the Berger measure µ ∗ µL1 , it follows that ν is a square
root of µ ∗ µL1 .
Since

supp (µ ∗ µL1) =
{

p2,p,1
}

,

it follows from Theorem 5 that supp (ν) = {p,1}.
We write

ν = xδp + (1− x) δ1,

where 0 < x < 1.
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(continue Proof)
If p 6= 0, then the equation

ν ∗ ν = µ ∗ µL1

=⇒ x2δp2 + 2x (1− x) δp + (1− x)2 δ1 =
a2pδp2+a(1−a)(1+p)δp+(1−a)2δ1

ap+(1−a)

=⇒ x =
a
√

p√
ap+(1−a)

; (1− x) = 1−a√
ap+(1−a)

; 2
√

p = 1 + p

=⇒ p = 1

which is a contradiction.
Thus, we should have p = 0. Therefore, by Lemma 8 (a), µ has
a square root.
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(continue Proof)
Case 2: Let µ has 3 atoms, then

µ = aδp + bδq + (1− a− b) δ1

where 0 < a,b < 1 and 0 ≤ p < q < 1.
Recall:

dµLj (t) =
t j

γj
dµ(t) · · · · · · (14)

By (14), note that

dµL1 (t) =
apδp + bqδq + (1− a− b) δ1

ap + bq + (1− a− b)
.
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(continue Proof)
Thus, by Theorems 5 and 7, we have

supp (µ ∗ µL1) =
{

p2,pq,q2,p,q,1
}

and supp (ν) = {p,q,1}. We write

ν = xδp + yδq + (1− x − y)δ1,

where 0 < x , y , x + y < 1.
If p = 0, then the equation ν ∗ ν = µ ∗ µL1 implies q = 1 which
drives a contradiction.
If p 6= 0, then the equation ν ∗ ν = µ ∗ µL1 implies p = q2 and
b2 = 4ac. Therefore, by Lemma 8 (b), µ has a square root.
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(continue Proof)
Case 3: Let µ has 4 atoms, then

µ = aδp + bδq + cδr + dδ1,

where 0 < a,b, c,d < 1, a + b + c + d = 1 and
0 ≤ p < q < r < 1.
Thus, by (14) we have

dµL1 (t) =
1

ap + bq + cr + d
(apδp + bqδq + crδr + dδ1) .

Since

supp (µ ∗ µL1) =
{

p2,q2, r2,pq,pr ,qr ,p,q, r ,1
}

,

it follows from Theorems 5 and 7 that supp (ν) = {p,q, r ,1}.
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(continue Proof)
Write

ν = xδp + yδq + zδr + wδ1,

where 0 < x , y , z,w < 1 and x + y + z + w = 1.
We suppose p 6= 0.
Then, the equation ν ∗ ν = µ ∗ µL1 implies

x2 = a2p
E , y2 = b2q

E , z2 = c2r
E , w2 = d2

E ,

2xy = ab(p+q)
E , 2xz = ac(p+r)

E , 2yz = bc(q+r)
E ,

2xw = ad(p+1)
E , 2yw = bd(q+1)

E , and 2zw = cd(r+1)
E ,

where E := ap + bq + cr + d .
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(continue proof)
Note that

2xw =
ad(p + 1)

E
=⇒ 2

(
a
√

p√
E

)(
d√
E

)
=

ad (p + 1)

E
=⇒ 2

√
p = (p + 1)

which gives p = 1, a contradiction.
Thus, we should have p = 0.
Recall: supp (µ ∗ µL1) =

{
p2,q2, r2,pq,pr ,qr ,p,q, r ,1

}
.

In turn, if r 6= √q, then the equation 2yz = bc(q+r)
E implies

2
b
√

q√
E

c
√

r√
E

=
bc (q + r)

E
=⇒ 2

√
q
√

r = (q + r)

which gives r = q, a contradiction.
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(continue proof)
Thus, we must have r =

√
q =⇒ q = r2.

In this case, the equation ν ∗ ν = µ ∗ µL1 eventually implies

y =
br√
E
, w =

d√
E
, z =

c (r + 1)

2
√

E
, z2+2yw =

c2r + bd
(
r2 + 1

)
E

which gives

c2(r + 1)2

4E
+

2brd
E

=
c2r + bd(r2 + 1)

E
=⇒

(
c2 − 4bd

)
(r − 1)2 = 0.

But since 0 < r < 1, we have c2 = 4bd .
Thus, we have p = 0, q = r2, and c2 = 4bd .
Therefore, by Lemma 8 (c), µ has a square root.
Therefore, our proof is now complete.
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Lemma 10:
Let µ =

∑4
i=0 αiδxi be a finite atomic probability measure

supported in [0,1],
where 0 ≤ x0 < x1 < · · · < x4 = 1, αi > 0, and

∑4
i=0 αi = 1.

Then, µ has a square root if and only if
x0 6= 0, x0 = x4

3 , x1 = x3
3 , x2 = x2

3 , α1√
α0

= α3√
α4

, and

α2 =
α2

1
4α0

+ 2
√
α0α4.
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Lemma 11: Let µ =

∑4
i=0 αiδxi be a finite atomic probability

measure supported in [0,1], where 0 ≤ x0 < x1 < · · · < x4 = 1,
αi > 0, and

∑4
i=0 αi = 1.

Then, µ has a square root if and only if x0 6= 0, x0 = x4
3 ,

x1 = x3
3 , x2 = x2

3 , α1√
α0

= α3√
α4

, and α2 =
α2

1
4α0

+ 2
√
α0α4.

Lemma 12: Let Wα be a subnormal weighted shift with finite
atomic Berger measure µ given as in Lemma 11.
If W̃α is subnormal, then we have that x0 6= 0 and

x2
1 = x0x2 or x2

1 = x0x3.
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Lemma 13: Let Wα be a subnormal weighted shift with finite
atomic Berger measure µ given as in Lemma 11.
If W̃α is subnormal, then we have that x0 6= 0 and

x2
1 = x0x2 or x2

1 = x0x3.

Theorem 14: Let Wα be a subnormal weighted shift with finitely
atomic Berger measure µ having at most 5 atoms.
Then, µ has a square root if and only if the Aluthge transform
W̃α of Wα is subnormal.
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Proof of Theorem 14:
We need Lemmas 11, 12, 13 including the below partial order
relation:

PO (supp(ν ∗ ν)) =



y2
0 < y0y1 < · · · < y0yk

∧ ∧
y2

1 < · · · < y1yk
∧

...
...

∧ ∧
y2

k−1 < yk−1yk
∧
y2

k


.
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Question 15:
If Wα is a subnormal weighted shift with Berger measure µ, are
the following statements equivalent?
(i) µ has a square root;
(ii) The Aluthge transform W̃α is subnormal.

Question 16: If W̃α is subnormal, is W√α subnormal?

Question 17: For S ∈ B(H) and S ≥ 0, is it true that
√

S is
subnormal if and only if S̃ is subnormal?
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Question 18: Extend Question 15 to a multivariable version.

Question 19: What is a correction definition of p-hyponormal of
a pair T ≡ (T1,T2)?

For Question 18, we need to define a correct meaning of polar
decomposition for a pair T ≡ (T1,T2).

Also we need to define a proper Aluthge transform ˜(T1,T2).

Furthermore, we need to extend Theorem 7 for a multivariable
version.
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(1) Quasinormal

2
H : complex Hilbert space

B(H) : algebra of bounded operators on H

Definitions: S ∈ B(H) is normal if S∗S = SS∗

quasinormal if S commutes with S∗S, i.e., SS∗S = S∗S2

subnormal if S = N|H, where N is normal and N(H) ⊆ H

and hyponormal if S∗S ≥ SS∗.
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(1) Quasinormal

3
Known: The only form of quasinormal

1-variable weighted shift is r · U+ = shift(r , r , · · · ),
where r ∈ R+.

For the 1-variable case, we have

normal =⇒ quasinormal =⇒ subnormal =⇒ hyponormal.
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(2) Quasinormals of a commuting pair

4
Consider n-tuple T = (T1, · · · ,Tn).

For i , j , k ∈ {1,2, · · · ,n}, T is called matricially quasinormal
if each Ti commutes with each T ∗j Tk .

T is (jointly) quasinormal if each Ti commutes with each T ∗j Tj .

T is spherically quasinormal if each Ti commutes with∑n
j=1 T ∗j Tj .

For n-tuple case, we note that

normal =⇒ matrically quasinormal =⇒ (jointly) quasinormal
=⇒ spherically quasinormal =⇒ subnormal.
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(3) Aluthge transforms of a commuting pair

5
Let S ∈ B(H), with the polar decomposition S ≡ U|S|,
where U is a partial isometry with kerU = kerS and
|S| :=

√
S∗S.

The Aluthge transform of S is the operator

S̃ := |S|
1
2 U|S|

1
2 ,

the Duggal transform S̃D of S is

S̃D := |S|U.

the generalized Aluthge transform S̃ε of S is S̃ε := |S|εU|S|1−ε,
where 0 ≤ ε ≤ 1.
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(3) Aluthge transforms of a commuting pair

6
For i = 1,2, consider the polar decomposition Ti ≡ Ui |Ti |.
Then for a pair T = (T1,T2),
we can define toral polar decomposition of (T1,T2) as follows:

T := (U1|T1|,U2|T2|) .

In this case, the generalized toral Aluthge transform of T is
defined by [KiYo7].

T̃ε := (T̃ ε
1 , T̃

ε
2) ≡ (|T1|εU1|T |1−ε, |T2|εU2|T |1−ε) (0 ≤ ε ≤ 1) .

We now look at spherical polar decomposition of (T1,T2):
Consider

T =

(
T1
T2

)
: H → H

⊕
H
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(3) Aluthge transforms of a commuting pair
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Since T is an operator from H into H

⊕
H,

T has a standard singular-operator polar decomposition
T = VP, that is, (

T1
T2

)
=

(
V1
V2

)
P,

where V =

(
V1
V2

)
is a partial isometry from H to H

⊕
H and

P = (T ∗T )
1
2 =

√
T ∗1 T1 + T ∗2 T2

is a positive operator on H. Also, we have (V ∗1 ,V
∗
2 )

(
V1
V2

)
= 1

on

(ker T1 ∩ ker T2)⊥ = (ker P)⊥ = (ker V1 ∩ ker V2)⊥ .
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Define the spherical polar decomposition as follows:

T = (T1,T2) = (V1P,V2P).

Hence, we can define
the generalized spherical Aluthge transform T̂ε of T as follows
(0 ≤ ε ≤ 1):

T̂ε := (T̂ ε
1 , T̂

ε
2) ≡ (PεV1P1−ε,PεV2P1−ε) : H

⊕
H → H.

Jasang Yoon
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Theorem 1: Assume that (T1,T2) ≡ (V1P,V2P), where
P = (T ∗1 T1 + T ∗2 T2)1/2, and let

̂(T1,T2) ≡ (T̂1, T̂2) := (
√

PV1
√

P,
√

PV2
√

P).

Assume also that (T1,T2) is commutative. Then

(i) (V1,V2) is a (joint) partial isometry; more precisely,
V ∗1 V1 + V ∗2 V2 is the projection onto ran P;

(ii) ̂(T1,T2) is commutative.
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Proof (i) An easy computation reveals that

P2 = T ∗1 T1 + T ∗2 T2 = (V1P)∗(V1P) + (V2P)∗(V2P)

= P(V ∗1 V1 + V ∗2 V2)P,

and therefore (V ∗1 V1 + V ∗2 V2)|ran P is the identity operator on
ran P, as desired.
To prove (ii), consider the product

T̂1T̂2 =
√

PV1
√

P
√

PV2
√

P =
√

PV1PV2
√

P.

Then

T̂1T̂2
√

P =
√

PT1T2 =
√

PT2T1 = (
√

PV2PV1
√

P)
√

P

= (
√

PV2
√

P)(
√

PV1
√

P)
√

P = T̂2T̂1
√

P.
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(continue Proof)

It follows at once that T̂1T̂2 − T̂2T̂1 vanishes on ran P, as
desired.

On the other hand, T̂1T̂2 − T̂2T̂1 vanishes on ker P.
Since H = kerP

⊕
(RanP∗) = kerP

⊕
(RanP)

(because P∗ = P),
we easily see that T̂1T̂2 − T̂2T̂1 = 0;

that is ̂(T1,T2) is commutative.
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Theorem 2: Let T = (T1,T2) be a commuting pair of operators.
Then, the spherical Duggal transform T̂D is also commuting.

In general, the generalized spherical Aluthge transform T̂ε is
also commuting.

Remark 3: In comparison with the generalized spherical
Aluthge transform, the generalized toral Aluthge Transform is
not commuting.

Jasang Yoon
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2-variable weighted shift W(α,β) ≡ (T1,T2) :

Consider double-indexed positive bounded sequences
αk, βk ∈ `∞(Z2

+), k ≡ (k1, k2) ∈ Z2
+

and let `2(Z2
+) be the Hilbert space of square-summable

complex sequences indexed by Z2
+.

Define the 2-variable weighted shift W(α,β) ≡ (T1,T2) by

T1ek := αkek+ε1 and T2ek := βkek+ε2 ,

where ε1 := (1,0) and ε2 := (0,1).

Jasang Yoon
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T1 =


W0

W1
W2

. . .

 , Wn = shift(α0n, α1n · · · )

and

T2 =


0

D0 0
D1 0

. . . . . .

 , Dn =


β0n

β1n
β2n

. . .


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-

6

r r r

r r r

r r r

(0, 0) (1, 0) (2, 0)

(0, 1)

(0, 2)

α0,0 α1,0 · · ·

α0,1 α1,1 · · ·

α0,2 α1,2 · · ·

-
Wα

6

Wβ

β0,0

β0,1

...

β1,0

β1,1

...

β2,0

β2,1

...

Figure: Weight diagram for 2-variable weighted shift W(α,β)
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Consider the ordered orthonormal basis with lexicographic
order

E := {e(0,0),e(0,1),e(1,0),e(0,2),e(1,1),e(2,0), · · · }.

Then, the matrix representation of Ti (i = 1,2) with respect to
the ordered basis E are

T1 =



0 0 0 0 · · ·
0 0 0 0 · · ·

α(0,0) 0 0 0 · · ·
0 0 0 0 · · ·
0 α(0,1) 0 0 · · ·
0 0 α(1,0) 0 · · ·
0 0 0 0 · · ·
0 0 0 α(0,2) · · ·
0 0 0 0 · · ·


Jasang Yoon
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and

T2 =



0 0 0 0 · · ·
β(0,0) 0 0 0 · · ·

0 0 0 0 · · ·
0 β(0,1) 0 0 · · ·
0 0 β(1,0) 0 · · ·
0 0 0 0 · · ·
0 0 0 β(0,2) · · ·
0 0 0 0 · · ·
0 0 0 0 · · ·


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Lemma 4: Let W(α,β) ≡ (T1,T2) be a 2-variable weighted shift.
Then

T̃1ek =
√
αkαk+ε1ek+ε1

and
T̃2ek =

√
βkβk+ε2ek+ε2

for all k ∈ Z2
+.
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Theorem 5: Let W(α,β) be a commuting 2-variable weighted
shift. Then

W̃(α,β) ≡
(

T̃1, T̃2

)
is commuting

⇐⇒ αk+ε2αk+ε1+ε2 = αk+ε1αk+2ε2

for all k ∈ Z2
+.
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Proof: For k ∈ Z2

+

T̃2T̃1ek =
√
αkαk+ε1βk+ε1βk+ε1+ε2ek+ε1+ε2

=
√

(αkβk+ε1)αk+ε1βk+ε1+ε2ek+ε1+ε2

=
√

(βkαk+ε2)αk+ε1βk+ε1+ε2ek+ε1+ε2 (by commuting)

=
√
βkαk+ε1(βk+ε2αk+2ε2)ek+ε1+ε2 (by commuting)

=
√
βkβk+ε2(αk+ε1αk+2ε2)ek+ε1+ε2 .

On the other hand,

T̃1T̃2ek =
√
βkβk+ε2αk+ε2αk+ε1+ε2ek+ε1+ε2 .

It follows that T̃1T̃2 = T̃2T̃1 if and only if

αk+ε2αk+ε1+ε2 = αk+ε1αk+2ε2 .
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Theorem 6: Let W(α,β) ≡ (T1,T2) be a 2-variable weighted shift.

Then the spherical Aluthge transform Ŵ(α,β) is a pair of
weighted shifts with the following weights

T̂1e(k1,k2) = α(k1,k2)

(α2
(k1+1,k2)

+ β2
(k1+1,k2)

)1/4

(α2
(k1,k2)

+ β2
(k1,k2)

)1/4
e(k1+1,k2)

and

T̂2e(k1,k2) = β(k1,k2)

(α2
(k1,k2+1) + β2

(k1,k2+1))
1/4

(α2
(k1,k2)

+ β2
(k1,k2)

)1/4
e(k1,k2+1)

for all (k1, k2) ∈ Z2
+.
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Proof: Let P :=

√
T ∗1 T1 + T ∗2 T2. Then, we have the weights of

Ŵ(α,β) as follows:

Pe(k1,k2) =
√
α2
(k1,k2)

+ β2
(k1,k2)

e(k1,k2).

Now, T1 = V1P implies

V1
√

Pe(k1,k2) = T1

(√
P
)−1

e(k1,k2) =
α(k1,k2)e(k1,k2)+ε1(
α2
(k1,k2)

+ β2
(k1,k2)

)1/4

and similarly for T2 and V2, that is,

V2
√

Pe(k1,k2) = T2

(√
P
)−1

e(k1,k2) =
β(k1,k2)e(k1,k2)+ε2(
α2
(k1,k2)

+ β2
(k1,k2)

)1/4 .
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(continue Proof)
In other words, (V1,V2) is a 2-variable weighted shift. Now, let
us compute T̂1 :=

√
PV1
√

P and T̂2 :=
√

PV2
√

P, respectively.
Acting on e(k1,k2), we have

T̂1e(k1,k2) =
√

PV1
√

Pe(k1,k2) =
√

P

(
α(k1,k2)

e(k1,k2)+ε1(
α2
(k1,k2)

+β2
(k1,k2)

)1/4

)

=
α(k1,k2)(

α2
(k1,k2)

+β2
(k1,k2)

)1/4

(
α2
(k1,k2)+ε1

+ β2
(k1,k2)+ε1

)1/4
e(k1,k2)+ε1 .

and

T̂2e(k1,k2) =
α(k1,k2)

(α2
(k1,k2)

+β2
(k1,k2)

)1/4 (α2
(k1,k2)+ε2

+ β2
(k1,k2)+ε2

)1/4e(k1,k2)+ε2 .
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Theorem 7: If T = W(α,β), then
(i) the toral Duggal transformT̃D is commuting if and only if for
all k1, k2 ≥ 0,

α(k1,k2+1)α(k1+1,k2+1) = α(k1+1,k2)α(k1,k2+2).

(ii) the spherical Duggal transform Ŵ(α,β)

D
is a pair of weighted

shifts with the following weights

α̂D
(k1,k2)

:= α(k1,k2)

√
α2
(k1+1,k2)

+β2
(k1+1,k2)

α2
(k1,k2)

+β2
(k1,k2)

and β̂D
(k1,k2)

:= β(k1,k2)

√
α2
(k1,k2+1)+β

2
(k1,k2+1)

α2
(k1,k2)

+β2
(k1,k2)

.
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T ∈ B(H) is said to be p-hyponormal, 0 < p ≤ 1, if
(T ∗T )p ≥ (TT ∗)p

and log-hyponormal, if log (T ∗T ) ≥ log (TT ∗).

If p = 1, T becomes hyponormal and if p = 1
2 , T is called

semi-hyponormal.

Recall that: Let T ∈ B(H).

i) [Alu] For 0 < p < 1
2 , if T is p-hyponormal, then T̃ is

p + 1
2 -hyponormal.
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ii) [Alu] For 1

2 ≤ p < 1, if T is p-hyponormal, then T̃ is
1-hyponormal.
iii) [Tan] If T is invertible and T is log-hyponormal, then T̃ is
1
2 -hyponormal.
iv) [LLY1] For k ≥ 2, the Aluthge transform of weighted shifts
needs not preserve the k -hyponormality.
v) [Ex] The Aluthge transform of a subnormal weighted shift
need not be subnormal.
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-

6

(0, 0) (1, 0) (2, 0)

(0, 1)

(0, 2)

x 1 1 · · ·

-
Wα

6

Wβ

x y 1
...

y 1 1 · · ·

1 1 1
...

y 1 1 · · ·

1 1 1
...

-
Wα

Figure: Weight diagram for Example 8
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Example 8 For 0 < x , y < 1, let W(α,β) be the 2-variable
weighted shift in above Figure. Then
(i) W(α,β) is subnormal⇐⇒ x ≤ s(y) :=

√
1

2−y2 ;

(ii) W(α,β) is hyponormal⇐⇒ x ≤ h(y) :=

√
1+y2

2 ;

(iii) W̃(α,β) is hyponormal⇐⇒ x ≤ TH(y) := 1+y
2 ;

(iv) Ŵ(α,β) is hyponormal

⇐⇒ x ≤ SH(y) :=
2(1+y2−y4)

(1+
√

2)(1+y2)
(√

1+y2−y2
) .

Jasang Yoon



(3) Aluthge transforms of a commuting pair

29
(continue Example 8)
s(y) ≤ h(y) ≤ SH(y) and TH(y) < h(y) for all 0 < y < 1,
while TH(y) < s(y) on (0,q) and TH(y) > s(y) on (q,1),
where q ∼= 0.52138.

Then W(α,β) is hyponormal but W̃(α,β) is not hyponormal if
0 < TH(y) < x ≤ h(y),
and Ŵ(α,β) is hyponormal but W(α,β) is not hyponormal if
0 < h(y) < x ≤ SH(y).

Remark 9: Example 8 shows that the spherical Aluthge
transform may turn the given W(α,β) a more nicely behaved
2-variable weighted shift.
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It is known that T ∈ B (H) is quasinormal if and only if T = T̃
if and only if T = T̃ D.

We use C0 to denote the set of commuting pairs of operators.

Theorem 10: Let T ≡ (T1,T2) ∈ C0. The following statements
are equivalent.
(i) T is spherically quasinormal.
(ii) ̂(T1,T2) = (T1,T2).

(iii) ̂(T1,T2)
D

= (T1,T2).
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Proof of Theorem 10:
Recall T = (T1,T2) = (V1P,V2P) and P =

√
T ∗1 T1 + T ∗2 T2.

Claim: For i = 1,2, Ti commutes with P if and only if Vi
commutes with P.
Proof of Claim: If Ti commutes with P, then
ViP2 = (ViP)P = TiP = PTi = P(ViP), and as a consequence
(VIP − PVi)P = 0; that is, Vi commutes with P on ranP.
On the other hand, ViP − PVi vanishes on kerP.
(∵ kerP = kerV1 ∩ kerV2)
Since H = kerP

⊕
(ranP∗) = kerP

⊕
(ranP) (because P∗ = P),

it now easily follows that Vi commutes with P.
The converse is trivial. Thus, we prove Claim.
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(continue Proof)
(i) =⇒ (ii):
Suppose that T is spherically quasinormal.
Since for i = 1,2, Ti commutes with P2 = T ∗1 T1 + T ∗2 T2, then for
i = 1,2 Ti commutes with P (by the continuous functional
calculus for P).
Observe now that

̂(T1,T2) =
(√

PV1
√

P,
√

PV2
√

P
)√

P

=
(√

PT1,
√

PT2

)
= (T1,T2)

√
P,

so that
̂(T1,T2) = (T1,T2) on ran

√
P · · · · · · (1)
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(continue Proof)
On the other hand, since kerP = kerT1

⋂
kerT2,

it follows easily that

̂(T1,T2) = (T1,T2) on kerP · · · · · · (2)

Since H =
(
ranP

)⊕
kerP, we can combine (1) and (2) to prove

that ̂(T1,T2) = (T1,T2).
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(continue Proof)
(ii)⇒ (iii): Note

T̂ = T =⇒
(√

PV1
√

P,
√

PV2
√

P
)

= (V1P,V2P)

=⇒
(√

PT1,
√

PT2

)
=
(

T1
√

P,T2
√

P
)

=⇒ Ti commutes with
√

P (i = 1,2)

=⇒ Ti commutes with P (i = 1,2)

=⇒ Vi commutes with P (i = 1,2) (by Claim)

⇐⇒ T̂D = T.
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(continue Proof)
(iii)⇒ (i): Assume that T̂D = T.
It follows from above that Vi commutes with P (i = 1,2).
As a consequence, Ti commutes with P, which implies that Ti
commutes with P2 (i = 1,2).
Therefore, T is spherically quasinormal, as desired.
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Theorem 11: Let T ≡ (T1,T2) = W(α,β) be a 2-variable
weighted shift.
Then the following statements are equivalent.
(i) T ≡ (T1,T2) is spherically quasinormal
(Ti commutes with T ∗1 T1 + T ∗2 T2);
(ii) There exists a constant c > 0 such that for all
k ≡ (k1, k2) ∈ Z2

+,

α2
(k1,k2)

+ β2
(k1,k2)

= c;

(iii) T ∗1 T1 + T ∗2 T2 = c · I.
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Definition: A commuting pair T ≡ (T1,T2) is a spherical
isometry if T ∗1 T1 + T ∗2 T2 = I.

Corollary 12: A 2-variable weighted shift T ≡ (T1,T2) = W(α,β)

is a spherical isometry if and only if

α2
k + β2

k = 1

for all k ∈ Z2
+.
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Corollary 13 A 2-variable weighted shift T ≡ (T1,T2) is
spherically quasinormal if and only if there exists c > 0 such
that 1√

c T is a spherical isometry, that is, T ∗1 T1 + T ∗2 T2 = I.

We pause to recall an important result about spherical
isometries.
Theorem: 14 [EsPu] Any spherical isometry is subnormal.

Combining Corollary 13 and Theorem 14, we easily obtain the
following result.

Theorem 15: Any spherically quasinormal 2-variable weighted
shift is subnormal.
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In [JKP], I.B. Jung, E. Ko, and C. Pearcy proved that
an operator T ∈ B(H) with dense range has a nontrivial
invariant subspace if and only if T̃ does.

The invariant subspace problem (1932, J. Von Neumann)
Let X be a a complex Banach space with dim(X ) ≥ 2 and
T ∈ B(X ).
Does T have a non-trivial (6= {0},X ) invariant subspace (NIS)?
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1934, J Von Neumann (unpublished), 1966, Aronszaju & Smith
(Ann of Math):
T : compact operator =⇒ T has NIS.

1978, S. Brown (Integral Equations Operator Theory):
T is subnormal =⇒ T has NIS.

1984, C.J. Read: (Bull. London Math. Soc.):
A bounded operator on the classical Banach space `1 having
only the trivial invariant subspaces.

1987, S. Brown (Ann of Math):
T is hyponormal with int (σ (T )) 6= ∅ =⇒ T has NIS.

Problem: Prove or disprove ISP for hyponormal operators
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Recall:
For T = U|T | = UP ∈ B(H)

H
−−−−−→
T = UP K

‖ ‖
ker T = ker U = ker P ker T ∗

⊕ ⊕

ranP = (ker T )⊥ = ranT ∗
−→
U
←−
U∗

ranT

· · · · · · (2)/
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Theorem 16: Let T = U|T | ∈ B(H) be an operator with dense
range.
Then, T has a NIS if and only if T̃ D does,
where T̃ D is the Duggal transform for T .
Proof:
i) If ker T = {0}, then U is unitary and |T | is a quasi-affinity.
(Recall that T ∈ B(H) is said to be a quasi-affinity if it has a
trivial kernel and dense range)
Since

UT̃ D = U|T |U = TU,
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(Continue Proof)
T̃ D and T are unitarily equivalent. So Lat (T ) = Lat

(
T̃ D
)

,
where Lat(T ) be the set of invariant subspaces for T and
Lat
(

T̃ D
)

for T̃ D.

ii) If ker T 6= {0}, T has a nontrivial invariant subspace.
Since ker T = ker U, we have that

T̃ D(ker T ) = |T |U(ker T ) = 0,

i.e., T̃ D(ker T ) ⊂ ker T . Hence T̃ D also has a NIS.
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Lemma 17: If T ∈ B(H) with dense range, then T̃ ε 6= 0
(0 < ε ≤ 1).
Proof: If T̃ ε = 0, then
|T |εU|T |1−ε(H) = 0 =⇒ U|T |1−ε(H) ⊆ ker (|T |ε).
Thus, we have

T (H) = U|T |1−ε(|T |ε (H)) ⊆ U|T |1−ε (H) ⊆ ker (|T |ε)
=⇒ T (H) ⊆ ker (|T |ε) = ker T .

Since T has dense range, ker T = H, i.e., T = 0.
This is a contradiction to the fact that T has dense range.
Therefore, we have T̃ ε 6= 0.
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Theorem 18: Consider T ∈ B(H) with a dense range.
Then, for 0 ≤ ε < 1, T has a nontrivial invariant subspace if and
only if T̃ ε dose.
Proof:
If ker T = {0}. Then, for 0 ≤ ε ≤ 1, |T |ε, |T |1−ε, and T are all
quasi-affinities and U is unitary, because of (2)/.
Let a set A mean the smallest closed set containing A.
(=⇒)
Let N be a nontrivial invariant subspace for T .
Then, (|T |εN ) is nontrivial, indeed, |T |εN 6= {0} because
N 6= {0} and |T |ε is a quasi-affinity.
Also, (|T |εN ) 6= H because

U|T |1−ε(|T |εN ) = U|T |N = TN ⊆ N 6= H
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(Continue Proof)
and U|T |1−ε is a quasi-affinity. Hence, (|T |εN ) 6= {0},H.
Now

T̃ ε(|T |εN ) = |T |εU|T |1−ε(|T |εN ) = |T |εU|T |N

= |T |εTN ⊆ |T |εN ⊆
(
|T |εN

)
.

Hence, we have that T̃ ε
(
|T |εN

)
⊆
(
|T |εN

)
, and so

T̃ ε has a nontrivial invariant subspace.
(⇐=)

We letM be a nontrivial invariant subspace for T̃ ε.
Then, (U|T |1−εM) 6= H since

|T |ε(U|T |1−εM) = |T |εU|T |1−εM = T̃ εM⊆M 6= H
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(Continue Proof)
and |T |ε is a quasi-affinity.
Also (U|T |1−εM) 6= {0} sinceM 6= {0}, |T |1−ε is a
quasi-affinity, and U is unitary.
Hence, (U|T |1−εM) is nontrivial.
Now we have that

T (U|T |1−εM) = U|T |(U|T |1−εM) = U|T |1−ε(|T |εU|T |1−εM)

= U|T |1−εT̃ εM⊆ U|T |1−εM
⊆ (U|T |1−εM).

Hence, T
(

(U|T |1−εM)
)
⊆ (U|T |1−εM), and so T has a

nontrivial invariant subspace.
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(Continue Proof)
Suppose that ker T 6= {0}.
Since ker T 6= {0} and T 6= 0, we have that ker T is a nontrivial
invariant subspace for T .
By Lemma 17, we obtain that

ker T̃ ε 6= H · · · · · · (3)

On the other hand, since

T̃ ε(ker |T |1−ε) = |T |εU|T |1−ε(ker |T |1−ε) = 0,

we have that ker |T |1−ε ⊆ ker T̃ ε.
Since ker |T |1−ε = ker |T | = ker T 6= {0}, we have that

ker T̃ ε 6= {0} · · · · · · (4)

By (3) and (4), we have that T̃ ε has a nontrivial invariant
subspace.
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Recall toral polar decomposition of T ≡ (T1,T2)

T := (U1|T1|,U2|T2|) .

and the generalized toral Aluthge transform of T

T̃ε := (T̃ ε
1 , T̃

ε
2) ≡ (|T1|εU1|T |1−ε, |T2|εU2|T |1−ε) (0 ≤ ε ≤ 1) .

Recall the spherical polar decomposition of T

T = (V1P,V2P), where P = (T ∗1 T1 + T ∗2 T2)
1
2 .

and generalized spherical Aluthge transform of T

T̂ε := (T̂ ε
1 , T̂

ε
2) ≡ (PεV1P1−ε,PεV2P1−ε) (0 ≤ ε ≤ 1) .
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Recall that:
Let T = (T1,T2) be a commuting pair of operators.
Then,
(i) the spherical Aluthge transform T̂ is also commuting.
(ii) the spherical Duggal transform T̂D is also commuting.
(iii) the generalized spherical Aluthge transform T̂ε is also
commuting.
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Proof of (iii):

Since ker
(

V1
V2

)
= kerP, we have

ker P = ker V1 ∩ ker V2 · · · · · · (5) .

Since T is commuting, V1PV2 = V2PV1 on (ran P), and
H = ker P ⊕ (ran P), by (5),

V1PV2 = V2PV1 · · · · · · (6)

Now, it follows from (6) that

[T̂ ε
1 , T̂

ε
2 ] = Pε(V1PV2 − V2PV1)P1−ε = 0.

Therefore, T̂ε is commuting.
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Theorem 19: Let T ≡ (T1, · · · ,Tn) be a commuting n-tuple of
operators with dense ranges.
Then, T̂ has a common nontrivial invariant subspace if and only
if T does.
Proof:
Case 1: T is a commuting n-tuple of quasi-affinities.
(=⇒)

ψ : Lat
(

T̂
)
−→ Lat(T)

| |

M ψ(M) =
(

V1PV2 · · ·PVn
√

PM
)

Want: ψ is well-defined and ifM is nontrivial, then(
V1PV2 · · ·PVn

√
PM

)
is also nontrivial.
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(Continue Proof)
LetM be a common nontrivial invariant subspace for T̂.
SinceM∈ Lat(

√
PVi
√

P) for i = 1,2, · · · ,n, we know
√

P(V1PV2 · · ·PVn
√

PM) ⊆M,

indeed,
√

P(V1PV2 · · ·PVn
√

PM)

= (
√

PV1
√

P)(
√

PV2
√

P) · · · (
√

PVn
√

P)M
⊆ (
√

PV1
√

P)(
√

PV2
√

P) · · · (
√

PVn−1
√

P)M⊆ · · · ⊆ M.
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(Continue Proof)
Since

√
P has dense range, V1PV2 · · ·PVn

√
PM can not be a

dense set in H, i.e.,(
V1PV2 · · ·PVn

√
PM

)
6= H.

Since TiTj = TjTi for i , j = 1,2, · · · ,n, we observe

ViPVjP − VjPViP = (ViPVj − VjPVi)P

and ViPVj = VjPVi on ranP. Since P has dense range, we thus
have for i , j = 1,2, · · · ,n,

ViPVj = VjPVi · · · · · · (7)
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(Continue Proof)

Next, we want to show that
(

V1PV2 · · ·PVn
√

PM
)
6= {0}.

Assume that V1PV2 · · ·PVn
√

PM = {0}. Note

T1(V2PV3 · · ·PVn
√

PM) = V1PV2 · · ·PVn
√

PM = {0}.

Since T1 is one-to-one, we have that

V2PV3 · · ·PVn
√

PM = {0} · · · · · · (8)

Repeating this process, we have Vn
√

PM = {0}. Also, by (7)
and (8), we have Vi

√
PM = {0} for i = 1,2, · · · ,n.
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(Continue Proof)

Since V =

 V1
...

Vn

 is an isometry, we have

√
PM⊆ ker(V1) ∩ · · · ∩ ker(Vn) = ker V = {0},

which is a contradiction because
√

P is one-to-one andM is
nontrivial. Thus, we have

V1PV2 · · ·PVn
√

PM 6= {0}.

Therefore,
(

V1PV2 · · ·PVn
√

PM
)

is nontrivial. Recall

ψ : Lat(T̂)→ Lat(T) by ψ(M) =
(

V1PV2 · · ·PVn
√

PM
)

.
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(Continue Proof)
By (7) again, we obtain

T1

(
V1PV2 · · ·PVn

√
PM

)
= V1P

(
V1PV2 · · ·PVn

√
PM

)
= V1PV2 · · ·PVn (PV1)

√
PM =

(
V1PV2 · · ·PVn

√
P
)(√

PV1
√

PM
)

⊆ V1PV2 · · ·PVn
√

PM⊆
(

V1PV2 · · ·PVn
√

PM
)

.

Similarly, we can show that for i = 1,2, · · · ,n,

Ti

(
V1PV2 · · ·PVn

√
PM

)
⊆
(

V1PV2 · · ·PVn
√

PM
)

.

By the previous argument, ifM is a common nontrivial invariant
subspace for T̂, then ψ(M) = (V1PV2 · · ·PVn

√
PM) is also a

common nontrivial invariant subspace for T.
Hence ψ is well-defined and the desired result; that is, if
M∈ Lat(T̂) is nontrivial, then ψ(M) ∈ Lat(T) is also nontrivial.
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(Continue Proof)
(⇐=)

φ : Lat(T) −→ Lat
(

T̂
)

| |

N φ(N ) =
(√

PN
)

Want: φ is well-defined and if N is nontrivial, then
(√

PN
)

is
also nontrivial.
Let N be a common nontrivial invariant subspace for
T ≡ (T1, · · · ,Tn). Then, we have

TN =

 T1
...

Tn

N =

 V1
√

P
...

Vn
√

P

√PN ⊆
n⊕

i=1

Hi · · · · · · (9)
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(Continue Proof) Now, let us show that

(√
PN

)
is nontrivial.

Since T1,T2, · · · ,Tn are all quasi-affinities, we have

ker
√

P = ker P = ker(T ∗1 T1 + · · ·+ T ∗n Tn)

= ker(T1) ∩ · · · ∩ ker(Tn) = {0}.

Thus,
√

P is one-to-one, and so
(√

PN
)
6= {0}.

On the other hand, suppose that
(√

PN
)

= H. Since Ti has

dense range for all i = 1,2, · · · ,n, V =

 V1
...

Vn

 is an onto

isometry (by (2)/).
Since

√
P has dense range, for all i = 1,2, · · · ,n, V

√
P maps

dense sets in H into dense sets in
⊕n

i=1Hi .
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(Continue Proof)
Hence, by (9), we have

(TN ) ⊆
⊕n

i=1Ni 6=
⊕n

i=1Hi and (TN ) =
⊕n

i=1Hi · · · · · · (10),

where Ni = N and Hi = H.
Hence, (10) drives a contradiction. Thus,

√
PN can not be a

dense set, that is, we have
(√

PN
)
6= H. Therefore,

(√
PN

)
is nontrivial.
Recall

φ : Lat(T)→ Lat(T̂) given by φ(N ) =
(√

PN
)
.
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(Continue Proof)
Then, φ is well-defined, in fact, for a common invariant
subspace N for T, we have for i = 1,2, · · · ,n

T̂i

(√
PN

)
=

(√
PVi
√

P
)(√

PN
)

=
√

PViPN

=
√

PTiN ⊆
√

PN ⊆
(√

PN
)

.

Thus, φ(N ) =
(√

PN
)

is a common invariant subspace for T̂.

Therefore, we have that there is a mapping φ : Lat(T)→ Lat(T̂)

such that, if N ∈ Lat(T) is nontrivial, then φ(N ) ∈ Lat(T̂) is also
nontrivial.
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(Continue Proof)
Claim 1: If ker(Ti) 6= {0} for some i ∈ {1,2, · · · ,n}, then
ker(Ti) is a common nontrivial invariant subspace for T.

Proof of Claim 1: Clearly, ker Ti ∈ Lat(Ti). By the
commutativity of T, for j = 1,2, · · · ,n,

Ti(Tj(ker(Ti))) = TjTi(ker(Ti)) = 0.

Thus, for j = 1,2, · · · ,n,

Tj(ker(Ti)) ⊆ ker(Ti) · · · · · · (11) .

Hence, ker Ti 6= {0},H is a common invariant subspace for T
and we prove Claim 1.
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(Continue Proof)
Case 2: Suppose ker(Ti) 6= {0} for some i ∈ {1,2, · · · ,n}.
Since Ti and Tj commute for j = 1,2, · · · ,n, by the above
Claim 1, we have

Tj(ker(Ti)) ⊆ ker(Ti) · · · · · · (11)

Therefore, ker(Ti) is a common invariant subspace for T.
On the other hand, we consider two subcases,
that is, ker(P) 6= {0} or ker(P) = {0}.

If ker(P) 6= {0}, then ker(
√

P) = ker(P) 6= {0}. Since Tj 6= 0 for
all j = 1,2, · · · ,n, ker(P) 6= H. Thus, we have ker(P) 6= {0},H,
so that

T̂j

(
ker(
√

P)
)

=
√

PVj
√

P
(

ker(
√

P)
)
⊆ ker(

√
P).

Hence, T̂ has a common invariant subspace.
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(Continue Proof)
If ker(P) = {0}, then ker(

√
P) = {0}, so that

√
P has a dense

range.

If
(√

P (ker(Ti))
)

= H, then

Vi
√

P
√

P(ker(Ti)) = Ti(ker(Ti)) = 0 =⇒ Vi
√

P (H) = 0,
so that, Vi = 0, that is, Ti = 0. Thus, this drives a contradiction

to Ti 6= 0. Therefore,
(√

P (ker(Ti))
)
6= H.

If
(√

P (ker(Ti))
)

= {0}, then ker(Ti) = {0} (because of

ker(
√

P) = {0}) which is contradictive to our assumption.

Thus,
(√

P (ker(Ti))
)
6= {0}. Therefore, we have

(√
P (ker(Ti))

)
6= {0},H.
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(Continue Proof)
Now, we have for j = 1,2, · · · ,n,

T̂j

(√
P (ker(Ti))

)
=

(√
PVj
√

P
)(√

P (ker(Ti))
)

=
(√

PVj

)
(P (ker(Ti))) =

√
PTj (ker(Ti))

⊆
√

P (ker(Ti)) (by (11))

⊆
(√

P (ker(Ti))
)

.

Hence,
(√

P (ker(Ti))
)

is a common nontrivial invariant

subspace for T̂.
Therefore, we have the desired result.
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A commuting n-tuple T = (T1, · · · ,Tn) is said to doubly
commute
if TiTj = TjTi and TiT ∗j = T ∗j Ti for all i , j = 1,2, · · · ,n and i 6= j .
Lemma 20: Let T = (T1, · · · ,Tn) = (U1|T1|, · · · ,Un|Tn|) be a
doubly commuting n-tuple of injective operators.
Then, we have for i , j = 1,2, · · · ,n and i 6= j

(a) |Ti |
∣∣Tj
∣∣ = |Tj ||Ti |, (b) UiUj = UjUi , and (c) |Ti |

1
2 Uj = Uj |Ti |

1
2 .

Lemma 21: If T = (T1, · · · ,Tn) = (U1|T1|, · · · ,Un|Tn|) is a
doubly commuting n-tuple of operators, then T̃ is commuting
n-tuple of operators.
Proof:
Note that for i , j = 1,2, · · · ,n

T̃i T̃j = |Ti |
1
2 Ui |Ti |

1
2 |Tj |

1
2 Uj |Tj |

1
2 = |Tj |

1
2 Uj |Tj |

1
2 |Ti |

1
2 Ui |Ti |

1
2 = T̃j T̃i .
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Theorem 22: Let T ≡ (T1, · · · ,Tn) be a doubly commuting
n-tuple of quasi-affinities.
Then, T̃ has a common nontrivial invariant subspace if and only
if T does.
Proof:
(=⇒)

ρ : Lat(T̃) −→ Lat(T)
| |
K U1 · · ·Un|T1|

1
2 · · · |Tn|

1
2K

Then ρ is well-defined and if K is nontrivial, then
U1 · · ·Un|T1|

1
2 · · · |Tn|

1
2K is also nontrivial.
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(⇐=)

ϕ : Lat(T) −→ Lat(T̃)
| |
L |T1|

1
2 |T2|

1
2 · · · |Tn|

1
2L

Then ϕ is well-defined and if L is nontrivial, then
|T1|

1
2 |T2|

1
2 · · · |Tn|

1
2L is also nontrivial.
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Theorem 23: Let T ≡ (T1, · · · ,Tn) be a commuting n-tuple of
operators with dense ranges.
Then, T̂ε has a common nontrivial invariant subspace if and
only if T does.
Proof: Want to show that there are mappings

∃α : Lat
(

T̂ε
)
−→ Lat (T)

| |
M α(M)
| |

β(N ) ←− N : ∃β

,

such that ifM∈ Lat
(

T̂ε
)

(resp. N ∈ Lat (T)) is nontrivial, then

α(M) ∈ Lat (T) (resp. β(N ) ∈ Lat
(

T̂ε
)

) is also nontrivial,

where α(M) :=
(
V1PV2 · · ·PVnP1−ε (M)

)
and β(N ) := Pε (N ).
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(1) Generalized Aluthge transforms for commuting
pairs

2
H : complex Hilbert space
B(H) : algebra of bounded operators on H
Let S ∈ B(H), with the polar decomposition S ≡ U|S|,
where U is a partial isometry with kerU = kerS and
|S| :=

√
S∗S.

The Aluthge transform of S is the operator

S̃ := |S|
1
2 U|S|

1
2 .
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(1) Generalized Aluthge transforms for commuting
pairs

3
The generalized Aluthge transform S̃ε of S is

S̃ε := |S|εU|S|1−ε,

where 0 < ε < 1,
and the Duggal transform S̃D of S is

S̃D := |S|U.
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(1) Generalized Aluthge transforms for commuting
pairs

4
Recall toral polar decomposition of T ≡ (T1,T2)

T := (U1|T1|,U2|T2|) .

and the generalized toral Aluthge transform of T

T̃ε := (T̃ ε
1 , T̃

ε
2) ≡ (|T1|εU1|T |1−ε, |T2|εU2|T |1−ε) (0 ≤ ε ≤ 1) .

Recall the spherical polar decomposition of T

T = (V1P,V2P), where P = (T ∗1 T1 + T ∗2 T2)
1
2 .

and generalized spherical Aluthge transform of T

T̂ε := (T̂ ε
1 , T̂

ε
2) ≡ (PεV1P1−ε,PεV2P1−ε) (0 ≤ ε ≤ 1) .
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(1) Generalized Aluthge transforms for commuting
pairs

5
Recall that:
Let T = (T1,T2) be a commuting pair of operators. Then,
(i) the spherical Aluthge transform T̂ is also commuting.
(ii) the spherical Duggal transform T̂D is also commuting.
(iii) the generalized spherical Aluthge transform T̂ε is also
commuting.
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(2) Taylor spectra

6
In [JKP2], I.B. Jung, E. Ko and C. Pearcy proved that T and T̃
have the same spectrum.
In [CJL], M. Cho, I.B. Jung, and W.Y. Lee also proved that T
and T̃ D have the same spectrum.
We next show that these results may be extended to the toral
and spherical (generalized spherical) Aluthge transform.
For this, we introduce the Taylor spectrum and Taylor essential
spectrum of commuting n-tuples T = (T1, · · · ,Tn).
For additional facts about this notion of a joint spectrum, the
reader is referred to ([Cu1], [Appl], [Cu3]).

Jasang Yoon



(2) Taylor spectra
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Let Λ ≡ Λn[e] be the complex exterior algebra on n generators
e1, . . . ,en with identity e0 ≡ 1,
multiplication denoted by ∧ (wedge product) and complex
coefficients, subject to the collapsing property

ei ∧ ej + ej ∧ ei = 0 (1 ≤ i , j ≤ 1) and ei ∧ ei = 0.

The elements ej1 ∧ . . . ∧ ejk , (1 ≤ j1 < . . . < jk ≤ n) form a basis
for Λk , where
Λ0 = 〈e0〉 ∼= C, Λ1 = 〈e1〉 ⊕ · · · ⊕ 〈en〉,
Λ2 = 〈e1 ∧ e2〉 ⊕ · · · ⊕ 〈en−1 ∧ en〉, and Λn = 〈e1 ∧ · · · ∧ en〉.
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The exterior algebra over C is then given by

Λ =
{∑

J αJeJ : eJ = ej1 ∧ . . . ∧ ejk and αJ ∈ C
}

.

Λ ≡ Λn[e] is graded, that is, Λ = ⊕n
i=0Λi , with Λi ∧ Λk ⊂ Λi+k .

Moreover, dim Λk =

(
n
k

)
, so that, as a vector space over C,

Λk is isomorphic to C

(
n
k

)
:= C⊕ C⊕ · · · ⊕ C︸ ︷︷ ︸(

n
k

)
- sums

.
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(2) Taylor spectra
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Some properties of wedge product.

(i) (k -form) ∧ (`-form)→ (k + `)-form, (k , ` ∈ Z+),
(ii) (ω1 + ω2) ∧ η = ω1 ∧ η + ω2 ∧ η,
(iii) ei ∧ ej = −ej ∧ ei and ei ∧ ei = 0,
(iv) (ei ∧ ej) ∧ ek = ei ∧ (ej ∧ ek ),
(v) ω ∧ αη = α (ω ∧ η) = αω ∧ η if α is a 0-form, i.e., α ∈ C.
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(2) Taylor spectra
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forms Geometric meaning basis
numbers
of basis

0 Λ0 = 〈e0〉 ∼= C 1
(

n
0

)
1 Λ1 = 〈e1〉 ⊕ · · · ⊕ 〈en〉 e1, . . . ,en

(
n
1

)
2 Λ2 = 〈e1 ∧ e2〉 ⊕ · · · ⊕ 〈en−1 ∧ en〉 e1 ∧ e2, . . . ,en−1 ∧ en

(
n
2

)
...

...
...

...

n Λn = 〈e1 ∧ · · · ∧ en〉 e1 ∧ · · · ∧ en

(
n
n

)
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(2) Taylor spectra
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Denote Λ ≡ Λn[e] = ⊕n

i=0Λi and we call Λn[e] the exterior
algebra on n generators with inner product

〈eI ,eJ〉 :=

{
0 if I 6= J
1 if I = J

,

where I, J ⊆ {1,2, . . . ,n}, eI ≡ ei1 ∧ ei2 ∧ . . . ∧ eik ,
eJ ≡ ej1 ∧ ej2 ∧ . . . ∧ ej` , {i1, . . . , ik}, {j1, . . . , j`} ⊆ {1, . . . ,n}.
(Λn[e], 〈, 〉) is Hilbert space with orthonormal basis

{e0,e1,e2, . . . ,en,e1∧e2, . . . ,e1∧. . .∧en} = {eI : I ⊆ {1, . . . ,n}}.
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If S ∈ B(X ), one keeps the same symbol S to denote the
operator defined on Λn[e,X ] by S (

∑
I xIeI) =

∑
I S (xI) eI .

Let Ei : Λn[e,X ]→ Λn[e,X ] be given by eI 7−→ ei ∧ eI and we
call it the creation operator.
We will now compute E∗i relative to the above mentioned inner
product.
Any form eI ∈ Λn[e,X ] can be uniquely decomposed as
eI = ei ∧ ξ′ + ξ′′,
where ξ′, ξ′′ have no ei contribution. Then

〈E∗i eI ,eJ〉 = 〈eI ,EieJ〉

=
〈
ei ∧ ξ′,ei ∧ eJ

〉
+
〈
ξ
′′
,ei ∧ eJ

〉
=
〈
ξ′,eJ

〉
.

Therefore, E∗i eI = ξ′.
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Claim: E∗i Ej + EjE∗i = δij .

Proof of Claim: If i = j , then

(E∗i Ej + EjE∗i )(eI) = (E∗i Ei + EiE∗i )(ei ∧ ξ′ + ξ′′)

= E∗i Ei
(
ξ′′
)

+ EiE∗i (eI)

= E∗i (ei ∧ ξ′′) + Eiξ
′

= ξ′′ + ei ∧ ξ′ = eI .
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If i 6= j , then

(E∗i Ej + EjE∗i )(ei ∧ ξ′ + ξ′′)

= E∗i (ej ∧ ei ∧ ξ′ + ej ∧ ξ′′) + Ej(ξ
′)

= −E∗i (ei ∧ ej ∧ ξ′ + ej ∧ ξ′′) + Ej(ξ
′)

= −ej ∧ ξ′ + ej ∧ ξ′ = 0.

Moreover, Ei is a partial isometry(
∵ EiE∗i Ei = Ei(I − EiE∗i ) = Ei − E2

i E∗i = Ei
)
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Given a normed space (Banach space) X ; the exterior algebra
over X is defined to be

Λ [X ] = Λn[e] = Λn[e,X ]
=
{∑

J xJeJ : eJ = ej1 ∧ . . . ∧ ejk and xJ ∈ X
}

.

The subspace

Λi = Λi [X ] = Λi [e,X ]

=
{∑

|J|=k xJeJ : eJ = ej1 ∧ . . . ∧ ejk and xJ ∈ X
}

and Λi [e,X ] can be identified with X ⊕ X ⊕ · · · ⊕ X .
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Koszul Complex
Set Λn[e,X ] = X ⊗C Λn[e] = X ⊗C ⊕n

i=0Λi = ⊕n
i=0X ⊗C Λi ,

where Λn[e] is in page 11.
Let T ≡ (T1, · · · ,Tn) and DT :=

∑n
i=1 Ti ⊗ Ei , where Ti is an

operator on X and

DT : Λ (X )
|

xI⊗eI

→ Λ (X )
|∑n

i=1 Ti xI⊗ei∧eI

.

(note that
∑

I xIeI =
∑

I xI ⊗ eI)
Then DT ◦ DT = 0.
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Claim: DT ◦ DT = 0

Proof of Claim:

DT ◦ DT(xI ⊗ eI) =
∑n

i,j=1 TiTjxI ⊗ EiEjeI

=
∑n

i<j TiTjxI ⊗ EiEjeI +
∑n

i>j TiTjxI ⊗ EiEjeI +
∑n

i=j TiTjxI ⊗ EiEjeI

=
∑n

i<j TiTjxI ⊗ EiEjeI −
∑n

i<j TiTjxI ⊗ EiEjeI = 0
(because TiTj = TjTi )
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From the above Claim given above, we have RanDT ⊆ KerDT.
Thus this naturally leads to a cochain complex (because
KerDi+1

T /RanDi
T : cohomology for all i ∈ {0,1, · · · ,n − 1}),

called the Koszul complex for T ≡ (T1, . . . ,Tn), and
denoted K (T,X ):

0 0→ X ⊗∧0 D0
T→ X ⊗∧1 D1

T→ · · ·
Dn−1

T→ X ⊗∧n Dn
T≡0
→ 0,

where Di
T denotes the restriction of DT to the subspace X ⊗ ∧i .

If RanDi
T = KerDi+1

T (all i ∈ {0,1, · · · ,n − 1}), then the above
cochain complex is said to exact.
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Taylor spectrum σT (T) :

Let T ≡ (T1,T2) be a commuting pair of operators on a Banach
space X . We define T to be invertible in case its associated
Koszul complex K (T,X ) is exact, that is,

RanDi
T = KerDi+1

T (all i ∈ {0,1}) .

The commuting T is said to be non-singular on X , if
RanDi

T = KerDi+1
T (all i ∈ {0,1}).

σT (T) :=
{

(λ1, λ2) ∈ C2 : (T1 − λ1,T2 − λ2) is singular
}

=
{

(λ1, λ2) ∈ C2 : K ((T1 − λ1,T2 − λ2) ,H)) is not exact
}
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J. L. Taylor showed that, if X ( 6= {0}) is a Banach space, then
σT (T) is a nonempty, compact subset of the polydisc of
multiradius r(T) := (r(T1), . . . , r(Tn)),
where r(Ti) is the spectral radius of Ti . ([Tay1], [Tay2]).

When n = 1, the Koszul complex is

0 0→ X ⊗∧0 D0
T→ X ⊗∧1 D1

T≡0
→ 0

and

DT =

(
0 0
T 0

)
.
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DT =

(
0 0
T 0

)
.

(∵ DT = T ⊗ E ,

DT(x ⊗ e0) = D0
T(x ⊗ e0) = T ⊗ E(x ⊗ e0) = Tx ⊗ Ee0

= Tx ⊗ e1 ∧ e0 = Tx ⊗ e1 and

DT(x ⊗ e1) = D1
T(x ⊗ e1) = T ⊗ E(x ⊗ e1)

= Tx ⊗ Ee1 = Tx ⊗ e1 ∧ e1 = 0.)
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Also

N(DT) =

{
(x , y) : DT

(
x
y

)
=

(
0
0

)}
=

{
(x , y) :

(
0 0
T 0

)(
x
y

)
=

(
0
0

)}
= {(x , y) : Tx = 0} = N(T )⊕X .

and
R(DT) = {0} ⊕ R(T )

If N(DT) = R(DT), then T ≡ T is invertible.
It follows that σT = σ.
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When n = 2, that is, T ≡ (T1,T2), the Koszul complex is

0 0→ X ⊗∧0 D0
T→ X ⊗∧1 D1

T→ X ⊗∧2 D2
T≡0
→ 0,

where D0
T and D1

T are defined by D0
Tx = T1x ⊕ T2x (x ∈ X ) and

D1
T (x1 ⊕ x2) = −T2x1 + T1x2 (x1, x2 ∈ X ).

Then, we have
N(DT) = {N(T1) ∩ N(T2)} ⊕ {(x1, x2) : T2x1 = T1x2} ⊕ X
R(DT) = 0⊕ {(T1x ,T2x) : x ∈ X} ⊕ {R(T1) + R(T2)}, where

DT =
2∑

i=1

Ti ⊗ Ei =


0 0 0 0
T1 0 0 0
T2 0 0 0
0 −T2 T1 0

 .
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DT =
2∑

i=1

Ti ⊗ Ei =


0 0 0(
T1
T2

)
0 0

0
(
−T2 T1

)
0

 .

(∵ DT =
∑2

i=1 Ti ⊗ Ei ,

DT(x ⊗ e0) = D0
T(x ⊗ e0) = T1x ⊗ Ee0 ⊕ T2x ⊗ Ee0

= T1x ⊗ e1 ∧ e0 ⊕ T2x ⊗ e1 ∧ e0 = T1x ⊗ e1 ⊕ T2x ⊗ e1 and
DT(x1 ⊗ e1 ⊕ x2 ⊗ e1) = D1

T(x1 ⊗ e1 ⊕ x2 ⊗ e1)
= −T2x1 ⊗ e2 ∧ e1 + T1x2 ⊗ e2 ∧ e1.)
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When n = 3,

DT =



0 0 0 0 T1
T2
T3

 0 0 0

0

 0 −T3 T2
T3 0 −T1
−T2 T1 0

 0 0

0 0
(

T1 −T2 T3
)

0


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For an n-tuple T ≡ (T1, . . . ,Tn), the first mapping D0

T can be
interpreted as D0

T : X → X n defined by D0
Tx = ⊕n

i=1Tix (x ∈ X ).
Similarly, D0

T : X → X n is defined by
Dn−1

T
(
⊕n

i=1xi
)

=
∑n

i=1 (−1)i−1 Tixi .
For hyponormal Wα ≡ shift(α0, α1, · · · ),
σ (Wα) := {λ ∈ C : Wα − λ is not invertible} is a closed disk
with the radius ‖Wα‖
S ∈ B(H) is called a Fredrolm operator if S(H) is closed,
dim (ker S) <∞, and dim (ker S∗) = dim (H/S(H)) <∞.
σe (Wα) := {λ ∈ C : Wα − λ is not Fredrolm} is a circle with the
radius ‖Wα‖
The Fredrolm index of the open disk is
dim (ker Wα)− dim (ker W ∗

α) = −1
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Recall: let S ∈ B(H) and its range admits a closed
complementary subspace. Then S(H) is closed.
Proof: Let C be a closed complement for the range. We can
assume that S is injective since ker S is a closed subspace and
hence H/ ker S is a Banach space so we can replace S by the
induced map from this quotient.
Consider H = S(H)⊕ C and the map W : H⊕ C → H defined
by W (x , c) = S (x) + c. Then, the space H⊕ C is Banach
space with the norm ‖(x , c)‖ = ‖x‖+ ‖c‖, W is bounded linear
operator, and by the open mapping theorem,
Ran (W ) = W (H⊕ {0}) = S(H) is closed.
Thus, dim (H/S(H)) <∞ =⇒ S(H) is closed.
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Recall that the Taylor spectrum σT (T) of T ≡ (T1,T2) is

σT (T) :=
{

(λ1, λ2) ∈ C2 : K ((T1 − λ1,T2 − λ2) , H) is not invertible
}

.

T is called Fredholm if ranDT is closed and
dim (ker DT/ranDT) <∞.
We can also define the Taylor essential spectrum σTe(T) of
T ≡ (T1,T2) as follows:

σTe(T) := {(λ1, λ2) ∈ C2 : (T1 − λ1,T2 − λ2) is not Fredholm}.

The Fredrolm index of (T1,T2) is∑1
i=0 (−1)i dim

(
KerDi+1

T /RanDi
T

)
.
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Recall:
Assume that (T1,T2) ≡ (V1P,V2P), where
P = (T ∗1 T1 + T ∗2 T2)1/2, and let
̂(T1,T2) ≡ (T̂1, T̂2) := (

√
PV1
√

P,
√

PV2
√

P).
Assume also that (T1,T2) is commutative. Then we have:
(i) (V1,V2) is a (joint) partial isometry; more precisely,
V ∗1 V1 + V ∗2 V2 is the projection onto ran P;
(ii) ̂(T1,T2) is commutative.
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Theorem 1: Let T = (T1,T2) be a commuting pair. Then, we
have that T is (Taylor) invertible if and only if T̂ is (Taylor)
invertible.
Proof:
Consider a short Koszul complex K (T,H) associated to T on H:

K (T,H) : 0 −→ H T−→
H⊕
H

(−T2,T1)−→ H −→ 0,

where D0
T = T =

(
T1
T2

)
and D1

T = (−T2,T1).

If T is invertible, that is, K (T,H) is exact, then T is injective,
(−T2,T1) is onto, and ran (T ) = ker (−T2,T1).
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(Continue Proof)

K (T,H) : 0 −→ H T−→
H⊕
H

(−T2,T1)−→ H −→ 0

↓ φ ↓ ϕ ↓ ψ

K (T̂,H) : 0 −→ H T̃−→
H⊕
H

̂(−T2,T1)−→ H −→ 0

↓ φ ↓ ϕ ↓ ψ

K (T,H) : 0 −→ H T−→
H⊕
H

(−T2,T1)−→ H −→ 0.

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · (0)
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(Continue Proof)
Claim 1: If T = (T1,T2) is invertible, then

√
P is invertible.

Proof of Claim 1:

Since T is invertible, T =

(
T1
T2

)
= VP =

(
V1
V2

)
P is

injective.
Thus, ker (T ) = {0}. Since ker (T ) = ker (P) = {0}, P is
injective, that is,

√
P is injective.

For any operator T ∈ B(H,K), we note

T ∈ B(H,K) is injective if and only if R(T ∗) is dense in H · · · (1)
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(Continue Proof)

T ∈ B(H,K) is injective if and only if R(T ∗) is dense in H · · · (1)

(why?)

H
−−−−−→
T = VP K

‖ ‖
ker T = ker V = ker P ker T ∗

⊕ ⊕

ranP = (ker T )⊥ = ranT ∗
−→
V
←−
V ∗

ranT
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(Continue Proof)
Since T is injective, it follows from (1) that

T ∗1 (H) + T ∗2 (H) = P
(
V ∗1 (H) + V ∗2 (H)

)
= H

=⇒ P (H) ⊇ P
(
V ∗1 (H) + V ∗2 (H)

)
= H.

· · · · · · (2)

Since P is continuous, by (2), P is onto, that is,
√

P is onto.
Therefore, we have proved Claim 1.
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(Continue Proof)
By Claim 1, we can see that φ = ψ =:

√
P and ϕ :=

√
P ⊕
√

P
are all isomorphisms.
Since φ, ϕ, and ψ are all invertible, T̃ is injective and T̂ is onto,
because T is injective and T is onto. Thus, we only need to
show that

ran
(

T̃
)

= ker ̂(−T2,T1).

(⊆) :

If y ∈ ran
(

T̃
)

, then there exists x ∈ H such that

T̃ (x) = y = y1 + y2 ∈ H
⊕
H, that is,

√
PV1
√

P (x) = y1 and
√

PV2
√

P (x) = y2 · · · · · · (3)
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(Continue Proof)
Note that

(−
√

PV2
√

P,
√

PV1
√

P)

(
y1
y2

)
=
(
−
√

PV2PV1
√

P +
√

PV1PV2
√

P
)

(x)

=
(
−
√

PV2PV1
√

P +
√

PV1PV2
√

P
)√

P(z)(
∵
√

P is invertible
)

=
√

P (−T2T1 + T1T2) (z)

=
√

P (−T1T2 + T1T2) (z) = 0

whenever x ∈ ran
√

P and
√

P (z) = x .
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(Continue Proof)
Therefore, y ∈ ker ̂(−T2,T1). Thus, we have

ran
(

T̃
)
⊆ ker ̂(−T2,T1) · · · · · · (4)

(⊇) :

Conversely, if y ∈ ker ̂(−T2,T1), then we can say
y = y1 + y2 ∈ H

⊕
H and

(−
√

PV2
√

P,
√

PV1
√

P)

(
y1
y2

)
= 0

=⇒
√

P
(
−V2
√

P (y1) + V1
√

P (y2)
)

= 0
· · · · · · (5)
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(Continue Proof)
Now, by (5) and Claim 1, we have

−V2
√

P (y1) + V1
√

P (y2) = 0 · · · · · · (6)

If y1, y2 ∈ ran
√

P (∵
√

P is invertible), then there exist
x1, x2 ∈ H such that y1 =

√
P (x1) and y2 =

√
P (x2). Thus, (6)

implies

−V2P (x1) + V1P (x2) = 0 =⇒ (−T2,T1)

(
x1
x2

)
= 0

=⇒ x = x1 + x2 ∈ ker (−T2,T1) = ran (T )
· · · (7)

Hence, there exists z ∈ H such that T1 (z) = x1 and
T2 (z) = x2.

Jasang Yoon



(2) Taylor spectra

39
(Continue Proof)
Note that for i = 1,2

Ti (z) = xi

=⇒
√

PVi
√

P
√

P (z) =
√

Pxi = yi

=⇒
√

PVi
√

P (w) = yi

=⇒ y = y1 + y2 ∈ ran
(

T̃
)

,

· · · · · · (8)

where w =
√

P (z) ∈ H.
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(Continue Proof)
Therefore, we have

ker ̂(−T2,T1) ⊆ ran
(

T̃
)
· · · · · · (9)

Recall
ran

(
T̃
)
⊆ ker ̂(−T2,T1) · · · · · · (4)

Therefore, by (4) and (9), we have

ker ̂(−T2,T1) = ran
(

T̃
)
· · · · · · (10)

that is, if T is invertible, then T̂ is also invertible.
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(Continue Proof)
(⇐=) Let T̂ be invertible. We first prove the following claim:
Claim 2: If T̂ is invertible, then

√
P is invertible.

Proof of Claim 2: Since T̂ is invertible, T̃ is injective and T̂ is
onto. Since T̂ is onto, T̂1 (H)− T̂2 (H) = H, that is

√
PV1
√

P (H)−
√

PV2
√

P (H) = H
⇐⇒

√
P
(

V1
√

P (H)− V2
√

P (H)
)

= H

=⇒
√

P
(

V1
√

P (H)− V2
√

P (H)
)
⊆
√

P (H) = H.

Thus,
√

P is onto. Since H =
(

ran
√

P
)
⊕ ker

√
P,

ker
√

P = {0}, which says that
√

P is injective. Therefore,
√

P
is invertible and we have proved Claim 2.

Jasang Yoon



(2) Taylor spectra

42
(Continue Proof)

Since T̂ is invertible, we let φ = ψ :=
(√

P
)−1

and

ϕ =
(√

P
)−1
⊕
(√

P
)−1

in (0).

By Claim 2, we can see that φ, ϕ, and ψ are all isomorphisms.
Since φ, ϕ, and ψ are all bijectives, T̃ is injective and T̂ is onto.
Thus, we only need to show that

ran (T ) = ker (T) .

(⊆) : If y ∈ ran (T ), then there exists x ∈ H such that
T (x) = y = y1 + y2 ∈ H

⊕
H, that is, for i = 1,2 ViP (x) = yi .

Observe

(−V2P,V1P)

(
y1
y2

)
= (−V2PV1P + PV1PV2P) (x)

= (−T2T1 + T1T2) = 0.
· · · (11)
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(Continue Proof)
Thus, y ∈ ker (T). Therefore, we have

ran (T ) ⊆ ker (T) · · · · · · (12)

(⊇) :
Conversly, if y ∈ ker (T), then y = y1 + y2 ∈ H

⊕
H and

(−V2P (y1) + V1P (y2)) = 0 =⇒ −
√

PV2P (y1) +
√

PV1P (y2) = 0
=⇒ −

√
PV2
√

P
(√

P (y1)
)

+
√

PV1
√

P
(√

P (y2)
)

= 0

=⇒
( √

P (y1)√
P (y2)

)
∈ ker

(
T̂
)

= ran
(

T̃
)

.

· · · (13)

Observe that Claim 2 implies that there exists
√

P (z) ∈ H for
any z ∈ H, because

√
P is onto.
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(Continue Proof)
Thus, by (13), we have that for i = 1,2

√
PVi
√

P
(√

P (z)
)

=
√

P (yi)

=⇒ Ti (z) = yi =⇒ y ∈ ran (T ).

Hence, we have

ker (T) ⊆ ran (T ) · · · · · · (14)

Therefore, by (12) and (14), we have

ker (T) = ran (T ) ,

that is, if T̂ is invertible, then T is also invertible. Hence, we
complete our proof.
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Next consider whether T is Fredholm if and only if T̂ is
Fredholm.
Theorem 2: Let T = (T1,T2) be a commuting pair.
Then, we have that T is Fredholm if and only if T̂ is Fredholm.
Proof:
Claim 1: If T = (T1,T2) is Fredholm, then

√
P is Fredholm, that

is,
√

P(H) is closed, dim
(

ker
√

P
)
<∞, and

dim
(
H/
√

P(H)
)
<∞.

Proof of Claim 1: Since T is Fredholm, ran (T ) is closed in
H
⊕
H and ran (−T2,T1) is closed in H, and

dim (ker (T )) ,dim (ker (−T2,T1)/ran (T )) ,dim (H/ran(−T2,T1)) <∞.
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(Continue Proof)
Since dim (ker (T )) <∞ and ker (T ) = ker (P), we have

dim (ker (P)) = dim
(

ker (
√

P)
)
<∞.

Since dim
(

ker (
√

P)
)
<∞ and

√
P is continuou, we have

H = ker
√

P ⊕
(

ran
√

P
)

= ker
√

P ⊕
(

ran
√

P
)

and

dim
(
H/
√

P(H)
)
<∞.

Thus,
√

P(H) is closed and
√

P is Fredholm.
Therefore, we have proved Claim 1.
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(Continue Proof)
Claim 2: If T̂ is is Fredholm, then

√
P is Fredholm.

Proof of Claim 2: Since T̂ is Fredholm, ran(T̃ ) is closed in
H
⊕
H and ran(−T̂2, T̂1) is closed in H, and

dim(ker (T̃ )),dim(ker (−T̂2, T̂1)/ran(T̃ )),dim(H/ran(−T̂2, T̂1)) <∞.

Since dim
(
H/ran(−T̂2, T̂1)

)
<∞, we have

H = ran(−T̂2, T̂1)⊕ N, where dim (N) <∞, that is,
√

PV1
√

P (H)−
√

PV2
√

P (H) + N = H
⇐⇒

√
P
(

V1
√

P (H)− V2
√

P (H)
)

+ N = H
=⇒
√

P (H) + N ⊇ H =⇒
√

P (H) + N = H.

Thus, dim
(
H/
√

P(H)
)
<∞. Since H = ker

√
P ⊕

(
ran
√

P
)

,

we have dim
(

ker (
√

P)
)
<∞.

Since dim
(
H/
√

P(H)
)
<∞,

√
P(H) is closed and

√
P is

Fredholm. Therefore, we have proved Claim 2.
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(Continue Proof)
(=⇒) Let T be Fredholm. Then, by Claim 1,

√
P is invertible in

the Calkin algebra E ≡ B(H)/K(H), where K(H) is a maximal
norm-closed ideal of compact operators in B(H). Consider the
following Koszul complexes:
Let K (T) := K (T,E) and K (T̂) := K (T̂,E).

K (T) 0 −→ E T−→
E⊕
E

(−T2,T1)−→ E −→ 0

φ ↑↓ φ ϕ ↑↓ ϕ ψ ↑↓ ψ

K (T̂) 0 −→ E T̃−→
E⊕
E

̂(−T2,T1)−→ E −→ 0.
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(Continue Proof)
Let φ = ψ =

√
P and ϕ =

√
P ⊕
√

P. Then, T̃ ◦ φ = ϕ ◦ T .
Hence, by the similar argument of Claim 1 in the proof of
Theorem 1, we can see that T̂ is Fredholm.
(⇐=) Let T̂ be Fredholm. By Claim 2, we have that

√
P is

invertible in the Calkin algebra E . Let φ = ψ =
(√

P
)−1

and

ϕ =
(√

P
)−1
⊕
(√

P
)−1

. Then ϕ ◦ T̃ = T ◦ φ. By the similar
argument of Claim 2 in the proof of Theorem 1, we have that T
is Fredholm, as desired.
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We now consider whether T−λ is invertible if and only if T̂−λ is
invertible, where λ = (λ1, λ2) ∈ C.
For this, we recall the criss-cross commutativity of pair of
operators.
Let A = (A1,A2) and B = (B1,B2) be pairs and consider
AB : = (A1B1,A2B2).
If A and B are commuting pairs, there is no reason that AB
remains a commuting.
To ensure that AB remains a commuting pair, suitable extra
conditions are needed.
One of conditions is the so-called “criss-cross commutativity”.
The pairs A and B are said to be criss-cross commuting
provided that for every 1 ≤ i , j , k ≤ 2

AiBjAk = AkBjAi and BiAjBk = BkAjBi .
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The pairs A and B are said nearly commuting provided that
AiBj = BjAi for every i 6= j .
Example of criss-cross commuting tuples of operators:

Let A = (A1,A2) =

 0 1 0
0 0 1
0 0 0

 ,
 0 1 2

0 0 1
0 0 0


and B = (B1,B2) =

 1 2 0
0 1 2
0 0 1

 ,
 1 1 0

0 1 1
0 0 1

.

Then A and B are commuting pairs. Furthermore. they are
criss-cross commuting.
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Recently, C. Benhida and R. Curto have proved the following
result:
Lemma 3: Let S ≡ (S1,S2) and T ≡ (T1,T2) be pairs of
operators satisfying the criss-cross commutativity condition.
If ST and TS are both commuting, then

σT (ST) \ {(0,0)} = σT (TS) \ {(0,0)}
and σTe (ST) \ {(0,0)} = σTe (TS) \ {(0,0)},

where σTe (T) means the Taylor essential spectrum of T.

Jasang Yoon



(2) Taylor spectra

53
Corollary 4: Let T ≡ (T1,T2) be a commuting pair. Then, we
have

σT

(
T̂
)

= σT (T) · · · · · · (16)

Proof: We put A = (V1
√

P,V2
√

P) and B = (
√

P,
√

P). If
λ = (0,0), then we use Theorem 1 for (16).
If λ 6= (0,0), then we use Lemma 4 for (16) and our proof is
completed.
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Corollary 5: Let T ≡ (T1,T2) be a commuting pair. Then, we
have

σTe

(
T̂
)

= σTe (T) · · · · · · (17)

Proof: We put A = (V1
√

P,V2
√

P) and B = (
√

P,
√

P). If
λ = (0,0), then we use Theorem 3 for (17).
If λ 6= (0,0), then we use Lemma 4 for (17) and our proof is
completed.
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Theorem 6: Let T ≡ (T1,T2) be a commuting pair. Then, for
0 ≤ ε ≤ 1, we have

σT

(
T̂ε
)

= σT (T)

and
σTe

(
T̂ε
)

= σTe (T)
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We next study the Fredrolm index of (T1,T2). We recall that
the Fredrolm index of T ≡ (T1,T2) is

ind (T) :=
1∑

i=0

(−1)i dim
(

kerDi+1
T /ranDi

T

)
.

Theorem 7: Let T = (T1,T2) be a commuting pair. Then, we
have that T is Fredholm if and only if T̂ is Fredholm.
Furthermore,

ind
(

T̂
)

= ind (T) .

Proof: We note that if T (resp T̂) is Fredholm, then φ = ψ =
√

P
is invertible in Calkin algebra E ≡ B(H)/K(H).
Since

√
P is invertible in Calkin algebra E , by the similar proof

in Theorem 1, we have that ind
(

T̂
)

= ind (T), that is,
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(Continue Proof)

ind (T)
= dim (kerT1 ∩ kerT2)− dim (ker (−T2,T1) /ranT ) +H/ran (−T2,T1)

= dim(kerT̂1 ∩ kerT̂2)− dim(ker ̂(−T2,T1)/ranT̃ ) +H/ran ̂(−T2,T1)

= ind
(

T̂
)

.
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Lemma 8: Let A ≡ (A1,A2) and B ≡ (B1,B2) be criss-cross
commuting pairs
Let C ≡ (A1B1−λ1,A2B2−λ2) and D ≡ (B1A1−λ1,B2A2−λ2),
where there exists at least one k such that λk 6= 0 (k = 1,2).
Then, C is Fredholm if and only if D is Fredholm.
In this case, we have

ind (C) = ind (D) and
dim

(
kerDi+1

C /ranDi
C

)
= dim

(
kerDi+1

D /ranDi
D

)
(i = 0,1),

where ind (C) is the Fredrolm index of C.
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Theorem 9: For 0 ≤ ε ≤ 1 and T ≡ (T1 − λ1,T2 − λ2), we have

ind
(

T̂ε
)

= ind (T) ,

where λk 6= 0 (k = 1,2).
Proof: Clear from Theorem 7 and Lemma 8.
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Open problems:

Problem 1. ([Exn], [LY2])
If Wα is a subnormal weighted shift with Berger measure µ, are
the following statements equivalent?

(i) µ has a square root; (ii) The Aluthge transform W̃α is
subnormal.
Problem 2. [CuYo5] Let S be an operator and let k ≥ 2.
Do the k -hyponormality of S imply the k -hyponormality of S2?
Do the k -hyponormality of S and S̃ imply the k -hyponormality
of S2?
Concretely, the k -hyponormality of Wα and W̃α imply the
k -hyponormality of W 2

α?
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A quasinormal operator is said to be purely quasinormal if there
exists no subspace M of H which is invariant under T such that
T |M is normal, where T |M means the restriction of T to the
invariant subspace M.
We recall that the Hilbert space dimension of the subspace
(U+(H))⊥ is called the multiplicity of a unilateral shift U+.
We let multi (U+) be the multiplicity of a unilateral shift U+.
Theorem 8: ([Bro], [Con]) S ∈ B(H) with a polar decomposition
S = U|S| is a (purely) quasinormal operator if and only if there
exists a positive operator A ∈ B(H) with ker A = {0} such that
S ∼= U+ ⊗ A, where U+ is a unilateral shift with
multi (U+) = n ∈ N, U ∼= U+ ⊗ IN , and |S| ∼= IM ⊗ A with
H = M ⊗ N. Furthermore, if the polar decomposition S = U|S|
is unique, then, up to a unitary equivalence, U+ and A in
S ∼= U+ ⊗ A are uniquely determined.
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Hence for n ≥ 1, Sn = Un

+⊗An and (S∗)n =
(
U∗+
)n⊗An, so that

(S∗)n Sn = I ⊗ A2n, Sn (S∗)n Sn = Un
+ ⊗ A3n,

and Sn (S∗)n Sn = Un
+ ⊗ A3n.

Therefore, we have
[
Sn, (S∗)n Sn] = 0, that is, Sn is

quasinormal. Thus, we can ask:
Problem 3. If S2 is quasinormal, then is S quasinormal?

Problem 4. If S2 and
(

S̃
)2

are both quasinormal, then is S
quasinormal?
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We can also give an answer to Problem 4.
For this, we let H ≡ `2(Z+) =

∨∞
i=0{ei}.

Given integers m and h (h ≥ 1, 0 ≤ m ≤ h − 1), define
Hm :=

∨∞
i=0{ehi+m}; clearly,

H =
h−1⊕
m=0

Hm · · · · · · (15)

For a weight sequence α ≡ {αn}∞n=0, we let

Wα(h:m) := shift
(

Πh−1
n=0αhi+m+n

)∞
i=0

;
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For a weight sequence α ≡ {αn}∞n=0, we let

Wα(h:m) := shift
(

Πh−1
n=0αhi+m+n

)∞
i=0

;

that is, Wα(h:m) denotes the sequence of products of weights in
adjacent packets of size h, beginning with αm · · ·αm+h−1.
For example, given a weight sequence α ≡ {αn}∞n=0, we have
Wα(2:0) = shift(α0α1, α2α3, · · · ) and
Wα(3:2) = shift(α2α3α4, α5α6α7, · · · ).
For h ≥ 1, and 0 ≤ m ≤ h − 1, we note that Wα(h:m) is unitarily
equivalent to W h

α |Hm . Therefore, W h
α is unitarily equivalent to⊕h−1

i=0 Wα(h:m) [CuP].
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Problem 5. [CuYo5] When does the subnormality of S2 imply
the subnormality of S ?
Problem 6. Let T ≡ (T1,T2) be a commuting pair and
spherically quasinormal with purely quasinormals T1 and T2.
Can we say that there exist a (joint) isometry U = (U1,U2) and
P ≥ 0 such that T = U⊗ P?
Problem 7. If W(α,β) is a subnormal with Berger measure µ,
are the following statements equivalent?
(i) µ has a square root; (ii) The spherical Aluthge transform
Ŵ(α,β) of W(α,β) is subnormal.
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We use H0 (resp. H∞) to denote the set of commuting pairs of
subnormal operators (resp. subnormal pairs) on Hilbert space.
For k ≥ 1, we let Hk denote the class of k -hyponormal pairs in
H0.
Clearly, H∞ ⊆ · · · ⊆ Hk ⊆ · · · ⊆ H2 ⊆ H1 ⊆ H0. The main
results in ([CLY1], [CuYo1]) show that these inclusions are all
proper.
Recently, in [LLY3] we gave a negative answer to the Lubin’s
question (iii):
If (T1,T2) is a pair of commuting subnormal operators on H, do
they admit commuting normal extensions (i) when p(T1,T2) is
subnormal for every 2-variable polynomial p, (ii) when T1 + sT2
(all s ∈ C) is subnormal, or more weakly, and (iii) when T1 + T2
is subnormal?
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Problem 8. [Lu1] If T ≡ (T1,T2) ∈ H0, do T admit commuting
normal extensions when T1 + sT2 (all s ∈ C) is subnormal?
Problem 9. [CLY1] If T(2,1) ≡ (T 2

1 ,T2),T(1,2) ≡ (T1,T 2
2 ) ∈ H∞,

then do T admit commuting normal extensions?
For Problem 9, we split the ambient space `2(Z2

+) into an
orthogonal direct sum ⊕m−1

p=0 ⊕
n−1
q=0 H

(m,n)
(p,q) , where

H(m,n)
(p,q) := ∨{e(m`+p,nk+q) : k = 0,1,2, · · · , ` = 0,1,2, · · · }.

Let W (m,n)
(α,β) |H(m,n)

(p,q)
be the restriction of W (m,n)

(α,β) to the space

H(m,n)
(p,q) . Each of H(m,n)

(p,q) reduces T m
1 and T n

2 , and W (m,n)
(α,β) is

subnormal if and only if each W (m,n)
(α,β) |H(m,n)

(p,q)
is subnormal.
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We let α(m,n)

(k1,k2)
|H(m,n)

(p,q)
and β(m,n)(k1,k2)

|H(m,n)
(p,q)

be the weights of

W (m,n)
(α,β) |H(m,n)

(p,q)
.

Problem 10. [CLY11] If one of T(2,1) and T(1,2) is spherically
quasinormal, then do T admit commuting normal extensions?
Problem 11. Let S = (S1,S2) and T = (T1,T2) be doubly
commutative.
If (S1,S2) = (W1Q,W2Q) (resp. (T1,T2) = (V1P,V2P)) is the
spherical polar decomposition of S (resp. T),
is it true that (S1T1,S2T2) = (W1V1QP,W2V2QP) is the
spherical polar decomposition of ST =(S1T1,S2T2)?
Problem 12: If T̂ = T = T̃, then is T (jointly) quasinormal?
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